
Advances in Cognitive Systems 8 (2019) 13–28 Submitted 5/2019; published 8/2019

Using Domain Knowledge to Correct Anchoring Errors
in a Cognitive Architecture

Aaron Mininger MININGER@UMICH.EDU

John E. Laird LAIRD@UMICH.EDU

Computing Science and Engineering, University of Michigan, Ann Arbor, MI 48109 USA

Abstract
A cognitive robotic agent needs to maintain associations between perceptual data and symbolic
object representations over time, a process called anchoring. Often anchoring is done externally to
the cognitive component, but this leads to two potential limitations: the agent may possess knowl-
edge that could be useful for anchoring but is inaccessible; and the agent is less able to handle
anchoring errors that do occur. We develop a taxonomy of anchoring errors, then show how an
agent in a symbolic cognitive architecture endowed with a continuous spatial memory can take an
active role in anchoring by deliberately reasoning over perceptual updates and unifying them with
an internal self-maintained set of anchors. During this unification, the agent uses information from
disparate sources including action and task knowledge, environmental regularities, and human in-
teraction. Through experiments in a real-world robotic domain, we show how the agent is robust to
perceptual noise and errors while tracking objects as it interacts with them, and how more available
knowledge leads to better performance.

1. Introduction

In order for a robotic agent to support cognitive capabilities, such as high-level reasoning and plan-
ning, it must construct and maintain an accurate and useful representation of the world. In robotic
agents with a symbolic reasoning component, this typically involves an object-based representation
with object positions, attributes (color, shape, etc.), and other semantic information. Constructing
and maintaining this representation is challenging, as it needs to be accurate – the knowledge about
the world needs to be correct, robust – the knowledge about the world is free of noise and errors
and stable over time, and comprehensive – it contains all the information that the agent needs to
accomplish its tasks. This is difficult because real-world environments are complex and dynamic,
and sensory data is incomplete, noisy, and high dimensional.

Bridging the divide between low-level non-symbolic information and more abstract symbolic
representations requires anchoring: “creating and maintaining the correspondence between symbols
and sensor data that refer to the same physical object” (Coradeschi & Saffiotti, 2003), a special case
of the symbol grounding problem. Anchoring can be both bottom up, where new percepts create
and update anchors, and top down, where the system ties an object description to its corresponding
percepts. In both cases, the goal is to generate a set of anchors: data structures that contain both
symbolic and perceptual information about objects in the world.
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Bottom-up anchoring combines the problems of data association, updating the appropriate an-
chor with new measurements, and tracking, maintaining the anchoring correspondences over time
as objects move (Elfring et al., 2013). These two problems are often tackled together through mul-
titarget tracking or MTT (Vo et al., 2015) – locating multiple objects or targets in a video feed and
tracking them over time. This is challenging because real-world robots often encounter objects that
move, change in appearance, look identical, or occlude one another. In addition, perception often
involves noise and errors. We have developed a taxonomy of anchoring errors that include five
distinct types:

• E1 False anchor: An anchor is created for a non-existent object, usually due to sensor noise.
• E2 Missing anchor: An anchor does not exist for a known object (e.g., from occlusion).
• E3 Misidentified anchor: A object percept is not mapped to the correct anchor but is used to

create a new one (e.g., due to a tracking error).
• E4 Merged anchor: One anchor exists for multiple objects (e.g., due to segmentation errors).
• E5 Fragmented anchor: Several anchors exist for one object (e.g., due to segmentation errors).

A common system organization in cognitive robotics is to have a component that does perceptual
processing, another that does bottom-up anchoring using the new percepts, and a cognitive com-
ponent that handles the high-level abilities such as reasoning and planning. In this approach, the
anchoring component is opaque to the cognitive component, which only receives the symbolic por-
tion of the anchors as the end result. The advantages of a separate, external anchoring component are
that it can be fast, continuously active, and not interrupt the agent’s deliberate reasoning. However,
this separation can lead to two major issues.

First, the cognitive component can have high-level knowledge that would be useful during an-
choring. This can include knowledge of the agent’s current actions and goals, object affordances
and properties, and knowledge of environmental regularities. For example, consider a game of cups
and balls where someone places a ball under a cup and then moves the cup. The agent cannot rely on
direct perceptual information to track the ball, but it can use domain knowledge about containers.
Or consider a robot that moves a block with its arm and during movement the block is occluded
from the camera by the arm. The agent has high-level knowledge about its goal of placing that
block at a given region that could be used to reacquire the track when the object reappears at the
intended destination. A third example concerns agent using a knife to cut an apple. If the agent has
appropriate actions models, it can predict that one complete object will become two halves. These
examples suggest that there needs to be a channel for knowledge to flow back into the anchoring
component. However, many approaches to anchoring do not have mechanisms for incorporating
knowledge in this way.

The second issue with this hard separation between the anchoring and cognition is that the
agent lacks the information needed to detect and handle the anchoring errors described above. For
example, suppose there is a misidentified anchor, where an object is assigned a new id. If the agent
only has access to the symbolic portion of the anchors, it is difficult to determine if an error actually
occurred or if one object appeared at the same time another disappeared. Or consider if one block
is placed upon another and occludes the bottom one, causing the anchor to become missing. If that
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occluded block is necessary for the agent to detect a goal as being satisfied, it will fail to detect it.
In cognitive systems research, the possibility of these errors is sometimes overlooked. However, if
a real-world robotic agent is relying on consistent, long-term object identity in order to complete
its objectives, encountering anchoring errors can significantly degrade its performance. Improving
the accuracy of the bottom-up anchoring can help, but no purely bottom-up approach is likely to be
perfect and, as described above, the agent can have access to knowledge that can correct some of
these errors that occur when low-level assumptions about the world are violated.

This paper both explores and demonstrates how an agent in a symbolic cognitive architecture
with access to a spatial short-term memory can use spatial reasoning and domain knowledge to
participate in the anchoring process and to detect and correct bottom-up anchoring errors in its in-
put. A key insight of our approach is that it maintains two sets of anchors. As is common, an
anchoring component performs standard bottom-up anchoring to maintain a perceptual anchor set
that is provided as input to the cognitive component. However, this input not only contains the
symbolic information stored in working memory, but also metric information in spatial memory.
Crucially, the cognitive component maintains a second belief anchor set that it uses during planning
and reasoning. The cognitive component compares these two sets of anchors to identify discrepan-
cies between them and then attempts to reconcile them. This process can update the belief anchors
with new information or detect an anchoring error and attempt to reconcile it. Error handling can be
internal (e.g., just ignore the error) or external (e.g., telling the anchoring component to merge two
anchors). The agent uses knowledge about the world, object affordances, and its current tasks and
actions to aid in this process.

By using domain knowledge and participating in the anchoring process, the agent maintains this
belief anchor set as its world representation. This representation is more accurate (avoids certain
errors), robust (ignores noise), and comprehensive (maintains information not currently perceived)
than that given by perception. This approach has been used across several real-world and simulated
robotic domains to enable high-level task reasoning, planning, and learning even when the percep-
tual systems are noisy and error prone and when they have only a limited view of the world. In the
following sections, we first describe related work and then go into details of this approach, which
includes extensions to support temporally extended tasks in large scale, multi-room environments.
After this, we present an experiment that evaluates the approach’s performance on a complex task
in the presence of significant occlusion, tracking, and segmentation errors.

2. Related Work

Previous research on detecting and recovering from anchoring errors (Bouguerra et al., 2006; Brox-
vall et al., 2005) has focused on top-down anchoring, where an ambiguous object description
matches multiple percepts. Most of the work related to anchoring focuses on how to avoid pro-
ducing errors, as opposed to correcting for errors that do occur. This can be done through better
object persistence, object tracking, or object/motion models. The work of Loutfi et al. (2005) re-
duces missing anchor errors (E2) by adding object persistence to maintain anchors for objects that
are out of view. The system of Blodow et al. (2010) also maintains beliefs about objects it cannot
currently observe and then uses probabilistic anchoring to identify them when they come back into
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view, even after they have moved, to guard against misidentified anchors (E3). The work of Elfring
et al. (2013) represents a major step in integrating a sophisticated tracking algorithm with anchor-
ing, using a Multiple Hypothesis Tracker algorithm to improve tracking reliability during occlusion
and detect clutter (false positives). This reduces the occurrence of anchoring errors E1, E2, and E3.
Heyer and Graser (2012) use relative anchors to represent relations between two reference anchors.
These help in noisy environments where detecting one object improves the chance of detecting the
other, and they also incorporate knowledge about actions to update the anchors of objects being
moved. Persson et al. (2019) described a probabilistic reasoning system that infers the state of oc-
cluded objects and continue tracking through occluded movements. Nitti et al. (2014) implemented
a relational particle filter that draws on commonsense world knowledge during tracking, such as
when one object is inside another. These approaches to anchoring usually assume perfect percep-
tual segmentation (none of the percepts are merged or fragmented), so they are susceptible to errors
E4 and E5.

There has been a large body of work in multiple target tracking apart from anchoring (Vo et al.,
2015; von Hoyningen-Huene & Beetz, 2009; Khan et al., 2006). These approaches can handle com-
plex tracking scenarios with merged measurements and occlusions. Our approach is complimentary
in that it aims to provide knowledge in situations where the model assumptions are violated (e.g.,
an object is fully occluded while the robot moves it) or where a tracking error occurs.

3. System Overview

Figure 1 presents an overview of the system architecture, which consists of three major compo-
nents: perceptual, anchoring, and cognitive. The perceptual component takes raw sensor data and
generates a set of object percepts, measurements, and classifications. The anchoring component
then takes that data and updates a set of anchors while tracking the objects. The cognitive compo-
nent is implemented in a symbolic cognitive architecture and does planning and reasoning for the
agent. It receives updates about the perceptual anchors, compares them to its own set of anchors,
and uses reasoning to keep them consistent. It can also send commands to the arm controller and
communicate with a person through a chat interface.

3.1 Perceptual Component

The perceptual component takes incoming sensory data and segments it into a set of percepts, where
each percept is a collection of raw measurements assumed to originate from the same object. It also
extracts features for a set of attributes from the percepts. For example, for the color attribute it
computes the average RGB values of the pixel data for that object, and for the position attribute it
estimates XYZ coordinate of the object’s center position. Our approach requires that the perceptual
processing produces features that include position, rotation, and scale transforms for a bounding box
volume of the object in a globally consistent reference frame. It must also produce classifications
that are unary predicates about visual properties of the object, such as color (red), shape (sphere),
size (large), and object categories (table), along with confidence values from zero to one that
allow multiple hypotheses per property. The agent assumes each property has one valid value (e.g.,
objects have a single color) and adopts the hypothesis with the highest confidence.
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Figure 1. Left: An overview of the agent architecture. Right: An example scene in the tabletop domain and
the corresponding scene graph representation in SVS (the agent’s spatial memory).

Our approach does not assume any specific perceptual algorithms, and it has been used in several
environments that involve different perceptual processing. In the tabletop domain, a Kinect camera
senses the scene and generates a 3D point cloud. That point cloud is segmented into object percepts
that consist of a collection of 3D points. For each one, the perceptual component classifies properties
such as color, shape, and size, as well as calculating a minimal bounding box.

3.2 Anchoring Component

The anchoring component is responsible for bottom-up anchoring by incorporating new percepts in
the current set of anchors (each identified with a unique symbol xi). Its two main responsibilities are
acquiring new anchors for newly perceived objects and tracking existing anchors by updating them
with new perceptual information. The end result is a set of anchors that represent the current world
state, which we designate the perceptual anchor set. These anchors are then sent to the cognitive
component, but without the perceptual data. We require that the multiple target tracking (MTT)
algorithm must support three operations to correct anchoring errors:

• move-anchor(xi, pos): Changes the position of the anchor with the given id xi.
• change-anchor-id(xi, xj): Changes an anchor id from xi to xj .
• merge-anchors(xi, xj , ...): Merge the anchors with the given ids together (keep id xi).
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Table 1. The SVS filters used to extract spatial knowledge about objects.

Distance(x, y) The distance between the object centroids.
Volume(x) The volume of x’s bounding volume
Intersects(x, y) True if the bounding volumes of x and y intersect
Overlap(x, y) The percentage of x’s bounding volume that intersects y’s
Occlusion(x, p) The approximate percentage of object x visible from point p

In our system, the MTT algorithm used is akin to a simple nearest neighbor approach, where
new object percepts are matched against the previous perceptual anchors with a one-to-one map-
ping, trying to minimize differences in both position and volume. This tracking approach is not
probabilistic and only uses the previous step’s information. However, our method does not require
that a particular MTT algorithm be used. Thus, it is compatible with probabilistic or other multiple
hypothesis algorithms that support the operations above.

3.3 Cognitive Component

The cognitive component is implemented in the Soar cognitive architecture (Laird, 2012), which
has multiple memories and processes that support anchoring. Soar’s memories can contain both the
symbolic and spatial information from the anchors. When an update is received from the anchoring
component, the symbolic portion of the anchors (the identifying symbol and set of predicates) is
placed into an input buffer in working memory and the metric portion (bounding box information)
is put into Soar’s Spatial Visual System (SVS). This is a short-term spatial memory that provides
a scene graph representation of objects and their bounding volumes (see Figure 1). In addition to
the object bounding boxes, SVS contains a rough 3D model of the robot that is updated with new
pose information. For example, it contains a volume for each segment of the arm for the tabletop
robot. It also includes the position of the camera and a frustum that represents the 3D volume of the
camera’s target region. This is used to determine whether the robot should be able to see an object
in a partially observable environment, as we describe later.

SVS provides the necessary representations and computational infrastructure to support com-
plex reasoning over metric data, such as computing intersections or occlusions. This reasoning
would be very difficult to do using procedural rules alone. It uses a scene graph representation of
objects together with a set of filter queries that extract symbolic, relational, and metric information
from the scene graph representation and serve as an abstraction over it. Table 1 lists the filters used
in this paper. The agent also calculates an in-view(x) predicate. In a fully observable environ-
ment (such as a tabletop arm), it is always true. In a partially observable environment, it is computed
using intersects(x, oview), with the view volume provided by the perceptual system.

Soar also has several long-term memory stores, including a rule-based procedural memory that
contains knowledge about how to reason over its perception and thus implements the approach
described in this paper. In addition, the architecture includes a declarative episodic memory that
automatically captures a historical trace of the agent’s working memory from which it can later
retrieve information about past events.
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Table 2. The discrepancies that can be detected between the perceptual and belief anchor sets.

New-Object(x) x ∈ AP and x /∈ AB

Missing-Object(x) x /∈ AP and x ∈ AB

Moved-Object(x) distance(pos(x,AP ), pos(x,AB)) > cmove

Grown-Object(x) vol(x,AP )/vol(x,AB) > cgrown

Shrunken-Object(x) vol(x,AP )/vol(x,AB) < cshrunk
New-Predicate(x, p) p(x) ∈ AP and p(x) /∈ AB

Missing-Predicate(x, p) p(x) /∈ AP and p(x) ∈ AB

Different-Location(x, p) cur_loc(AP ) 6= cur_loc(AB)

4. Detecting and Handling Anchoring Errors

In order to detect and handle anchoring errors, the agent maintains two separate sets of anchors. The
belief anchor set (AB) is the agent’s internal representation of the current state of the world stored in
Soar’s working memory. In contrast, the perceptual anchor set (AP ) is maintained by the anchoring
component and then is sent to the cognitive component. Since there are two sets of anchors, SVS
may contain two different bounding volumes for each object, one from AP and one from AB . The
agent can select which set to use with SVS queries.

The belief anchor set represents the agent’s current knowledge about the environment and is
used for reasoning and planning. Having a world representation distinct from perception means that
it is only updated through the agent’s deliberate reasoning. This supports accuracy and robustness
by allowing the agent to correct certain perceptual errors, ignore some perceptual noise, and only
include changes it believes to be correct. It is more comprehensive since it can contain information
not currently provided by perception, such as objects that are not currently in view. However,
because the belief anchor set is not automatically updated from perception, the agent must keep it
up to date so that it does not deviate from reality.

The cognitive component detects errors in the output of the anchoring component by comparing
the perceptual anchor set against the belief anchor set. When it detects a discrepancy, it determines
why the discrepancy arose and how to resolve it. Discrepancies are not necessarily due to anchoring
errors. They can arise because the environment has changed and the belief anchor set is no longer
accurate. By doing this within the cognitive component, the agent can use other knowledge it
possesses to influence this process.

4.1 Discrepancy Detection

The agent has access to both the perceptual anchor set AP and belief anchor set AB in working
memory and SVS. To detect differences between these two sets, the agent has procedural rules
that continually compare the two world representations and detect discrepancies. These rules fire in
parallel with other procedural knowledge and do not interrupt or interfere with the agent’s deliberate
reasoning. Only when a discrepancy is detected will the agent perform deliberate reasoning to
determine its cause and resolve it. Table 2 shows a list of these discrepancies.
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The constants cmove, cgrown, and cshrunk are environment dependent parameters and determine
which differences are considered significant. Due to perceptual noise, the position and volume
values constantly change, even for a stationary object. Setting a low threshold causes the agent
to spend more time reasoning about unimportant differences and decrease efficiency, but a high
threshold may cause the agent to miss important changes and be less accurate. We use hand-tuned
thresholds and reserve learning them as an area for future research. In the tabletop domain, cmove =
2cm, cgrown = 1.2, and cshrunk = 0.8.

4.2 Discrepancy Resolution

Once a detector is triggered, the agent does deliberate reasoning (implemented as operators in Soar)
about the detector. First, it uses SVS filters to gather more information and identify why the de-
tector was triggered – whether it represents an actual change in the environment or some percep-
tual/anchoring error. Second, it takes the appropriate actions to resolve the error by using knowledge
about physical properties of objects to guide reasoning. Implicit in this reasoning are assumptions
that two objects cannot occupy the same physical space, objects occlude one another, objects main-
tain spatial and temporal continuity (i.e., do not teleport or vanish), and objects do not merge, split
apart, or change in size. Obviously, these assumptions are sometimes incorrect (cutting an apple will
split the object) or appear to be violated due to incomplete sensing (an object can appear to teleport
when moved by a person). However, we have found that for our domains, they are sufficient for
most cases. Below, we describe how the agent handles each of the five anchoring errors.

A false anchor error (E1) occurs when the perceptual system creates an anchor for an object that
is not actually there and usually results from perceptual noise. To reduce the chance of accepting
false anchors, when the cognitive component sees a new-object(x) detector, it notes the time it
appears and waits some time cnew. If after that time the new object is still present, it is added to the
belief set. Having a longer time makes the agent less susceptible to false positives, as they would
have to span multiple perceptual updates, but less reactive to the appearance of new objects. We set
the constant cnew to be one second, which is a good compromise for our environments.

A missing anchor error (E2) occurs when the perceptual anchor set does not contain an anchor
for an existing belief object. In this case, the missing-object(x) detector will be triggered
and there will not be any corresponding new-object detectors. The agent must determine if the
object is actually no longer present or simply not currently visible. To do this, it checks whether
the object is being occluded (occlusion(x, eye) > cocclusion) or no longer in-view(x). If
either of these conditions is true, the agent concludes the object must still be present, so it keeps the
belief anchor. In this way, agent deals with partial observability by maintaining anchors for objects
that are not current visible. Here we use cocclusion = 0.2.

A misidentified anchor error (E3) occurs when a new anchor is incorrectly created from a percept
instead of the appropriate existing anchor being updated. In this case, the missing-object(x)
and new-object(y) detectors are triggered. The agent checks to see if the bounding volume
of the new anchor overlaps the missing one. If overlap(y, x) > coverlap (and there are no
conflicting properties), then it merges the anchors by sending a change-anchor-id(y, x)
command to the perceptual system to correct the tracking error. Here we use coverlap = 0.5.
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A merged anchor error (E4) occurs when an anchor incorrectly contains percepts that correspond
to multiple objects. This can happen if the perceptual component fails to segment two or more
objects into distinct percepts. The cognitive component can correct for this if at one point the
anchors were not merged. When a missing-object(x) detector triggers, the agent checks for
overlap between the missing object and the current bounding volume information for perceptual
objects. If there exists a perceptual object y where overlap(x, y) > coverlap, the missing
object’s bounding volume is contained inside another’s volume, and the agent deduces that the
percepts for object y belong to both x and y. Thus the object is no longer labeled as missing.

A fragmented anchor error (E5) occurs when multiple anchors represent a single object. This
can happen if the perceptual component over-segments an object into multiple fragments. The
cognitive component can correct for this if at one point the anchor was not fragmented. One or
more new-object(x) detectors will be triggered, and the agent checks whether there is some
belief object y whose bounding volume contains the new object. If overlap(x, y) > coverlap,
then it will send the command merge-anchors(x, y) to the perceptual component.

If the agent detects none of the above errors, then it updates its belief anchor set with the new
perceptual information. In the case of new-object(x) or missing-object(x), the anchor
is either added or removed from AB . In the other cases where the position, volume, or predicates
differ between the two anchors, the cognitive component checks for occlusion (occlusion(x,
eye) > cocclusion). If the object is not occluded, it updates the belief anchor with the new infor-
mation and otherwise ignores the discrepancy. This means the agent only updates a belief about an
object if it has an unobstructed view.

Resolving discrepancies requires deliberate reasoning, which competes with the agent’s other
tasks. How much this happens depends on the environment and perceptual system. If the environ-
ment is relatively static and the perceptual system is reliable, then the agent only occasionally needs
to update its belief. In most cases, resolving a discrepancy only takes a few decision cycles (< 10ms)
and there are hundreds between perceptual updates. However, the agent can become overwhelmed
if there are hundreds of changes per second. In such cases, it can choose to delay the perceptual
processing and give priority to other cognitive activities, at the cost of decreased reactivity.

4.3 Domain Knowledge and Top-Down Reasoning

A major advantage of allowing the cognitive component to participate in the anchoring process is
that it can use domain knowledge and top-down reasoning to improve overall performance. In our
research, we have examined three types of domain knowledge that are useful for anchoring and how
each of them is applied during perceptual reasoning.

First, the agent has knowledge about objects and their affordances. One assumption is that
two objects cannot occupy the same space, but this is not true of containers. For example, the
bounding volume of a milk carton can be inside the refrigerator. Normally this will result in the
agent determining that there are two percepts (milk and refrigerator) due to a fragmented anchor
and merge their anchors. However, if it knows that an object is a container (e.g., a refrigerator,
a cup, a trash can), then it rejects the fragmented anchor hypothesis and keeps them as separate
objects. Although not currently implemented, there could be other ways of using object knowledge
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to aid in anchoring, especially in cases where the above assumptions are violated. For example,
objects may sometimes split apart, such as when taking the lid off a jar, or combine, when putting
the lid back on. Some objects are transparent and this knowledge could be used when reasoning
about occlusion.

Second, the agent also has knowledge about its current actions and how they might affect its
perception, such as when it is moving objects with a robotic arm. In our experience, as the arm
moves and interacts with the scene, it causes occlusions and perceptual noise, while also making it
difficult to track the object in the gripper. To counteract this, the agent does not update its belief
anchors while the arm is moving. In addition, it will not remove an anchor for an object that is in
the gripper and will update its position in SVS to that of the gripper. When it puts the object down,
it moves its belief volume to where it expects the object to appear (e.g., on top of another block)
and sends a move-object(x, pos) command to the anchoring component. When that object
becomes visible, the anchoring component is more likely to track it once it appears at the anticipated
position. This can correct tracking errors for moved objects that are difficult to overcome otherwise.

Another important application of action knowledge occurs when the robot arm drops an object
that it is trying to move. The motor system provides a signal indicating that the grab action failed.
The agent responds to this by looking for any new objects in the environment that match the object
it was moving. For example, if it is moving a red cube and detects that it dropped the object, it
looks everywhere on the table for a new red cube to resolve the missing anchor. Furthermore, if
the agent still cannot find the object (e.g., if it fell off the table), it asks the human for assistance in
locating the missing object. In our implementation, the person can place the object on the table and
say ‘Here is the cube.’ This instruction lets the agent anchor the new percepts to the belief object
and try to pick up the object again.

A third type of domain knowledge concerns the current task. The task may involve objects that
cannot be immediately anchored, so the agent creates a new belief anchor without any spatial or
metric information. For example, suppose the current task is to throw away a soda can into a trash
can, but there is no trash can currently in the belief anchor set. The agent adds the trash can to its
belief state and then can use it to plan how to complete the task, even without knowing the object’s
location. Part of this planning might be a subtask of finding the trash can, and once one is visible,
it merges the new perception object with this belief object. In our system, such belief objects also
come from human interaction. For example, if the instructor gives an instruction such as ‘Fetch me
a stapler,’ the agent adds a stapler object to the belief anchor set. This lets it reason and plan about
objects that it cannot currently perceive.

4.4 Handling Multiple Locations

In a tabletop environment, the agent can keep track of all the objects on the table. However, with
a mobile robot operating across multiple rooms in real-world environments, the capacity to track
everything is quickly exceeded. To address this limitation, we assume that it is reasonable to only
keep track of the objects in the robot’s immediate surroundings or those related to the its current
goals. Our approach involves having a known map of the environment, which is divided into convex
regions called locations, usually a room or a part of a hallway. The robot’s current location is
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included in perceptual updates. When the agent moves to a different location, it sees this as a
context switch and clears its belief anchor set, except for those that are involved in the current task.
For example, if the task is trying to fetch a stapler from a different room, the stapler is not deleted.

This approach reduces the number of objects being tracked at any one time and allows the agent
to work within multiple rooms and with their associated objects. However, this comes at the cost
of deleting information that might be needed later. For example, suppose the agent stores a certain
mug inside a cupboard and then leaves the room. If later it is back in that room and needs to find the
mug, it would have to search the entire environment. Soar has a long-term episodic memory that
automatically records the history of working memory and includes the symbolic information in the
belief anchor set. However, it does not include the spatial information; in Soar there is no long-term
spatial memory, a shortcoming that we plan to address in the future.

To overcome this limitation within the current architecture, when the agent leaves a location and
before it removes the belief anchor set from its memory, it performs queries to SVS to extract the
metric information (position, rotation, and scale) from each object and adds it to working memory.
This snapshot is then automatically recorded in episodic memory. When the agent enters a new
location, it performs an episodic memory retrieval cued on the last time it was in that location. This
retrieves an episode that includes this snapshot of spatial memory and provides enough information
to reconstruct the previous belief anchor set for that location. The room might have changed since
it was last visited, but any incorrect beliefs can be fixed as the robot drives around.

5. Empirical Evaluation

We have used this approach to support agents that can learn tasks from instruction in several do-
mains, including the tabletop arm, a mobile robot that operates across multiple rooms (Mininger
& Laird, 2016), a simulated indoor kitchen environment, and a toy forklift robot. Although these
environments differ in their embodiments and perceptual processing, our method provides a stable
and reliable representation of the world across the different domains. To evaluate the approach, we
focused on the tabletop environment.

5.1 Experimental Design

We evaluated performance on an end-to-end task in the tabletop environment with an arm that can
manipulate foam blocks. A suitable task must require that having an accurate belief anchor set
is necessary to perform the task well and that the agent will be exposed to common perceptual
challenges likely to induce various anchoring errors. We chose the task of measuring two nonvisual
properties of objects (temperature and weight), finding the object with the highest or lowest value of
that property, and placing it onto a goal region. This is referred to as a superlative request (e.g., find
the heaviest block). These properties are simulated and can only be attained through a measurement
action involving placing the block on a certain region on the table (e.g., the scale). This task is
difficult because the agent must know the values for all the objects before being able to achieve the
goal. Every time it fails to track an anchor, it must remeasure the object by moving it back onto the
relevant measurement region.
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Table 3. Different agent variations, each including the capabilities of previous ones.

A1. No Error Handling The agent relies exclusively on the perceptual anchors
for planning.

A2. +Action Knowledge The agent notifies the anchoring component when it
moves a block.

A3. +Object Permanence The agent can reason about occlusions and maintain
anchors to handle errors related to E1, E2, E3.

A4. +Segmentation Reasoning The agent does not assume one anchor per object, and it
can handle errors relating to E4 and E5.

Our evaluation metric is the number of movements it takes to satisfy each superlative request.
The more accurately the cognitive component can maintain its set of anchors, the fewer remeasure-
ments are needed. This study does not directly record how many anchoring errors the system makes,
but the performance on this task is directly tied to how well the cognitive component can detect and
recover from errors. We evaluated performance in this way because ground truth is difficult to ob-
tain and we wanted to examine the influence of errors on end behavior. If the agent does manage
to measure and track all six objects, it will always identify the correct block. For some agent and
domain combinations, this task is extremely difficult, so we consider the run a failure once the agent
has done thirty moves without finding the correct block.

The blocks are placed onto a tabletop with the robotic arm at the center. Different areas of the
table are designated as named regions where the arm can put objects. The goal region is where
the agent places the requested block, whereas the scale and thermometer regions are used to gather
weight and temperature information. Figure 2 labels these regions as G, S, and T, respectively.
There are also several bin regions where the agent must place blocks it is not using. If there are
multiple blocks on a bin, then the agent must stack them.

We evaluated four versions of the agent across four versions of the domain. Each agent includes
all the capabilities of the previous versions plus an additional one (Table 3). This gives a qualita-
tive comparison of how adding error handling capabilities improves the overall performance. We
tested each agent version across four variations of the domain, which vary in complexity and per-
ceptual difficulty (Table 4). In each case, the task of finding objects is the same, but the objects and
configuration of the table differ.

We ran each combination of agent and domain using the same script of find requests. We gave
the agent two requests for the same type of superlative, with five random moves in between. For
example, it would find the lightest block, randomly move five blocks, then find the lightest block
again. These intermediate moves provided more opportunities for anchoring errors to occur. We
report the average number of moves required to satisfy the second superlative request. The better
the agent is at maintaining an accurate anchor set, the fewer remeasurements the agent will make,
since it can immediately satisfy the request if all the anchors were successfully maintained.
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Table 4. Different versions of the domain that vary in difficulty.

D1. No Occlusion
6 bins and 6 blocks

This has one bin per block, so no stacking or occlusions, making
segmentation easy. There should be minimal anchoring errors.

D2. Partial Occlusion
3 bins and 6 blocks

The agent must stack blocks, and so it has to deal with partial
occlusion of objects lower on the stack (Figure 2). Stacking
greatly increases the chances of fragmented segmentations (E5),
tracking errors (E3), and noise (E1).

D3. Total Occlusion
3 bins and 6 blocks
Only 1 bin visible

In this version, we artificially restrict perception so that the agent
can only view objects in one bin at a time. The agent must
deliberately select which bin it can observe. Thus the perceptual
anchor set will be missing anchors for occluded objects (E2).

D4. Merged Percepts
3 bins and 6 blocks
2 block colors

Because there are two colors, stacked blocks of the same color are
often segmented as one object. The anchoring component will
produce anchors that correspond to multiple merged objects (E4).

5.2 Experimental Results

Figure 3 shows the performance of each agent type in the different domain variations averaged
across four runs. These results are summarized below.

• Agent A1, which uses only the perceptual anchor set to make decisions, always fails, even
on the easiest variation. This is because the anchoring component makes assumptions dur-
ing tracking that are broken when the arm moves an object (due to arm occlusion, the block
disappears and reappears somewhere else). When this occurs, the agent loses the nonvisual
information needed for the task.
• Agent A2, which uses knowledge about its actions to inform the anchoring component when

it moves an object, can maintain correct anchors through movement, but cannot recover from
anchoring errors. Thus, it succeeds in variation D1 but has a very difficult time on the harder
variations where there are many more anchoring errors.
• Agent A3, which does have the knowledge of object permanence, can deal with errors due to

partial and total occlusions in the harder variations. It successfully completes the task across
all variations. However, in D3 and D4, there are more errors due to anchors being merged or
fragmented that causes it more difficulty.
• Agent A4, which has the complete set of knowledge elements, including how to handle errors

relating to merged and fragmented anchors, performs well in all of the domain variations, with
only a small decrease in performance on the harder ones.

These results show that the error handling capabilities of the cognitive component makes the system
more robust. Without those capabilities, the number of anchoring errors make the task impossible
for the agent to perform, as demonstrated by A1. As error handling capabilities are added, the
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Figure 2. Left: The second domain variation D2 with three bins to stack objects and goal, scale, and ther-
mometer regions (labeled G, S, and T). Right: The point cloud data from the Kinect camera during stacking
showing total occlusion of the middle block and partial occlusion of the bottom one.

overall performance of the system improves. Another desired characteristic is that the perceptual
reasoning is efficient. It is important that the extra processing required to handle the errors and
maintain the separate belief anchor set does not slow processing substantially. The agent must
remain reactive to new updates and changes in the environment. To evaluate the overhead of our
approach, we measured the average time per arm movement that the cognitive component spent
processing the perceptual anchors and maintaining the cognitive state. The basic agent A1 spent
410 ms per arm movement, while the full agent A4 spent 331 ms per movement. Qualitatively,
this shows that the error handling capabilities does not slow the agent, and may sometimes make it
faster by letting it ignore perceptual noise. Since each arm movement takes around 15 seconds, the
cognitive component spends less than three percent of its time handling perceptual updates, most of
which are done while the arm is moving when the rest of the cognitive component is idle.

6. Conclusion

In this paper, we have demonstrated a method for allowing an agent in a symbolic cognitive ar-
chitecture to detect and correct bottom-up anchoring errors in its input. The key feature of this
approach is that the agent maintains two sets of anchors, one updated by perception and one repre-
senting the agent’s beliefs, which it compares to detect discrepancies and resolve them. This allows
the agent to correct anchoring errors and incorporate domain knowledge into the anchoring process.
Consequently, the representation of the world used for planning and reasoning, which comes from
the belief anchor set, is more accurate, robust, and comprehensive.

There are some limitations to this approach. First, if the system cannot process perceptual
updates fast enough, it will become overwhelmed. This can happen if the environment is very noisy
or if it violates the agent’s assumptions. It can also occur if there are too many objects, as some
operations grow quadratically in the number of objects. Consequently, performance is negatively
impacted with more than ten to 15 objects. Tracking objects only in the current room reduces the
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Figure 3. The number of moves to satisfy each request for a previously seen superlative averaged across four
runs. The best possible score is 1. Bars above 30 indicate failure.

likelihood of this problem arising, but this could be further aided by the additional of an attentional
mechanism that restricts the agent to only focusing on parts of the world that are important to the
current task.

Another limitation is that the cognitive component assumes objects are mostly stationary, and
thus anchoring errors caused by moving objects will not be handled property. In addition, it cannot
it detect when the anchoring component has swapped the identifiers for two objects. Another pos-
sible source of error is from the approximation of the volume as a bounding box. Objects that do
not fill their bounding boxes will negatively affect the error handling procedures, as the overlap and
occlusion calculations will be inaccurate. SVS supports geometry that is more complex than simple
bounding boxes, so that if a perceptual system could provide more accurate geometric information,
it would likely improve performance further. We have tried to make the cognitive component inde-
pendent of the specific anchoring algorithm used. However, the system uses simple perception and
tracking algorithms, which makes errors more likely. Adding a more sophisticated MTT method
would lead to fewer errors and improve performance. An interesting area of future research would
be determining how the corrections made by the cognitive component could be integrated with a
multiple hypothesis tracking system, probabilistic or otherwise. While such approaches could re-
duce the noise and errors in the world representation and make some of our anchoring strategies
unnecessary, there will still be occasions in which the assumptions inherent in the bottom-up ap-
proaches are violated and top-down reasoning could help correct.
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