Taxonomy of Learning and Performance Integration

John Laird, Shiwali Mohan, Bryan Stearns
Soar Workshop 2019

Funded by AFOSR
Possible Taxonomies of Learning

• **Information type** as input to learner
 – Continuous, discrete, symbolic, …

• **Feedback** available for learning
 – Unsupervised, supervised, semi-supervised, reinforcement

• **Algorithm and representation**
 – Regression, clustering, decision trees, version spaces, neural networks, K-nearest neighbors, Q learning, support vector machines, Bayesian networks, …

• **Type** of learned knowledge
 – Classification, decision making, planning, …
Alternative Taxonomy: How is Learning Integrated with Performance?

• Forthcoming CCC AI Roadmap will call for “Science of Integration in AI.”

• Our proposal for human-level systems:
 – Level 1: Architectural Mechanisms
 • Automatically capture ongoing experience.
 • Innate, effortless, online, always active
 • Diverse learning mechanisms for diverse long-term memory structures
 – Level 2: Knowledge-based Strategies
 • Metareasoning that deliberately creates experiences for L1 mechanisms to learn.

• Project goal is better understand of integration of learning within autonomous systems.
Initial Research: Take a Step Back

- Flesh out taxonomy of learning and performance integration.
 - Based on analysis of neuroscience, animal behavior, cognitive psychology, educational psychology, and AI/ML.

- Focused on AI/ML because of more variations.
 - Reviewed ~50 AI/ML learning systems and cognitive architectures.
 - Why is there so much variation in AI/ML?

- What are the critical dimensions of that taxonomy?
Integration Dimensions: Data and Control

• **Data Source:** Source of data used for learning.
 – External to agent / internal processing.
• **Learning Control:** Control of when learning occurs
 – External system / internal.
• **Experience Control:**
 – Internal (autonomous) / External (slave)
• **Internal Learning Control:**
 – Direct deliberate / automatic.
• **Internal Learning Control Goals:**
 – Innate / external direct / external indirect / internal.
Data Source External:

Batch

- Learning and performance are separate.
- **External source of learning data:** training data.
- Majority of ML systems: classification, many learning by demonstration,…
Offline Performance Learning: *Segregated*

- Learning and performance still separate.
- **Internal source of learning data:** behavior trace.
- External control of learning experience.
- Examples: Prodigy, FORR, CBR, ...

![Diagram showing the relationship between performance, learning, and environment](image-url)
Prodigy
Online Learning over Performance:
Autonomous Learning Agents

- Learning and performance integrated within an agent.
- Internal source of learning data: agent’s experience.
- Internal control of learning
- Autonomous learning agents: Reinforcement learning (RL) agents, cognitive and robot architectures

![Diagram of Learning and Performance](image)
External Experience Control: *Slave*

- Core agent is still an autonomous online learning system, but..
External Experience Control:
Slave

- Agent’s experience is controlled external human (or program)
 - Curriculum training, parameter sweeps, reward functions, goals, …
- Many learning by demonstration and imitation
- Many RL systems: AlphaZero, AlphaStar, Tamer2, …
- Worth cataloging all of these manipulations…
Go-Explore: Uber

Phase 1: explore until solved
- Select state from archive
- Go to state
- Explore from state
- Update archive

Phase 2: robustify (if necessary)
- Run imitation learning on best trajectory
Autonomous Experience: Deliberate Learner

- Learning “task” modules deliberately store knowledge
- Cognitive frameworks: DIARC, CoBots, Blackboards, and learning robotic architectures, personal assistants (?)
Autonomous Experience: *Automatic Learning*

- Source data is agent’s experiences
- Architectural learning mechanisms: L1
- Many cognitive architectures: Soar, ACT-R, ...
- Reinforcement learning (RL), SLAM, ...

![Diagram of Autonomous Experience](image-url)
TEXPLORE Reinforcement Learning
Hester and Stone 2015

[Diagram of TEXPLORE Reinforcement Learning]
Final Dimension: Source of Goals for Learning

Decided what should the system learn?

1. Innate: fixed set of what it will learn.
 • Batch, off-line learning, many on-line learning,…

2. External direct
 • Potentially *slave* systems. No known examples…

3. External indirect
 • Few systems can take a learning goal as input.
 • Some interactive task learning agents?

4. Internal meta-reasoning
 • Direct control of learning
 • Indirect control of learning through performance
Source of Learning Goals

- **Direct**: Inject into agent’s learning system.
- **Indirect**: Communication through some interaction (language): Telling Siri to remember something…
Internal Metareasoning Direct Control of Learning: MIDCA: Cox et al. (2016)
Internal Metareasoning: L2+

- Agent determines *performance* goals that indirectly influence learning.
Potential L2 Strategies

• Repeat important experiences:
 – practice, studying, training, …

• Initiate novel experiences:
 – explore, go to classes, lectures, …

• Recall, replay, analyze prior experiences:
 – self-explanation, retrospective analysis, …

• Interact with other agents:
 – learning by instruction, demonstration, …

• Retrieve related knowledge:
 – complex analogy

• Imagine hypothetical situations:
 – planning, mental preparation, and rehearsal
Metareasoning and External Interaction (L2+)

- Interact with other agents:
 - *learning by instruction, demonstration, …*
 - “Maybe you should use flash cards?”
Level 1

Self-Explanation
Recognition
Discovery
Episodic Learning
Learning by Analogy
Category and Concept Learning
Learning by Instruction
Sequence Learning

Level 2

Learning by Demonstration
Rehearsal
Procedure Learning
Meta-Learning
Temporal-Difference Learning
Experimentation
Imitation Learning
Perceptual Learning
Practice & Rehearsal
Properties that may engender:
- Continual, embodied autonomous existence.
- Computational limits on architectural learning mechanisms.

Capabilities that may enable:
- Metacognitive reasoning about how actions can enable learning.
 - Self-modeling of its own L1 learning capabilities.
 - Unclear what metacognitive capabilities are required for L2.
- Episodic memory that allows regularity detection and construction of self-model.
- Social interactions that share knowledge.
Expanded Levels

- L0: Evolution: creates L1 Mechanisms
- L1: Architectural Learning Mechanisms
- L2-: Innate Learning Strategies
 - Curiosity, imitation, play in young animals, …
- L2: Knowledge-based Learning Strategies
- L2+: Social Learning Strategies
 - Organized education, funded research, conferences!
 - Focus of much of educational psychology
 - Eliminates need for agent’s own motivation and meta-knowledge
- L3: Modification of L1 Mechanisms
 - Rest, exercise, ingesting cognitive enhancing drugs (nootropics and stimulants)

Wild speculation: L2, L2+, L3 are unique to humans

Will future of ML be in Level 2 strategies?