Interactively Learning a Blend of Goal-Based and Procedural Tasks

Aaron Mininger and John E. Laird

University of Michigan

Published in AAAI 18
Interactive Task Learning

What are different ways an agent can formulate a task?

- Achieving a goal
- Maximizing a reward or objective function
- Following a procedure
- Keeping within some constraints
Goal-Based Formulation

Formulate the task as achieving a goal
Use planning and search to select actions

Discard the soda.

What is the goal?
The goal is that the soda is in the garbage
Goal-Based Formulation

Explanation-Based Learning Approach
Explanation of why actions led to the goal -> policy

+ Works over complex, relational task structures
+ Exploits rich domain knowledge to learn from few examples
+ Flexible to variations and novel conditions

− Requires extensive domain knowledge
− All or nothing approach
− Hard to describe a goal for some tasks
Procedural Formulation

Formulate the task as following a procedure
Rely on the procedure to execute the task in the future

- Lead a tour.
- Go to the copy room.
- Say ‘Here is where you can make copies.’
- Go to the kitchen.
- Say ‘Here is where you can eat lunch.’
Procedural Formulation

Formulate the task as following a procedure

Directly represent the steps needed to perform the task

+ Does not require specialized domain knowledge
+ Can incorporate complex control flow
+ Easy to correct, modify, and extend

— Difficult to adapt to problems that arise
— Requires the instructor to know the actions the agent can take
Goal-Based vs Procedural

Both formulations have unique tradeoffs

Which is more suitable may depend on:

- The specific task being taught
- The preferences of the instructor
- The capabilities and knowledge of the agent
Interactive Task Learning

Extended Rosie to support learning procedural tasks

Can learn tasks:

- Where the goal is not easily expressed
- When the agent lacks domain knowledge
- Which blend both formulations

Previous Approach: Learning Goal-Based Tasks
Learning Goal-Based Form.

1. Extract task structure from command

Discard the soda.
Learning Goal-Based Form.

2. Store a representation of the goal

The goal is that the soda is in the garbage
Learning Goal-Based Form.

3. Learn a goal elaboration rule

if
 task = discard(e₁)
garbage(e₂)
then
 goal = in(e₁, e₂)
Learning Goal-Based Form.

4. Perform actions to achieve goal

- Pick up the soda
- Approach the garbage
- Put the soda in the garbage
5. Use EBG to learn policy rules

if
 task = discard(e₁)
grabbed(e₁)
garbage(e₂)
near(e_self, e₂)
then
 perform put-down(e₁, e₂)
Learning Goal-Based Form.

What if the goal cannot be easily expressed?
Learning Procedural Formulation
Learning Procedural Form.

Teach the task of giving a tour

- Lead a tour.
- Go to the main office.
- Say ‘This is the main office.’
- Go to the kitchen.
- Say ‘Here is where you can eat lunch.’
- You are done.
Learning Procedural Form.

Teach the task of giving a tour
Learning Procedural Form.

Retrospective Learning: With Goal

initial state: discard

\text{pick-up}(\text{e}_{\text{soda}})

\text{approach}(\text{e}_{\text{garbage}})

\text{put}(\text{e}_{\text{soda}}, \text{e}_{\text{garbage}})

goal achieved: success

Policy rules will be learned (best pref)
Learning Procedural Form.

Retrospective Learning will fail

initial state: lead-tour

go-to(e_{main_office})

say("This is ...")

go-to(e_{kitchen})

say("Here is where...")

no goal
Learning Procedural Form.

Change 1: Break the retrospective learning into individual episodes
Work backwards from the last subtask first

```
state3 of discard
put(e_{soda}, e_{garbage})
goal achieved: success
```

learn best preference rule for put
Learning Procedural Form.

Change 1: Break the retrospective learning into individual episodes
Work backwards from the last subtask first

\[
\text{state2 of discard}
\]

\[
\text{approach}(e_{\text{garbage}})
\]

\[
\text{put}(e_{\text{soad}}, e_{\text{garbage}})
\]

goal achieved: success

learn best preference rule for approach
Learning Procedural Form.

Now we do the same thing with lead-tour

\begin{verbatim}
state4 lead-tour

say("Here is where...")

no goal
\end{verbatim}

nothing is learned
Learning Procedural Form.

Change 2: Create a new kind of goal for performing an action

state4 lead-tour

say("Here is where...")

no goal

nothing is learned
push new goal of performing say
Learning Procedural Form.

Change 3: Allow an ordered sequence of subgoals

- subgoal1
- subgoal2
- subgoal3
- subgoal4

perform: go-to(e_{main_office})
perform: go-to(e_{kitchen})
perform: say("This is ...")
perform: say("Here is where...")
Change 3: Allow an ordered sequence of subgoals
Learning Procedural Form.

Change 4: Keep track of current subgoal during task execution

- State has the id of the current subgoal
- When the current subgoal is satisfied:
 - Either retrieve the next one from smem
 - Or if it is the last, report task success
Learning Procedural Form.

Next time, will perform the same actions in the same order
Blended Formulation Example
Learning Blended Formulation

Teach the task of deliver,
Without the knowledge of what pickup does

Deliver the package to David.
The goal is that David is holding the package.
What do I do next?
Pick up the package.

Rosie finds David
Rosie gives David the package
Learning Blended Formulation

Teach the task of deliver,
Without the knowledge of what pickup does

initial state: deliver

pick-up(e_{package})

find(e_{David})

give(e_{package}, e_{David})

goal not satisfied

cannot explain why this action helps achieve the goal
Learning Blended Formulation

Now, we can learn 2 policy rules

state3 deliver

\[\text{give(e}_{\text{package}}, \text{e}_{\text{David}}) \]

\[\text{goal satisfied} \]

state2 deliver

\[\text{find(e}_{\text{David}}) \]

\[\text{give(e}_{\text{package}}, \text{e}_{\text{David}}) \]

\[\text{goal satisfied} \]
Learning Blended Formulation

Learning rule for pickup still fails

state2 deliver

pick-up(e_{package})

goal not satisfied

does not change the state
Learning Blended Formulation

Learning rule for pickup still fails
So we push a new procedural subgoal

state2 deliver

pick-up(e_{package})
goal not satisfied

perform: pick-up(e_{package})

holding(e_{David}, e_{package})
Learning Blended Formulation

Learning rule for pickup still fails
So we push a new procedural subgoal
Deliver a water to Emily.

- Rosie finds the water
- Rosie picks up the water
- Rosie finds Emily
- Rosie gives Emily the water
Nuggets and Coal

Nuggets

- Improves the space of tasks Rosie can learn
- Able to learn when full explanation fails
- Integrated approach allows interesting blending of formulations
- Gives more options to the instructor

Coal

- Limited to singular actions
- No complex control flow
- Limited ability to learn task variations
- Will not change goals as more knowledge is gained
Questions?