Interactive Storytelling Architecture for Training (ISAT)

Brian Magerko, Lisa Holt, & Brian Stensrud
Project Team

- **Michigan State GEL Lab**
 - Brian Magerko, Ph.D. (co-PI)
 - Ben Medler (RA)

- **Soar Technology**
 - Lisa Holt, Ph.D. (co-PI)
 - Brian Stensrud, Ph.D. (co-PI)
 - Al Wallace (PM)
 - Ann Marie Steichmann (systems integration lead)
 - Robert E. Wray, Ph.D. (scientific consultant)

- **ECS**
 - Larry Kayne (PM)
 - Howard Mall (technical lead)
 - Seth Frolich (art & modeling)
 - Ben Quintaro (software engineer)
ISAT Overview

- Combines interactive storytelling and intelligent tutoring for effective training
- Benefits of interactive storytelling via simulation & game-based training
 - Distributable (any time, any duty station)
 - Readily available (as opposed to human instructor)
 - Engaging & realistic
- Benefits of intelligent tutoring
 - Direct connection to training goals
 - Individualized training
 - Guidance and feedback based on assessment of performance
High-Level ISAT Architecture
ISAT Progress to Date

- **Director**
 - Implementation of various types of Director actions
 - Implementation of skill model

- **Enhancements to TC3 Simulation**
 - Character spawning
 - Lua scripting
 - Navigation mesh

- **Authoring tool prototype**
 - Development & evaluation
 - Defined XML format for map input
ISAT Progress to Date (cont.)

- **Integration**
 - Director agent & TC3 simulation
 - Director agent & authoring tool

- **General**
 - Documentation of correct treatment procedures
 - Mapping of simulation actions to skills
Tactical Combat Casualty Care (TC3)

- Baseline simulation developed by ECS, Inc. through RDECOM-STTC funding
- Combat medic simulation using computer game technology
- First person 3-D environment
- Training for triage and treatment procedures
- Focuses on casualty care
ISAT Architecture Details

Flowchart:
- **Trainee**
 - User Actions
 - Simulation Output
- **Trainer**
 - User Actions
 - Authoring Tool Output

TC3 Simulation
- **User-Interface**
 - Monitors the Output-Link
 - Manages the Input-Link
- **Interface**
- **SML Client**
 - Wraps around basic SML functions
 - Handles incoming and outgoing XML messages

Authoring Tool
- **User-Interface**
 - Writes out skill and scenario data to xml files
 - Manages the Input/Output-Links during debugging
- **Interface**
- **SML Client**
 - Java version of the same SML client used in simulation
 - Used to debug the scenario

Agent Environment
- **SML Plugin**
 - Interface between kernel and network
 - Handles incoming/outgoing XML messages
- **Soar Kernel**
 - Manages Agent Input/Output
 - Knowledge Processing
- **Director Agent**
 - Directs the Simulation

XML Input
- Skill Model

XML Output
- Skill Data
 - XML file containing:
 - Skill Definitions
 - Skill Weights
 - Skill Scores
The ISAT Director

- Directs content and flow of training scenario
 - Selects and instantiates each scene
 - Generates required events and objects within each scene
 - Manages non-trainee characters and their actions

- Identifies trainee skill-proficiency
 - Maintains skill model to actively measures trainee’s proficiency at each skill
 - Skill model values can be imported to or exported from the Director agent
The ISAT Director (cont.)

- Actively responds to trainee errors within the scenario
 - Calls attention to the error or strongly guide trainee to correct behavior
 - Highlights or corrects errors when trainee take actions that move him outside the training experience (e.g. wanders off the map)

- Director actions are often dependent on state of trainee skill model
The Skill Model

- Real-time scoring system for individual skills
- Continuously updated by the Director
- Used to evaluate trainee performance and adapt Director actions to trainee needs
- Not visible to trainee
- Individual trainee scores can be maintained and used as input to Director at execution-time

Updating algorithms not yet fully developed. Strawman implementation of skill model for purposes of research
Error Types

- Different error types will affect the skill model in various ways
 - Omission
 - Commission
 - Out-of-order
 - Inappropriate action
- Director considers the type of error when assigning scores for each step
 - Omitting a step, for instance, may be more harmful than simply executing it out of order
Direction Types

- Reactive Direction (from IDA)
- Story Direction (from IDA)
- Skill-based Direction (new)
 - Responds to trainee skill errors by executing actions within the environment
 - Direction selection based on both the nature of the error and state of the skill model
 - Scaffolding & fading
 - Can be indirect, e.g., changing the state of an object/NPC to affect future events
 - Can be direct, e.g., having the squad leader yell at the trainee that he has made a mistake
Demo Preview

- Setting
 - a courtyard after a suicide bomb attempt
 - 4 casualties: one motionless (dead), one amputee, one burn victim (screaming) and one chest wound

- Primitive reactive direction
 - If trainee is inactive for a period of time, squad leader prompts trainee to “wake up & start treating casualties”
Demo Preview

- Primitive scaffolding
 - Direction will vary depending on trainee skill level
 - If trainee is relatively proficient at prioritization of casualties and makes an error, cue will be subtle e.g., Amputee will begin screaming in agony “Aahhh! My arm!”
 - If trainee is not proficient at prioritization of casualties, cue will be very direct e.g., squad leader yells “There’s a man over there who’s lost his arm. He’ll die if you don’t tend to him soon.”
Demo Preview

- Skill-based direction
 - Treating casualties out of order
e.g., “I know that soldier is hurt but there are more serious casualties you need to deal with.”
 - Implementing tourniquet treatment steps out of order
e.g., “Cut away that man’s sleeve before you apply the tourniquet.”
- Ultimately the Director will be able to take action in ways other than verbal cues
ISAT Demo
Story Authoring tool

- Difficult for non-programmer to encode & edit training content
- Graphical story editor & debugger
- Use: Non-programmer SME or Trainer
- Modes
 - Element placement
 - Story creation
 - Debugging
Element Placement (Prototype)
Story Creation (Prototype)
Debugging (Prototype)
Next Steps

- **Director**
 - Story Direction & Scene instantiation
 - More complex director actions
 - Refinement of skill model updating functions
 - Recency
 - Decay

- **Authoring Tool**
 - Integration with director
 - Import XML maps
 - Java implementation

- **Evaluation**
Nuggets

- Expands interactive drama concepts from IDA for education
- Significant progress in development
- Authoring tool prototype developed and informally evaluated
- Skills more rigorously defined
- New TC3 environment
Coal

- Evaluation subject pool still unclear
- Authoring tool implementation just beginning
- Strawman model updating
- No access to SME
- “S” in ISAT not yet visible
- Instantiation of plot content not yet clearly defined