
Heuristic Value Function Revision

Heuristic Value Function Revision

Mitchell Keith Bloch and John Edwin Laird

University of Michigan
2260 Hayward Street

Ann Arbor, MI. 48109-2121
bazald@umich.edu and laird@umich.edu

June 20, 2012

http://bazald.com
http://www.umich.edu
mailto:bazald@umich.edu
mailto:laird@umich.edu


Heuristic Value Function Revision

Motivation

Motivation

Possible to specify an arbitrary value function in Soar

No way to revise an existing value function because

reinforcement learning always make a decision

Given the opportunity, it may be possible to improve a

value function as specified by RL-rules



Heuristic Value Function Revision

Reinforcement Learning

Reinforcement Learning

Prefer actions leading to positive rewards to actions

leading to negative rewards

Outcomes are characterized as a discounted return,∑
∞

t=0 γ
t
rt

Deriving correct estimates of these returns is integral to
many RL algorithms

What is essential, however, is learning an optimal policy

Q-learning and Sarsa in the simplest case map S ×A ⇒ Q

in a one-to-one fashion



Heuristic Value Function Revision

Reinforcement Learning

Soar-RL
Conditions on RL-rules encode which features to test and
how to discretizate continuous state, defining the mapping
S ×A ⇒ Q



Heuristic Value Function Revision

Reinforcement Learning

Soar-RL
Conditions on RL-rules encode which features to test and
how to discretizate continuous state, defining the mapping
S ×A ⇒ Q

Can be one-to-one (if no continuous space)

s0 v0

s1 v1

s2 v2

s3 v3



Heuristic Value Function Revision

Reinforcement Learning

Soar-RL
Conditions on RL-rules encode which features to test and
how to discretizate continuous state, defining the mapping
S ×A ⇒ Q

Can be one-to-one (if no continuous space)

Can use coarse coding

s0

v0

s1

v1

s2

s3



Heuristic Value Function Revision

Reinforcement Learning

Soar-RL
Conditions on RL-rules encode which features to test and
how to discretizate continuous state, defining the mapping
S ×A ⇒ Q

Can be one-to-one (if no continuous space)

Can use coarse coding

Potentially arbitrary, non-uniform abstraction

s0

v0s1

v1

s2

s3



Heuristic Value Function Revision

Reinforcement Learning

Soar-RL
Conditions on RL-rules encode which features to test and
how to discretizate continuous state, defining the mapping
S ×A ⇒ Q

Can be one-to-one (if no continuous space)

Can use coarse coding

Potentially arbitrary, non-uniform abstraction

Traditionally bootstrapped from values set before
execution, e.g. 0

Can be done simply with GPs or templates
Work in John’s talk uses chunking to take advantage of
background knowledge instead, deciding ...

The mapping S ×A ⇒ Q

Initial Q-values



Heuristic Value Function Revision

Beyond Initialization

Decide

1 Reduce candidate set using non-numeric preferences

Possible to impasse here

2 Decide using numeric preferences (RL-rules)

Always results in a decision (will never impasse)
Cannot chunk new RL-rules to modify S ×A ⇒ Q

Prevents using overgeneral conditions early on to promote

quick learning

Prevents adding conditions on relevant features which were

previously believed to be irrelevant



Heuristic Value Function Revision

Beyond Initialization

cart pole

_

_

__

θ

y

-10

Goal :

+10

= position

= angle
π-
45

y 4.3 0.2

0=

=

θ
θ

y

-10

+10

ππ

2
-

2

Goal

+

+

(b) The projection of the state space(a) The ‘‘Cart-pole’’

[Munos and Moore, 2001] developed metadata to decide
which Q-values ...

Might be important to split (influence)

Are good candidates for changing values (variance)



Heuristic Value Function Revision

Beyond Initialization

Design Goals

Initially Chunked RL-Rules Heuristically Triggered RL-Rules

Specify initial value function

Condition on features of clear importance

Err on side of overgenerality to speed learning

Track metadata until they indicate an opportunity to

improve the value function

Generate additional RL-rules in tie impasses until
metadata indicate improvement

Generally condition RL-rules on a smaller part of the state

space



Heuristic Value Function Revision

Beyond Initialization

blocks world (preliminary)

0 10 20 30 40 50

Episode Number (srand 42)

0

100

200

300

400

500

600

C
o
u
n
t

Blocks World with Tie Impasses for RL-Rules

Chunked RL-Rules

Steps to Goal

Start with creating one RL-rule per move (e.g. A onto B)

Tie impasse when variance is above a low threshold, 0.002

Add RL-rules testing features (in-place, on-top)

Achieved optimal consistently by 50 episodes, ignoring

exploration



Heuristic Value Function Revision

Tie Impasses for RL-Rules

When Tie Impasses Occur

Operators without numeric preferences can tie

Only acceptable preferences → tie impasse

Multiple best, no better or worse preferences → tie impasse
...

Operators with numeric preferences (RL-rules) never tie

A somewhat random choice is always made

Of course, we can change this



Heuristic Value Function Revision

Tie Impasses for RL-Rules

Enabling Tie Impasses for RL-Rules

v0

v1

Figure: Depiction of Q-values, v1 having high variance.

Must track metadata which summarize experience on
which a decision can be based

Values have high variance

Values have high influence

Other metrics...?



Heuristic Value Function Revision

Tie Impasses for RL-Rules

Build a Tie Impasse for RL-Rules

Add subset of ˆnumeric (ˆtied <o> ˆimprove

<o>) parallel to ˆitem <o> in the impasse state

ˆtied indicates that the operator is involved in the tie

ˆimprove indicates that the operator needs a new

preference to resolve the tie

Metadata may be exposed under ˆnumeric in future work,

allowing the agent to reason about which preferences could

resolve the impasse



Heuristic Value Function Revision

Tie Impasses for RL-Rules

Resolve Tie Impasse

v0

v1

Figure: Depiction of Q-values, v1 having high variance.

Determine which preference(s) will resolve the impasse

The expected case is one RL-rule per operator

Current work just adds RL-rules with the value 0



Heuristic Value Function Revision

Tie Impasses for RL-Rules

Resolve Tie Impasse

v0

v
′′

1

v
′

1

Figure: Depiction of Q-values, v1 now separated in different states

Rely on chunking to allow improvement over time

Test a more complete set of features in blocks world

Test a smaller region of continuous state in cart pole



Heuristic Value Function Revision

Nuggets and Coal

Nuggets and Coal

Nuggets:

Tie impasses for RL-rules are happening (in a branch)

Using a simple tie-detection procedure, blocks world

can converge

Code can be written fairly generally using an extended

problem space description

Coal:

Not currently achieving good performance in cart pole

Open questions about general tie-detection procedure

Must balance need for improved discretization with need for

experience

Must be feasible to resolve ties with RL-rules, including = 0



Heuristic Value Function Revision

References

Rémi Munos and Andrew Moore. Variable resolution

discretization in optimal control. In Machine Learning, pages

291–323, 2001.


	Motivation
	Reinforcement Learning
	Beyond Initialization
	Tie Impasses for RL-Rules
	Nuggets and Coal
	References

