-
Heuristic Value Function Revision

Heuristic Value Function Revision

Mitchell Keith Bloch and John Edwin Laird

University of Michigan

2260 Hayward Street
Ann Arbor, MI. 48109-2121
bazaldQRumich.edu and laird@umich.edu

June 20, 2012


http://bazald.com
http://www.umich.edu
mailto:bazald@umich.edu
mailto:laird@umich.edu

Heuristic Value Function Revision

L Motivation

Motivation

@ Possible to specify an arbitrary value function in Soar
@ No way to revise an existing value function because
reinforcement learning always make a decision

@ Given the opportunity, it may be possible to improve a
value function as specified by RL-rules



Heuristic Value Function Revision

L Reinforcement Learning

Reinforcement Learning

@ Prefer actions leading to positive rewards to actions
leading to negative rewards

@ Outcomes are characterized as a discounted return,
Z?io y'r

@ Deriving correct estimates of these returns is integral to
many RL algorithms

@ What is essential, however, is learning an optimal policy

@ Q-learning and Sarsa in the simplest case map S x A = Q
in a one-to-one fashion



Heuristic Value Function Revision

LReinfc»rcement Learning

Soar-RL

@ Conditions on RL-rules encode which features to test and
how to discretizate continuous state, defining the mapping
Sx A= Q



Heuristic Value Function Revision

L Reinforcement Learning

Soar-RL

@ Conditions on RL-rules encode which features to test and
how to discretizate continuous state, defining the mapping
SxA=Q

@ Can be one-to-one (if no continuous space)

S0

52

bbbk

53




Heuristic Value Function Revision

L Reinforcement Learning

Soar-RL

@ Conditions on RL-rules encode which features to test and
how to discretizate continuous state, defining the mapping
SxA=Q

@ Can be one-to-one (if no continuous space)
@ Can use coarse coding

0
/

51

-
/

53




Heuristic Value Function Revision

L Reinforcement Learning

Soar-RL

@ Conditions on RL-rules encode which features to test and
how to discretizate continuous state, defining the mapping

SxA=Q

@ Can be one-to-one (if no continuous space)
@ Can use coarse coding
@ Potentially arbitrary, non-uniform abstraction

52

O

53

5




Heuristic Value Function Revision

L Reinforcement Learning

Soar-RL

@ Conditions on RL-rules encode which features to test and
how to discretizate continuous state, defining the mapping
SxA=Q

@ Can be one-to-one (if no continuous space)
@ Can use coarse coding
@ Potentially arbitrary, non-uniform abstraction
@ Traditionally bootstrapped from values set before
execution, e.g. 0
@ Can be done simply with GPs or templates
@ Work in John’s talk uses chunking to take advantage of
background knowledge instead, deciding ...

@ The mapping S x A = Q
@ |Initial Q-values



Heuristic Value Function Revision

LBeyond Initialization

Decide

© Reduce candidate set using non-numeric preferences
@ Possible to impasse here
® Decide using numeric preferences (RL-rules)

@ Always results in a decision (will never impasse)
@ Cannot chunk new RL-rules to modify S x A = Q
@ Prevents using overgeneral conditions early on to promote
quick learning
@ Prevents adding conditions on relevant features which were
previously believed to be irrelevant



Heuristic Value Function Revision

LBeyond Initialization

cart pole

Goal :

—0+ T
6=0% a5
y=43%02

- 1'0 +i 0
Y = position

(a) The ““‘Cart-pole”’

@ [Munos and Moore, 2001] developed metadata to decide

which Q-values ...

+104 Y

=

NI

T
I
I
T

-10
(b) The projection of the state space

@ Might be important to split (influence)
@ Are good candidates for changing values (variance)

DIAyD



Heuristic Value Function Revision

LBeyond Initialization

Design Goals

Initially Chunked RL-Rules Heuristically Triggered RL-Rules

(A

@ Specify initial value function
@ Condition on features of clear importance
@ Err on side of overgenerality to speed learning
@ Track metadata until they indicate an opportunity to
improve the value function

@ Generate additional RL-rules in tie impasses until
metadata indicate improvement

@ Generally condition RL-rules on a smaller part of the state
space

Y



Heuristic Value Function Revision

LBeyond Initialization

blocks world (preliminary)

600

500

400

300

Count

200

100

@ Start with creating one RL-rule per move (e.g. A onto B)

@ Tie impasse when variance is above a low threshold, 0.002
@ Add RL-rules testing features (in-place, on-top)

@ Achieved optimal consistently by 50 episodes, ignoring

exploration

Blocks World with Tie Impasses for RL-Rules

T T
. . Chunked RL-Rules
oo Steps to Goal
JJ N~ — L
0 10 20 30 40 50

Episode Number (srand 42)



Heuristic Value Function Revision

LTie Impasses for RL-Rules

When Tie Impasses Occur

@ Operators without numeric preferences can tie

@ Only acceptable preferences — tie impasse
@ Multiple best, no better or worse preferences — tie impasse

@ Operators with numeric preferences (RL-rules) never tie

@ A somewhat random choice is always made
@ Of course, we can change this



Heuristic Value Function Revision

LTie Impasses for RL-Rules

Enabling Tie Impasses for RL-Rules

Figure: Depiction of Q-values, v; having high variance.

@ Must track metadata which summarize experience on
which a decision can be based
@ Values have high variance
@ Values have high influence
@ Other metrics...?



Heuristic Value Function Revision

LTie Impasses for RL-Rules

Build a Tie Impasse for RL-Rules

@ Add subset of "numeric (“tied <o> “improve
<o>) parallel to “item <o> inthe impasse state

@ “tied indicates that the operator is involved in the tie

@ “improve indicates that the operator needs a new
preference to resolve the tie

@ Metadata may be exposed under “numeric in future work,
allowing the agent to reason about which preferences could
resolve the impasse



Heuristic Value Function Revision

LTie Impasses for RL-Rules

Resolve Tie Impasse

Figure: Depiction of Q-values, v; having high variance.

@ Determine which preference(s) will resolve the impasse

@ The expected case is one RL-rule per operator
@ Current work just adds RL-rules with the value 0



Heuristic Value Function Revision

LTie Impasses for RL-Rules

Resolve Tie Impasse

Figure: Depiction of Q-values, v now separated in different states

@ Rely on chunking to allow improvement over time

@ Test a more complete set of features in blocks world
@ Test a smaller region of continuous state in cart pole



Heuristic Value Function Revision

LNuggets and Coal

Nuggets and Coal

Nuggets:
@ Tie impasses for RL-rules are happening (in a branch)
@ Using a simple tie-detection procedure, blocks world
can converge
@ Code can be written fairly generally using an extended
problem space description
Coal:
@ Not currently achieving good performance in cart pole

@ Open questions about general tie-detection procedure

@ Must balance need for improved discretization with need for
experience
@ Must be feasible to resolve ties with RL-rules, including = 0



Heuristic Value Function Revision

L References

Rémi Munos and Andrew Moore. Variable resolution
discretization in optimal control. In Machine Learning, pages
291-323, 2001.



	Motivation
	Reinforcement Learning
	Beyond Initialization
	Tie Impasses for RL-Rules
	Nuggets and Coal
	References

