Reinforcement learning and Soar

Shelley Nason
Motivation

- Allow Soar to learn about statistical regularities in the environment
- Use rewards from inner motivation, likes/dislikes, emotion to bias behavior
- Fine-tune behavior
 - Learn preferences the programmer didn’t bother to write or didn’t realize were important
The goal

- Automatic and general-purpose learning (like chunking)
- Ultimately avoid task-specific hand-coding of features
- Currently requires some care in writing rules for proper learning
Introducing numeric preferences

- Productions of the form:
 \[sp \{\text{random*production} \quad (\text{state } <s> \ ^{\text{operator}} <o> +) \quad \ldots \text{(other conditions)} \quad \rightarrow \quad (<s> ^{\text{operator}} <o> = -0.7)} \]

- New decision phase:
 - Process all reject/better/best/etc. preferences
 - Compute value for remaining candidate operators by summing numeric preferences
 - Choose operator by softmax (Boltzmann)
Rewards

- Rewards are numeric values created at specified place in WM. The architecture watches this location and collects its rewards.

- Source of rewards
 - productions included in agent code
 - written directly to io-link by environment
 - Future – generated by emotion or physiology system
The sum over numeric preferences has a natural interpretation as an action value $Q(s,a)$, the expected discounted sum of future rewards, given that the agent takes action a from state s.

Here, action a is operator

What is state s?
Updating operator values

- **Sarsa update-**
 \[Q(s,O1) \leftarrow Q(s,O1) + \beta [r + \lambda Q(s',O2) - Q(s,O1)] \]

- new numeric preference has value corresponding to underlined portion
Rudimentary condition collection

- This assumes tabular state representation.
- For instance, waterjug.
- Learn rules directly from operator proposals-

\[
\text{sp \{waterjug*propose*fill}
\begin{align*}
\text{(state <s> ^jug <i>)} \\
\text{(<i> ^contents 0)} \\
\text{-->} \\
\text{(<s> ^operator <o> + =)} \\
\text{(<o> ^name fill ^jug <i>)} \\
\end{align*}
\]

\[
\text{sp \{|RL-13|
\begin{align*}
\text{(state <s1> ^jug <i1> ^operator <o1> +)} \\
\text{(<i1> ^contents 0)} \\
\text{(<o1> ^name fill ^jug <i1>)} \\
\text{-->} \\
\text{(<s1> ^operator <o1> = -0.25) } \\
\end{align*}
\]

\]
Rudimentary condition collection

- This doesn’t work without rewriting operator proposals to include complete state description.
- But writing proposals this way confuses applicability with desirability.

sp {waterjug*propose*fill
 (state <s> ^jug <i>
 { <> <i> <j> })
 (<i> ^contents 0
 ^volume <v1>)
 (<j> ^contents <c>
 ^volume <v2>)
 -->
 (<s> ^operator <o> + =)
 (<o> ^name fill
 ^jug <i>))}

sp {RL-31|
 (state <s1> ^jug <i1>
 { <> <i1> <j1> } ^operator <o1> +)
 (<i1> ^volume 3 ^contents 3)
 (<j1> ^volume 5 ^contents 0)
 (<o1> ^name fill ^jug <j1>)
 -->
 (<s1> ^operator <o1> = -0.225})
Waterjug results

![Graph showing Waterjug results with two lines: one for New proposal and one for Old proposal. The x-axis represents Run # from 1 to 15, and the y-axis represents # moves to goal from 0 to 120. The graph shows fluctuations in the number of moves for both proposals across different runs.]
Improved condition collection

- The charming thing about doing reinforcement learning in Soar is that we can invent new features and conditions to associate values with.
- The less charming part is lack of theory for arbitrarily adding features.
Improved condition collection: State generalization

- To generalize Q-values over states:
 - Consider LHS’s of numeric preferences as set of (perhaps binary) features
 - \{if energy low and \(<o> = shields-on, \(<o> = -5\)\}
 - How to combine features into a numeric value?
 - linear functions
 - neural nets
 - memory-based methods
 - etc.
Improved condition collection: Feature generation

- To generate set of features (LHS’s):
 - Suggested by programmer, via prototype productions:
    ```
    sp { (state <s> ^operator <o> + ^energy <e>)
        (<o> ^name shields-on)
        -->
        (<s> ^operator <o> = 0)}
    ```
 - Activation based
 - Learned
 - perhaps utilizing episodic memory
Substates – Tie impasses

- Reintroduce tie impasses when value-based information insufficient or conflicting
- Confidence – a function of
 - # of matching numeric preferences
 - average of $\text{abs}([r + \lambda Q(s',a') - Q(s,a)])$
 - size of difference in values for proposed operators
- Tie impasses could be a place to learn additional discriminating features
Substates-Learning over substates

- Tie / state no-change impasses
Substates - Learning over states

- Operator no-change: possible options-like framework

<table>
<thead>
<tr>
<th>S1</th>
<th>O1</th>
<th>O1</th>
<th>O1</th>
<th>O1</th>
<th>O5</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>O2</td>
<td>O3</td>
<td>O4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next Action

Rewards
Conclusion - Difficulties

- How much to adopt machine learning techniques while fitting neatly within Soar
- Haven’t settled on method for generalizing Q-function
- Need to test in more domains; good empirical results to take the place of convergence proofs
Conclusion - Good Points

- Agents learned good behavior without requiring any programmer-specified control knowledge
- Could be very useful once expanded to work in harder domains