FRAMEWORK FOR TRUSTWORTHY AUTONOMY

36th Soar Workshop
Ann Arbor, Michigan
Problem – Cyberspace Related Issues

Increasing Complexity

- Space Shuttle: ~400K LOC
- F22 Raptor fighter: ~2M LOC
- Linux kernel 2.2: ~2.5M LOC
- Hubble telescope: ~3M LOC
- Android core: ~12M LOC
- Army Future Combat Sys.: ~63M LOC
- Connected car: ~150M LOC
- Autonomous vehicle: ~300M LOC

Increasing Vulnerabilities

- Arduino, x86, ARM, CISC, RISC, server/desktop/laptop, desktop, laptop, smart phone, tablet

Increasing Threats

- In 2014:
 - Over 7,900 new vulnerabilities disclosed & catalogued
 - ~4,300 in Open Source, ~3,600 in commercial software

- NIST

Reference: Black Duck Software Knowledgebase, NVD

2012 - ARAMCO
2014 - SONY
2015 - UKRAINE
ROBOTICS PLATFORMS NOT EXEMPT

Sensors
- Integrity attacks (i.e. spoofing), e.g.
 - GPS PNT attacks
 - Lidar spoofing
- Availability attacks (i.e. Denial of Service)

GPS spoofing (Nighswander, 2012)
Lidar spoofing (Petit, 2015)

Communication
- Confidentiality attack – e.g. Traffic eavesdropping
- Inadequate key management/poorly implemented encryption algorithms
- Integrity attacks – e.g. Buffer overflow/remote code execution, code injection
- Availability attacks – Denial of Service/Jamming
- Over the air (OTA) software updates

Onboard processing
- Integrity - Unauthenticated commands
- Broad attack surface – Little to no IP Port/Protocol restrictions
- Availability attack against legitimate commands
- Close access attacks
 - USB ports
 - Maintenance laptops
 - Cell phone
 - Physical Insider

Other potential threat vectors
- Supply chain threat – e.g. FPGA bitstream files
- Software repositories
- Legacy components => frequency of patching & refresh of hw/sw
- Unique AI algorithmic vulnerabilities associated with autonomous systems

Controller
State Model
Planner
Open RF Comms
COMMS BUS (e.g. ETHERNET)
Sensor-1 (e.g. LIDAR)
Sensor-2 (e.g. GPS)
... Sensor-m
Actuator-1 (e.g. servo)
Actuator-2 (e.g. gripper)
... Actuator-n
INSIGHTS

General Principles
- Cybersecurity != Cyberspace defense—cannot defend everything – focus on ”key terrain”
- Must be able to detect, characterize, respond, and adapt within mission context

Adversary actors
- Multiple ”online” personas associated with one physical identity
- Tactical actions derived from goals/intents
- Both parallel (e.g. reconnaissance, DDOS) and sequential (e.g. delivery/exploitation) action
- Cognitive, Logical, and Physical indicators

<table>
<thead>
<tr>
<th>Cyberspace Layer</th>
<th>Indicators</th>
<th>Detection Difficulty (Relative)</th>
<th>Adversary Cost to Change (Relative)</th>
</tr>
</thead>
</table>
| Persona/Cognitive | • Personas and Identities
• Intent/Goals
• Tactics, Tech., Procedures + C2
• Social Presence and communication | Hard | Medium (more difficult after foothold is gained) |
| Logical | • Malware variants
• IP addresses/TCP Ports
• Configurations/Logs
• File hashes | Low->Medium (depending on adversary sophistication) | Low |
| Physical | • Infrastructure
• Computing nodes
• Electromagnetic Spectrum
• Geo-Location
• Persona biometrics (key stroke, mouse patterns, facial recognition) | Medium | High (lower after foothold is gained) |
INSIGHTS

• General Principles
 ➢ Cybersecurity != Cyberspace defense--cannot defend everything – focus on ”key terrain”
 ➢ Must be able to detect, characterize, respond, and adapt

• Adversary actors
 ➢ Multiple ”online” personas associated with one physical identity
 ➢ Multiple tactical actions (derived from goals/intents) to achieve objectives
 ➢ Both parallel (e.g. reconnaissance, DDOS) and sequential (e.g. delivery/exploitation) action
 ➢ Cognitive, Logical, and Physical indicators

• Shortfall of expertise
 ➢ Well documented shortage of cyber expertise
 ➢ Combat units do not have cognitive resources to fight kinetic and non-kinetic fight simultaneously
 ➢ Demands some autonomy *(but there is a complexity tradeoff)*

• Autonomous systems present new attack vectors
 ➢ Key benefit to autonomy – system’s ability to ”decide what to do next”
 ➢ Decision knowledge emerges from perception and memory – both subject to compromise

• Trustworthiness & Trust - Key obstacle to employment of autonomous systems

Generation Gap Could Lead to a Cybersecurity Worker Shortage

Schools are scrambling to provide courses that emphasize cybersecurity, an element traditional computer science tracks have not included.
CONCEPTUAL APPROACH TRUSTWORTHY FRAMEWORK FOR AUTONOMY

Hypothesis: Trustworthy framework for autonomy composed of three characteristics

<table>
<thead>
<tr>
<th>Trust Models*</th>
<th>Deterrence</th>
<th>Knowledge</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratnasignham, 1998</td>
<td>Cognitive</td>
<td>Emotional</td>
<td>Behavioral</td>
</tr>
<tr>
<td>Lewis & Weigert, 1985</td>
<td>Habits</td>
<td>Passion</td>
<td>Policy</td>
</tr>
</tbody>
</table>

*From Wallace, 2007

Trustworthiness & Trusted

Common traits:
- Predictability
- Understanding
- Similarity
- Consequences
CONCEPTUAL APPROACH - TRUSTWORTHY FRAMEWORK FOR AUTONOMY

Hypothesis: Trustworthy framework for autonomy composed of three characteristics

- **Bounded**
 - Detect & characterize violations
 - Continuous validation & verification
 - AI algorithmic vulnerabilities & mitigations must be addressed (e.g. adversarial machine learning)

- **Explainable**
 - Support transparency through appropriate representations & processes
 - Model user state/comprehension
 - Multi-modal, adaptive, & interactive user interfaces

- **Trustworthiness & Trusted**
 - Consequences
 - Respond and adapt to violation of bounds
 - Fail-safe – reduced functionality
 - Resilient – Continue mission with reduced functionality (mission success may be less efficient and effective)

- **Fail-safe & Resilient**
 - Understanding
 - Similarity
Challenges & Potential Approaches

- **Bounded behavior – detect & characterize**
 - Behavioral meta-models (Wallace, 2007)
 - Monitoring and Validating Synthetic Behavior (Jones, 2015)
 - Top-down, Abductive Reasoning for Behavior Detection (Crossman, 2011)
 - Ethics (Arkin, 2012)
 - Safety Envelope for Security (Tiwari, 2014)

- **Cyber (?) – Research Gap**
 - Friendly Behavior Envelope

Adversary Behavior Envelope

- **Explainable - Support Transparency**
 - Episodic Memory (Nuxoll, 2007)
 - Model of User state/comprehension + multi-modal interfaces (Taylor, 2012)

- **Fail-Safe & Resilient - Respond and adapt – Research gaps**
 - What/Who makes decision to move to a fail-safe state?
 - What are the space of actions?

“Trust but verify”
- Army leadership philosophy
Cyber Defense Battle Buddy Concept

Use Case (Friendly)

1. R_{1C}, R_{2C}, R_{3C} observe multiple R_3 connections to a.b.c.d/443 via logged connections
2. R_{3C} directs collection of physical signal emissions emanating from R_3 to confirm/deny
3. R_{1C}, R_{2C}, R_{3C} (majority) agree that R_3 has a boundary violation (transmitting to unknown IP) and recommend/decide on one of following actions (situation dependent: *cyberspace maneuver*)
 1. Block IP connections to a.b.c.d (via R_3 iptables)
 2. Repurpose R_3 as R_{3C} (and vice versa) to enable communication to continue and observe
 3. Hunt for communicating process on R_3 and shut down
 4. Etc.

Use Case (Adversary)

1. Gain access to R_3 via remote code exploit (RCE) through RF inject into vuln. P2P software (e.g. a ROS Node)
2. Decrypt install binary and write to disk
3. Execute install to extract in-memory implant/backdoor
4. Send heartbeat to C2 server and receive instructions for rendezvous collection point; Remove install binary
5. (Persona through C2 server) recon file system for relevant plans
6. On order execute exfil to RP (repeat) – mission plans
7. On order wipe drive (destroy)
Cyber Defense Battle Buddy Technical Approach

NOTES:

1. General Purpose Processor (GPP) or embedded system with ability to partition address space
2. Hardware based hypervisor for efficiency and to support out-of-band processing.
3. VM subscripts (or more) – focused on the tactical behaviors to support synchronized kinetic + non-kinetic maneuver
4. VM subscripts – focused on behavior monitoring (communicate with other monitors preferable using out-of-band, non-operational link).
5. Tactical Behavior implementation for kinetic/non-kinetic maneuver and cyber monitor
WHAT DOES SOAR HAVE TO DO WITH THIS APPROACH?

Procedural
- Hierarchical control & reasoning
- Abductive reasoning (hypothesis testing)
- Transitions to fail-safe states (policies)

Semantic
- Adversary attack graphs (doctrinal templates)
- Compute network nodes and connections
- Friendly tools, techniques

Working memory
- Situational context - what is broader mission context?

Symbolic Long-Term Memories
- Procedural
- Semantic
- Episodic

Symbolic Working Memory
- Reinforcement Learning
- Chunking
- Semantic Learning
- Episodic Learning

Spatial Visual System
- Perception
- Action

Episodic
- Explaining behavior
- Reduce hypothesis search space (these are the indicators I looked for last time in this situation)

SVS
- Physical indicators (e.g. geo-location of threat vectors)
- Integration of kinetic/non-kinetic maneuver (in order to exploit through RF, must have transmitter within radius x)
EVALUATION — NONE

{SOME RESEARCH & EVALUATION QUESTIONS}

• What are the design space tradeoffs?
 - Number and types of monitoring agents?
 - Self-monitoring or group monitoring with voting (majority) algorithm
 - Soar controlling both tactical kinetic/non-kinetic behavior and cyber defense monitoring agents? If separate, how/when do they interact?
 - What is CPU overhead? Communications overhead?

• What cyber-related knowledge is most useful for detection?
 - Cognitive – are behavior envelopes sufficient for tracking adversary behavior?
 - Logic - OS/App logs, file hashes, security tools’ output
 - Physical emissions, spatial (e.g. geolocation) and temporal

• What are the unique vulnerabilities associated with AI systems? What are potential mitigation countermeasures?

• What is necessary for supporting infrastructure?
 - Modeling and simulation environment and tools to support development and experimentation
 - Physical platforms, space, and cyber/EW tools to support live experimentation
Nuggets & Coal

<table>
<thead>
<tr>
<th>Nuggets</th>
<th>Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploring Soar applicability in a new domain (Cyberspace)</td>
<td>No design, implementation, evaluation 😞</td>
</tr>
<tr>
<td>Exciting, explosive area</td>
<td>Unclear of right approach – much hype around AI and “cognitive” approaches</td>
</tr>
<tr>
<td>A lot of interest (+Work)</td>
<td>A lot of work</td>
</tr>
</tbody>
</table>