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Abstract

Humans are extremely good at quickly teaching and learning new tasks through situated
instructions; tasks such as learning a novel game or household chore. From studying such
instructional interactions, we have observed that humans excel at communicating information
through multiple modalities, including visual, linguistic, and physical ones. Rosie is a tabletop
robot implemented in the Soar architecture that learns new tasks from online interactive lan-
guage instruction. In the past, the features of each task’s goal were explicitly described by a
human instructor through language. In this work, we develop and study additional techniques
for learning representations of goals. For game tasks, the agent can be given visual demonstra-
tions of goal states, refined by human instructions. For procedural tasks, the agent uses infor-
mation derived from task execution to determine which state features must be included in its
goal representations. Using both approaches, Rosie learns correct goal representations from a
single goal example or task execution across multiple games, puzzles, and procedural tasks. As
expected, in most cases, the number of words required to teach the task is reduced when visual
goal demonstrations are used. We also identify shortcomings of our approach and outline future
research.
� 2016 Elsevier B.V. All rights reserved.
Introduction

As collaborative robots become ever more prevalent, it will
be increasingly important for non-expert human users to be
able to adapt and extend their behaviors without explicit
programming. Interactive Task Learning (ITL; Laird, 2014)
is a general approach where robots learn new tasks in real
time through natural interactions with humans. ITL extends
and unifies techniques such as learning from demonstration
(Argall, Chernova, Veloso, & Browning, 2009) and learning
from natural language instruction. In prior research
(Mohan, Kirk, Mininger, & Laird, 2012), language instruction
logically
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2 J. Kirk et al.
proved to be effective for communicating novel tasks,
allowing an instructor to describe the fundamental knowl-
edge required to define a task: the available actions, goals,
constraints on solutions, hierarchical task structures, and
procedures for solving the problem. However, we have
observed that humans use a wide range of techniques to
teach and learn, and that language is not always the easiest
or least cumbersome way to teach certain concepts.

Observing human-human teaching scenarios is informa-
tive as to what interactions an agent should support to facil-
itate natural, efficient, and accessible communication.
Although people are great at learning from experience,
much of how humans learn (or teach) is through explicit
guided instruction with an expert human, particularly in set-
tings when collaboration is necessary. From game learning
to job training, many tasks are taught through grounded
real-time instructions in situated shared environments,
which is the context for our research. We have observed
that when teaching a game to another person, humans
employ a wide array of strategies and techniques to commu-
nicate information. Some examples include giving demon-
strations, asking questions, using analogies, and making
inferences. Similarly, when Kaochar et al. had people teach
a simulated UAV agent how to carry out a mission and gave
them multiple modes of instructions, the majority used all
three that were available: teaching by example, demonstra-
tion, and reinforcement (Kaochar et al., 2011).

In particular, we are interested in the different ways that
goals are taught and how an agent can use these strategies
to learn goal representations. Even when the agent is taught
a procedure, having an internal representation of the goal is
useful when verifying that a task was successfully com-
pleted. A general goal representation also enables the agent
to perform internal search and generalize to new variations
of the task. We hypothesize that the instruction can be
more efficient in some cases if the agent can learn the goal
through non-verbal modalities. This hypothesis is explored
and evaluated on Rosie, an Interactive Task Learning table-
top robotic agent implemented in the Soar cognitive archi-
tecture (Laird, 2012). Interactive task learning provides a
challenge for cognitive architectures because it requires a
general, end-to-end, task-independent framework for
learning all types of task knowledge, without any task-
specific programming by a human. It also requires diverse
types of knowledge and reasoning that span topics from
computer science and cognitive modeling, and requires
integration of many fields: natural language processing,
Fig. 1 Picture of the robot arm and tabletop block environment.
describe the goal for Eight Puzzle using a description.
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vision, machine learning, logical reasoning, knowledge man-
agement, etc.

We demonstrate and evaluate these approaches within
the context of learning novel puzzles, games, and procedu-
ral tasks. We focus on how our approaches use different
characteristics of these tasks to learn goals using a single
example. Our empirical evaluation focuses on two desider-
ata of ITL systems: generality and communication effi-
ciency. We evaluate generality by using this approach on
three puzzles, one game, and five procedural tasks. We
evaluate communication efficiency by measuring the
number of words required to specify a task by the
instructor and comparing strategies for teaching goals:
one where the goal is described and one where the goal is
demonstrated.

Background

Rosie is a robotic agent that uses a Microsoft Kinect sensor
and robotic arm affixed to a tabletop, and is controlled by
procedural, declarative, and episodic knowledge encoded
in Soar. The agent can detect and manipulate foam blocks
of various shapes, colors, and sizes. The human teacher
interacts with the agent through a chat window or using
Google’s TextToSpeech services for speech production and
CMU PocketSphinx for speech recognition. An image of the
agent and chat window can be seen in Fig. 1.

The agent exists in a mixed-reality environment, where
perceptions are augmented with additional information to
make the environment more complex. First, the Kinect pro-
duces a RGBD point cloud from which points belonging to
the table and arm are removed. The remaining points are
partitioned using a union-find algorithm where points are
joined if they are close in physical space and similar in
color. Partitions with a significant number of points form
the set of objects, and features for color, shape, and size
are extracted. These features are then used to train a
KNN classifier to produce a set of perceptual labels for the
object (e.g. red, triangle). These labels, along with the
position and bounding box of the object, are provided as
input to the Soar agent. In addition, the agent is also pro-
vided with a list of named regions on the table to serve as
locations (e.g. the pantry or stove). These locations can
have simulated properties and dynamics. For example, the
pantry has a simulated door which can be opened and
closed. Internally, the agent represents and treats locations
Also shown is the chat interface with the instructions needed to
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the same as other perceived objects. This augmented real-
ity adds significant complexity to the environment and
allows the agent to do a wider variety of tasks than is pos-
sible using just the robot arm.

The agent maintains a separate symbolic representation
of the world in its working memory, which it updates as new
perceptual information comes in. This world state represen-
tation consists of a set of objects fo1; o2; . . . ; ong and predi-
cates over those objects. Unary predicates defined over a
single object describe properties of that object. Common
ones include redðoiÞ; squareðoiÞ; blockðoiÞ; locationðoiÞ;
grabbedðoiÞ, and closedðoiÞ. Binary predicates defined over
two objects describe spatial relations between those
objects, for example, onðoi; ojÞ and right-ofðoi; ojÞ. All rela-
tional predicates are represented symbolically, but are
grounded in continuous representations maintained in the
agent’s spatial/visual short-term memory.

There also exist a set of discrete actions the agent can
perform. The agent sends each command to its output
buffer where it is interpreted and executed by the motor
system. Some commands, such as closing a door, are simu-
lated. Commands involving the arm are executed using a
simple arm controller which follows a prescribed set of
scripted actions. Examples of actions include openðoiÞ;
pick-upðoiÞ, and put-downðoi; x; yÞ. For this basic set of
actions the agent knows the preconditions for each actions
and can model each action during internal simulation (e.g.
the result of pick-upðoiÞ is adding grabbedðoiÞ).

Natural language is processed using a parser, imple-
mented in Soar, that is integrated with Rosie. The parser
takes as input grammatical English sentences and produces
a semantic interpretation that includes grounding all refer-
ences to objects and locations to their referents in Rosie’s
perceptual system. The agent is initialized with general
knowledge about how to interact with an instructor via lan-
guage, how to learn procedural and declarative knowledge,
and how to solve problems through internal search. The
agent initially knows only simple primitive actions such as
picking up a block or opening a door. In earlier work, we
showed that through interactive language-based instruc-
tion, it can learn new verbs (such as store and cook), nouns
(such as rectangle and triangle), adjectives (such as big and
red), prepositions (such as behind and on) (Mohan et al.,
2012), hierarchical tasks (Mohan & Laird, 2014), and games
(Kirk & Laird, 2014).

In our original work, the instructor explicitly described
all the objects, properties, and relations that were con-
stituent parts of the goal directly via natural language. How-
ever, we discovered that this is cumbersome for goals that
have many objects and relations. For example, describing
the goal of the Eight Puzzle requires 69 words in our system
(see Fig. 1). In this paper, we explore methods where the
agent learns a general goal representation from a single
example for games (both multiplayer games and puzzles)
and procedural tasks. The challenge is determining which
state features (objects, properties, and relations) define
the goal, while ignoring those state features that just hap-
pen to be true in that specific instance. There is a crucial
distinction between games and procedural tasks, which
leads to two different methods for extracting the goal from
the environment. Games add additional artificial constraints
Please cite this article in press as: Kirk, J et al., Learning task g
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to the possible actions, which can be circumvented when
demonstrating the goal, whereas the constraints for proce-
dural tasks are inherent to the environment itself and thus
cannot be circumvented.

For games, often the instructor can provide an explicit
example of the goal in the environment without actually
having to solve it. For example, in the Tower of Hanoi puz-
zle, the agent is forbidden from moving a larger disk onto a
smaller one or putting a disk on the table (in our version we
use blocks). However, it is easy for the instructor to quickly
construct an example of the goal by violating the rules of
the puzzle. Similarly, in Tic-Tac-Toe, the instructor can
show an example of three-in-a-row without playing the
game. In our approach, the agent compares this example
state to its memory of the initial state to generate an initial
representation of the defining characteristics of the goal,
which is then refined through interaction with the
instructor.

For procedural tasks, the instructor cannot shortcut per-
forming the task – all of the intermediate actions must be
performed. Therefore, in order to achieve the goal, either
the instructor or the agent must go through the actions.
By having the agent perform the actions itself, it can learn
both the goal and the policy at the same time. When the
goal is reached, not only does the agent have an example
of the goal, but it also has additional information about
what actions were performed. We use knowledge of these
actions to help determine which aspects of the final state
should be included in the goal without the need for further
instructions.
Learning goals of games

Previous work has demonstrated that Rosie can learn over
ten different games and puzzles, from Tic-Tac-Toe to Soko-
ban, through natural language descriptions of the legal
actions and goals of the task. Here we describe how to learn
these goals from demonstrations and evaluate our claims on
four tasks: Tic-Tac-Toe, Tower of Hanoi, the Eight Puzzle,
and the Frog and Toads Puzzle. In each case, the actual task
solved in our tabletop block domain is an isomorphism of the
classic game. For example, the tile sliding Eight Puzzle iso-
morphism uses colored blocks and colored locations rather
than numbered tiles.

Often setting up the goal can be easier than describing it
with explicit language. When given a demonstration of the
goal, Rosie gets a snapshot of all the objects and predicates
that make up the state. The problem of determining the
goal representation is therefore a feature selection prob-
lem, where Rosie must determine what objects and predi-
cates are essential to the goal so that a correct general
representation can be learned. Including unnecessary
features will cause over-specific representations, while
excluding relevant features will lead to over general repre-
sentations. We have developed heuristics to help estimate
the relevant features, but in general it is hard to ensure cor-
rect feature selection, especially in one example. The final
step of the learning process is to directly engage the tea-
cher to make final adjustments to the goal hypothesis and
verify correctness.
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The first heuristic used is that only predicates referenced
during the task instruction should be included in the goal.
Rosie knows a large number of predicates, including ones
for colors, shapes, sizes, and spatial relations. Considering
every possible predicate would lead to a large number of
extraneous predicates being included in the goal. Predicates
mentioned during instruction are more likely to be relevant.
During a task, Rosie does not extract every possible feature
or relationship it knows. Instead, when a predicate, such as
on, is mentioned Rosie begins to extract instances of that
relationship in the world. This provides a heuristic estimate
of which relationships are relevant – those that have been
used or taught during the current teaching session – essen-
tially the predicates used to describe the task so far.

The second heuristic is that aspects of the final state
which differ from the initial are likely to be important. Thus
the differences between the two states are used to create
an initial estimation of the goal. This process is formally
described in Algorithm 1. This algorithm takes in the initial
state and the final state where the goal is demonstrated.
The first step of the algorithm, lines 2–3, extracts predi-
cates from the initial and final states. Only the instances
of predicates that are in the final state and not in the initial
state are added to the goal representation. The next step
(line 5) finds all objects O referenced in those predicates.

Algorithm 1. Goal estimation

1: procedure estimate-goal(state si, state sf)
2: Pi  predicatesðsiÞ
3: Pf  predicatesðsfÞ
4: P  Pf � Pi

5: O objectsðPÞ
6: for ðpj 2 PfÞ do
7: A objectsðpjÞ
8: if ðA#OÞ then
9: P  P þ pj

return stateðP;OÞ
The last heuristic used to estimate the goal is that the
goal should also contain predicates which haven’t changed
between the two states but involve objects which have.
Most unary predicates, like blue or block, do not change
between the initial and final states, but can be necessary
to distinguish objects in the goal representation. This is
the reason for explicitly collecting the set of all objects:
to consider other relationships that exist between objects
already in the goal. Specifically, the algorithm (lines 6–9)
includes all other predicates from the final state that are
defined over those objects, even predicates that have not
changed. This step includes information about the goal
objects and their associated predicates that existed in both
the initial and final states, but could still be relevant to the
goal.

This process provides an estimation, but is not always
sufficient for learning the correct goal. The assumptions
behind the heuristics may be violated, leading to relevant
predicates being ignored or irrelevant predicates being
included. For example, the first heuristic is wrong when
Please cite this article in press as: Kirk, J et al., Learning task g
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predicates are used elsewhere in the task which should
not be included in the goal. The second heuristic is wrong
when there are additional changes in the world that weren’t
relevant to the goal. For example, if the final state demon-
stration in Tic-Tac-Toe also contains opponent pieces on the
board, those will be incorrectly included in the goal
representation.

Since this initial estimation will often be wrong, it is
important for the instructor to be able to refine the goal
representation through further interactions. To do this,
the instructor must acquire knowledge of the agent’s goal
hypothesis. Predicting the mistakes the agent may have
made is difficult, especially if the teacher is unaware of
the current relationships known to the agent. To facilitate
corrections, as soon as Rosie creates a goal hypothesis, it
communicates the representation in simple English, listing
each predicate relation between the objects. This ability
to expose internal knowledge representations is critical to
meaningful communication between a teacher and student,
where each has a model of what the other knows.

With this knowledge, the teacher can make changes to
the goal representation by specifying predicates or objects
to either pay attention to (attend to) or to ignore. When
modifying the goal hypothesis, predicates are referenced
by their name. Specific instances such as onðB;CÞ cannot
be ignored or added. Sets of objects can be referenced
(attend to the green blocks) as well as single objects (ignore
this block). Thus ignoring or attending to predicates is a
fairly coarse refinement, while ignoring or attending to
specific objects allows for more fine grain modifications.
This approach is sufficient to correctly refine the goal repre-
sentations of all the tasks explored in the work so far. In the
future we will consider adding support for ignoring specific
instances of predicates (ignore that the blue block is on a
location), although we expect explicit goal descriptions to
be more efficient in these cases. Ignored and attended
objects and predicates are added and removed respectively
from the objects O and predicates P returned from the
estimate-goal algorithm. Additionally predicates are
removed from P if they refer to objects no longer in O and
objects are removed if no predicates refer to them. The
final steps of estimate-goal that add additional final
state predicates are repeated to add potentially relevant
relationships between the new attended objects.
Tower of Hanoi example

The learning of the Tower of Hanoi puzzle by Rosie is a good
example to illustrate the goal learning process. Fig. 2 shows
the initial and final state demonstrations for Tower of Hanoi
in our tabletop environment with the extracted predicate
relationships below and the learned representations to the
right. Fig. 3 displays the accompanying interactions
between the teacher and Rosie.

The predicates that change from the initial to final state
are highlighted in bold. These form the set P in line 4 of the
estimate-goal algorithm: P ¼ fonðC; ZÞ; belowðZ;CÞg.
Then the unchanged predicates blueðZÞ; locationðZÞ;
largeðCÞ; blockðCÞ and largerðZ;CÞ are added because they
are defined over objects in the set O (lines 6–9). This forms
the initial hypothesis shown in Fig. 2. Note that even though
oals interactively with visual demonstrations ..., Biologically
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Fig. 2 Initial and final state demonstrations for teaching the goal for Tower of Hanoi. The predicate relations are between the
blocks (A,B,C) and locations (X,Y,Z). The locations are labeled as grid-green, grid-red, and grid-blue. The predicate relationships
extracted for each pictured state are shown below the images. The initial, intermediate, and final learned goal representations are
on the right.

Fig. 3 Transcript of the interactions to demonstrate the goal of the Tower of Hanoi. Rosie’s responses are italicized.

Learning task goals interactively with visual demonstrations 5
the goal should contain blocks A and B and predicates
onðA; BÞ and onðB;CÞ, because they are in both states they
are not included. Additionally on and below are both
included in the goal representation even though they are
redundant. Once the goal estimate is generated, Rosie then
describes this goal hypothesis to the instructor (Fig. 3).

The teacher should notice the two missing relations, the
medium block is on the large block and the small block is on
the medium block, and the two unnecessary relations,
below and larger-than. The teacher first instructs the agent
to ignore below, which is redundant, and ignore larger-
than, which is unnecessary. This leads to the intermediate
hypothesis, which contains only the relevant features
on; large; location; block, and blue. Finally the teacher
gives the instruction attend to the blocks in order to correct
for the lost relevant objects. Attending to these objects
causes the agent to also add the on relationships for the
two blocks that did not change from the initial state. After
these interactions, Rosie reports the modified and now cor-
rect goal hypothesis, ‘‘I think the goal is that a small block
is on a medium block and the medium block is on a large
block and the large block is on a blue location.” The final
representation learned is also displayed in Fig. 2. If the final
state demonstration for Tic-Tac-Toe contains blue opponent
Please cite this article in press as: Kirk, J et al., Learning task g
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pieces, the teacher would instruct ignore the blue blocks in
order to prevent learning an overly-specific goal
description.
Evaluation

Our hypothesis is that the ability to substitute goal demon-
strations for language descriptions reduces the amount of
time and effort required to teach a task. To evaluate this
claim, we ran experiments on four games, Tic-Tac-Toe,
Tower of Hanoi, the Eight Puzzle, and the Frog and Toad
puzzle. For all games, after goal refinements, the agent
learns the correct goal representation, which is neither
too specific nor too general. Fig. 4 shows the final state rep-
resentation that Rosie learns for each game. Because the
goal representation is relational and symbolic, it generalizes
effectively to other goal instances and is easy to verify for
correctness. For example, for Tic-Tac-Toe, given only one
demonstration of three in a row, Rosie determined that
the predicate linearðl1; l2; l3Þ is part of the representation,
which generalizes to all instances of the goal. This is also
an illustrative case of why the final heuristic is useful; even
though the relationships between the locations do not
oals interactively with visual demonstrations ..., Biologically
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Fig. 4 On the right the states demonstrated for Tic-Tac-Toe and Frog puzzle are displayed. The final learned goal representations
for each of the four evaluated games is to the left. The unary predicates are listed first, omitting blockðonÞ and locationðlnÞ, which
would be included for every game. The relational predicates are listed second, which are defined over the blocks on and locations ln.
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change, linear is added to the initial goal hypothesis
because each location is already in the goal representation.

Our analysis focuses on the number of words needed to
teach just the goal of the game with and without the use
of demonstrations. This metric is a stand in for efficiency
as it does not capture the added mental effort and time
required to construct goal descriptions or the physical effort
and time required to manipulate the world environment for
goal demonstrations. However for these tasks, the mental
and physical effort is minimal. In the future, we plan to
more directly measure efficiency, using overall teaching
time.

There are many different, equivalent ways to describe
the goals through natural language. In this evaluation, the
goals were specified as efficiently as possible using our lan-
guage processing system. The number of words includes
only those uttered by the teacher. The results of these
experiments are shown in Fig. 5. As expected, goal demon-
stration decreased the number of words required to teach
the games. Tower of Hanoi shows the least benefit, because
the goal is fairly easy to describe and the demonstration
Fig. 5 An analysis of the number of words used to teach goals
with descriptions and demonstration.

Please cite this article in press as: Kirk, J et al., Learning task g
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requires many additional interactions to correct the initial
goal hypothesis. The Eight puzzle shows the most benefit,
as the supported language for teaching the goals is verbose
(see Fig. 1). Some goals can be learned without additional
interaction, such as in Tic-Tac-Toe, although redundant
below predicates will be included unless explicitly ignored.

These results illustrate the potential benefit of goal
demonstrations. The benefit of using goal demonstration
increases as the size of goal representation increases. For
example, in the 15 Puzzle and the 10 block variant of Tower
of Hanoi, the interactions to teach using goal demonstration
would be the same as their simpler versions, except for the
additional blocks that the person would need to move to
demonstrate the goal. All the attend and ignore instructions
would remain the same. However, the language descriptions
would increase linearly with the size of the problems. This is
partially a byproduct of the limitations of the language sys-
tem. For example utterances such as all blocks are on loca-
tions with matching colors (only 8 words) that contain
qualifiers like all and task-specific abstract predicates like
matching cannot currently be processed, although this is a
venue of current research. Using abstract concepts and
qualifiers allows for extremely efficient descriptions such
as all the blocks are stacked from smallest to largest on
the goal (12 words) or that the red blocks are swapped with
the blue blocks (10 words). However, for a fair comparison
the words necessary to teach the abstract predicates, like
matching and stacked, should also be counted, especially
as they are often task and domain specific.

Rather than evaluating the efficiency by the number of
words, it would be better to measure the amount of time
used to teach. This would help account for the mental effort
needed to construct the goal representation when describ-
ing it explicitly with language, as well as the effort to move
objects and setup goals when giving demonstrations. This
would allow us to better analyze the trade offs between
demonstrating and describing goals, but will require more
extensive user studies. However, it seems clear that humans
prefer mixed strategies (using description and demonstra-
tion) and that Interactive Task Learning agents should sup-
port both kinds of goal learning.
oals interactively with visual demonstrations ..., Biologically
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Learning goals of procedural tasks

In addition to games, Rosie learns procedural tasks that
involve executing a sequence of unrestricted actions to
achieve a desired goal. An example of teaching the store
task is shown in Fig. 6. In our original approach, the instruc-
tor provided a linguistic description of the goal and the
agent internally searched for a sequence of actions that
would lead to the goal. This search was depth limited; if
it failed, the human instructor would provide the action
that the agent should next perform to make progress to
the goal. This process was repeated until the agent
achieved the goal. While this is effective, it is often more
natural or efficient for the instructor to omit the goal
description and instead give just the step-by-step instruc-
tions to solve the problem. At that point, the instructor
tells the agent the task is finished, and the agent attempts
to generate the goal by analyzing the actions it took to
carry out the task.

The generate-procedural-goalðs;AÞ in Algorithm 2
describes this process formally. This algorithm requires the
initial state si when the task started and the final state sf
when the task was completed (represented as a set of
objects and predicates), as well as a list of actions A it per-
formed to accomplish the task. In addition, the agent must
have models of its primitive actions and be able to internally
simulate the effect of an action on a state, by knowing what
predicates to add and remove (lines 5–6). To generate the
goal, the agent simulates applying each action to the state
(line 7), and accumulates the changes as a set of predicates
P (lines 5–6). Of those predicates, those that exist in the
final state (line 8) form an instance of the goal representa-
tion. The agent then tries to generalize this goal represen-
tation so that it can apply to different tasks involving
different objects. It does this by seeing if any objects or
predicates in the goal were also mentioned in the task
description. If they were, it turns them into variables which
take on the same value as the corresponding item in the task
description. For example, the goal of stack(red-block, blue-
block) is on(red-block, blue-block), but it should not create
the same exact goal for the task stack(green-block, yellow-
block). Instead, the objects in the goal should match what-
ever values they are in the task description.
Fig. 6 Instructions given to teach the store task (Rosie’s
responses are in italics). The goal description is in bold. The last
two actions are done without the need for instruction because
Rosie found a solution through search.

Please cite this article in press as: Kirk, J et al., Learning task g
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Algorithm 2. Goal extraction after an example procedure

1: procedure generate-procedural-goal(state si, state sf,
actions A)
2: P  fg
3: s si
4: for ðai 2 AÞ do
5: P  P

S
added-predicatesðs; aiÞ

6: P  P � removed-predicatesðs; aiÞ
7: s simulateðsi; aiÞ
8: P  P \ predicatesðsfÞ
9: O objectsðPÞ
10: return fP;Og
As an example, consider the task ‘‘store the red block”.
Below is the sequence of actions given by the instructor and
the predicates that are added and removed.

1. Open the pantry.
+open(pantry)

2. Pick up the red block.
+grabbed(red-block)

3. Put the red block in the pantry.
�grabbed(red-block), +in(red-block, pantry)

4. Close the pantry.
�open(pantry), +closed(pantry)

After these predicates are accumulated, the final result
is the set {in(red-block, pantry), closed(pantry)}. The red
block appears as an argument in the task description, so it
becomes a variable that matches the task argument. The
pantry and the predicates on and closed are not in the task
description, so they are not generalized. Thus the final gen-
eralized goal for store(A) is {in(A, pantry), closed(pantry)}.

This approach makes two main assumptions. The first is
that all of the actions taken by the agent are directly rele-
vant to the goal. Thus we rely on the instructor to not give
extraneous steps. However, in some cases this cannot be
avoided. For example, when teaching ‘‘move the red block
to the table,” suppose the red block is in a closed pantry.
The first step would be opening the pantry, so the predicate
openðpantryÞ would be included in the goal; making the goal
over-specific. This would cause it to open the pantry during
every move task, even those where the object does not start
in the pantry. This is why it is important for the agent to be
able to communicate its knowledge so that the instructor
can correct it if it is in error. Our solution is to have the
agent describe its hypothesis about the goal and allow the
instructor to remove predicates, just as with games. In this
example, the agent would say ‘‘I think that the goal is that
the red block is on the table and the pantry is open,” to
which the instructor could reply ‘‘Ignore the pantry.”

The second assumption is that all aspects of the task’s
goal are captured by the agent’s action models. This
assumption breaks if there are dynamics in the environment
which change the state in ways the agent does not predict.
Thus we rely on the instructor to include all the information
relevant to the goal in the action commands. For example,
when teaching the cook task, the agent will place the steak
on the stove, turn the stove on, and after five seconds the
oals interactively with visual demonstrations ..., Biologically
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cookedðsteakÞ predicate will be added. Since this wasn’t the
direct result of an action, this predicate will not be included
in the goal as it is not added by an action model. However, if
the instructor gives the additional action of ‘‘Wait until the
steak is cooked,” the agent will include the cooked predi-
cate as part of the goal. Alternatively, as with games, the
instructor could add the predicate after the fact by saying
‘‘Attend to cooked.”

Since the agent has been given a full execution
sequence, it may seem unnecessary to create a goal repre-
sentation. However, our agent does not learn a fixed proce-
dure, but learns a flexible state-based policy. If the agent
tries to do the task in a different situation where the same
procedure won’t work, it can use the goal representation to
search for an alternate way to achieve the goal. For exam-
ple, if we taught the agent how to move a block to a loca-
tion, then later tell it to move it to the pantry, the agent
must first open the pantry. Even though this step was not
encountered previously, because it has a goal description
the agent can figure it out by searching over its actions to
find a way to achieve the goal. Thus with a goal, it can adapt
its behavior to new situations without needing additional
instruction.

Evaluation

To evaluate our system, we compare the amount of instruc-
tion needed to teach new tasks with two types of instruc-
tional strategies. In the first strategy, a linguistic
description of the goal is given to the agent. The agent
can then try and search for a sequence of actions that will
achieve the goal, or ask for help if it cannot find one. In
the second strategy, no description of the goal is given.
Instead the instructor gives the agent a sequence of actions
to perform and then tells it when it has achieved the goal.
An example of these two strategies being used in the move
task is shown in Fig. 7.

Our environmental setup consists of a tabletop with four
regions designated as locations – a table, garbage, pantry,
and stove. These locations have simulated dynamics: the
pantry has a door that is either open or closed, and a stove
that is either on or off. The agent moves around real blocks
and perceives their visual properties (color, shape, size),
but simulates the dynamics of interacting with locations
(e.g. it won’t put a block on the pantry if the door is
closed). The agent starts with learned knowledge about col-
ors, shapes, sizes, and spatial relations. It also has an initial
set of known primitive actions: pick up, put down, turn on,
turn off, open, and close.

We teach the system five different tasks: discard an
object by putting it in the garbage; move an object to a
specified destination; store an object in the pantry and
Fig. 7 Example of different instruction strategies for the move t
search, and when it does a search up to two moves.

Please cite this article in press as: Kirk, J et al., Learning task g
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close the door; cook an object by putting it on the stove,
turning the stove on, waiting until the steak is cooked (sim-
ulated property), and turning the stove off; and set the
table by putting a blue square on the table, with a red rect-
angle to its right and a green rectangle to its left. For each
test, we count the number of words needed to teach the
task for each of the two strategies. For our evaluation, we
assume perfect instruction. From these instructions, our
agent always learns the correct policy and goal representa-
tion. Thus we are not comparing correctness, but efficiency
of communication.

The first strategy (Goal Description) has the instructor
give a linguistic description of the goal and provide addi-
tional instructions when needed. The agent can internally
search for a sequence of actions that lead to the goal, so
it may not need to ask for additional instructions. However,
the search space grows exponentially with the depth, as it
involves searching though all possible actions with all
objects and spatial relations. So for tasks requiring many
actions, the search can be very time consuming. Therefore,
we limit the search depth to two. In our results we also show
the best possible word count if the agent did an unlimited
search (did not need to ask for additional instructions),
and the worst possible word count if the agent could not
do any search. The second strategy (No Goal Description)
has the instructor just give the sequence of actions that
lead to the goal, and the agent extracts the goal represen-
tation itself. In both strategies, the agent generates the
same description of the goal.

The results are shown in Fig. 8. They illustrate a trade off
when it comes to teaching goals. The tasks discard and
move have simple goal descriptions (e.g., the goal of dis-
card(block) is that the block is in the garbage) and have easy
to find solutions. Thus for a depth two search, the agent
requires no additional instructions and describing the goal
ends up taking fewer words than giving the actions. But
the cook and set-table tasks have complex goal descriptions
(for set-table the goal is that the blue square is on the table
and the red rectangle is right of the blue square and the
green rectangle is left of the blue square) and so it takes
fewer words for the instructor to tell the agent how to do
the task and have the agent extract the goal itself. This
trade off is also influenced by the search ability of the
agent. If the agent cannot search, then even if it is given
a description of the goal, it still needs to be given the full
procedure and thus always takes more words (the blue
light-shaded portion on the left is always the highest).
Whereas if the agent has unlimited search it is always more
efficient to give the goal description and have the agent
search for the actions that lead to the goal (the blue dark-
shaded portion on the left is always the lowest). However,
doing an unlimited search is very time consuming so the
ask. Goal Description is shown when the agent does no internal
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Fig. 8 Number of words needed to teach each task when the
agent is given a goal description versus not given a description
and having to extract it from the task execution. The word
count of the goal description agent depends on its search
capabilities. We show results with no search (worst), unlimited
search (best), and search with depth limit of two.
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instructor might prefer giving a few additional instructions
to waiting on the agent to figure it out.
Related work

Although there has been a variety of research on task
learning, it invariably depends on learning from multiple
examples. For example, Kaiser (2012) and Barbu,
Narayanaswamy, and Siskind (2010) describe systems that
extract the relevant goal-state predicates for games,
including Tic-Tac-Toe, by viewing many iterations of game
play. Not surprisingly, most learning from demonstration
systems (Argall et al., 2009; Chao, Cakmak, & Thomaz,
2011) for robotic tasks teach action sequences and not goal
descriptions. Moreover they rely on multiple examples, and
rarely have the ability to take in language to aid in learning.
However, Nicolescu and Mataric (2003) describe a robotic
agent that first learns from an instructive demonstration
of the task and then refines its knowledge over multiple tri-
als and feedback from the teacher, but does not learn goal
descriptions. One learning from demonstration system that
does learn goals is by Akgun and Thomaz (2015), where
instructors not only give action keyframes but also goal key-
frames during the same demonstration.

Closely related to our work, is the work of Hinrichs and
Forbus (2014), which describes a computer agent that learns
to play Tic-Tac-Toe embedded in CogSketch from interac-
tions with a human teacher. The teacher can give goal
demonstrations through sketching during game play. How-
ever the agent does not learn procedural tasks, and it does
not do any feature selection reasoning. When distractor
objects or relationships are present, the teacher must man-
ually select the subset of objects that define the goal in the
sketch window. An alternative approach to learning goals is
to learn a reward function from demonstrations, known as
Inverse Reinforcement Learning (Abbeel & Ng, 2004). Of
course, this too requires many examples.
Please cite this article in press as: Kirk, J et al., Learning task g
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Discussion

In this paper, we have shown how it is possible to extend
task learning from instruction so that a goal description
can be learned from a single goal demonstration. Our results
show that for some tasks, goal demonstrations provide an
efficient alternative to language descriptions.

Interactive Task Learning, grounded in real-time scenar-
ios in a robotic cognitive architecture provides a great plat-
form for studying different strategies of situated interactive
learning/teaching as well as many related cognitive tasks.
We are interested in studying problems in how to unify
knowledge from many sources: natural language processing,
vision systems, logical reasoning, search, knowledge bases,
etc., that cross diverse fields in computer science and cog-
nitive modeling. This fits well with the short and long-term
goals of cognitive architectures like Soar: to jointly develop
intelligent agents that can learn and solve complex tasks
and to study what the necessary mechanisms might be to
support these activities and ultimately general cognition.

There are limitations to our approach, which define our
agenda for future work. The agent can only learn goals that
are defined by a final state, excluding ongoing tasks that
involve continually performing a procedure, such as patrol-
ling a building. Also, the agent cannot currently learn a goal
with disjunctive predicates, where there are multiple varia-
tions of the goal. Another potential goal refinement strategy
is providing many goal exemplars to determine which rela-
tionships are relevant. In addition, it cannot learn to include
the negation of predicates in a goal description solely from
demonstration. For example, it cannot learn that a goal is
achieved if a red block is not on a blue block. Negated rela-
tionships can, however, be described in the descriptions of
games. These could potentially be learned from demonstra-
tion by observing what predicates in the initial state no
longer exist. A further restriction is that once a goal descrip-
tion is learned, the teacher cannot freely switch between
the different teaching methods to refine knowledge, a capa-
bility we have observed in human-to-human task learning. In
addition, the current language comprehension system is
restrictive and often limits the efficiency of communica-
tion. Research is being conducted in parallel to expand
the language capabilities of the agent so that the teacher
can more naturally describe desired states and reduce the
number of words necessary.

Even with these limitations, this work takes important
steps in making Interactive Task Learning agents more effi-
cient and more accessible by exploring a new method for
acquiring goals and facilitating interactions to refine those
states.
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