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Abstract
Interactive Task Learning (ITL) focuses on learning
the definition of tasks through online natural lan-
guage instruction in real time. Learning the cor-
rect grounded meaning of the instructions is dif-
ficult due to ambiguous words, lack of common
ground, and the presence of distractors in the en-
vironment and the agent’s knowledge. We present
a learning strategy embodied in an ITL agent that
interactively learns in one shot the meaning of task
concepts for 40 games and puzzles in ambiguous
scenarios. Our approach learns hierarchical sym-
bolic representations of task knowledge rather than
learning a mapping directly from perceptual repre-
sentations. These representations enable the agent
to transfer and compose knowledge, analyze and
debug multiple interpretations, and communicate
efficiently with the teacher to resolve ambiguity.
We evaluate the efficiency of the learning by exam-
ining the number of words required to teach tasks
across cases of no transfer, positive transfer, and in-
terference from prior tasks. Our results show that
the agent can correctly generalize, disambiguate,
and transfer concepts within variations in language
descriptions and world representations of the same
task, and across variations in different tasks.

1 Introduction
How can an agent not only learn a single task, but quickly
learn and pursue many different tasks without any prior task-
specific knowledge? Approaches such as those used in Alp-
haZero [Silver et al., 2018] learn a specific policy from mas-
sive training for only a single task – one implicitly defined by
the agent’s environmental interface and reward function. In
contrast, we are interested in approaches that allow an agent
to quickly learn many different tasks.

Interactive Task Learning (ITL) [Laird et al., 2017] is such
an approach, where an agent learns new tasks from scratch,
each in one shot, via natural language interactions with a
human instructor in a shared environment. Using the ac-
quired task definition together with its planning, reasoning,
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and learning capabilities, the agent can immediately pursue
the task [Mininger and Laird, 2016]. As additional tasks are
learned, the agent transfers knowledge from previous tasks to
new tasks, speeding task learning.

Many task learning systems assume that task descrip-
tions use either a fixed set of words, or that new words
and task elements (terms, goals, actions, ...) can be di-
rectly mapped (one-to-one) to known primitives or subsym-
bolic representations in a single domain [Chai et al., 2018;
Goldwasser and Roth, 2014; Azaria et al., 2016]. However,
as an agent learns many tasks, there will inevitably be many-
to-many mappings between words and the components of a
task, and in some cases knowledge learned in a previous task
can interfere with a new task.

Think of a child learning Tic-Tac-Toe by marking X’s and
O’s on paper. They should also be able to learn a new ver-
sion of Tic-Tac-Toe that involves placing colored stones on a
board, without having to relearn the rules of the game (within-
task transfer). Moreover, the concept of “three in a row”
from Tic-Tac-Toe should transfer to similar games, such as
Three Men’s Morris, without additional instruction (across-
task transfer). However, in a game where stones are not
markers but movable pieces, such as Breakthrough or Check-
ers, blindly trying to use the previously learned knowledge
will lead to confusion and potentially an inability to solve the
problem. However, with help from an instructor, the child can
refine and specialize the task-specific meaning of the stones
for the new game (avoiding negative transfer).

We focus on goal-oriented tasks, which Newell [1993] pro-
posed can be formulated as problem spaces. In this formula-
tion, a task (such as a marking version of Tic-Tac-Toe) can
be decomposed into an initial state (a blank 3x3 grid), goal
states (three in a row of the player’s marks), legal actions and
their preconditions (marking a blank square), and failure con-
ditions (the opponent achieving three in a row). This formula-
tion can be extended to also include terms with task-specific
meanings (a square is occupied by a mark) that are used in
defining these states, conditions, and actions. In this formu-
lation, task learning corresponds to learning to recognize and
apply these task elements: goals (learning to detect three in
a row when achieved), legal actions (learning how to legally
take an action by marking a square), task terms (learning to
detect if an square is occupied), and so on.

In previous work [Kirk and Laird, 2016], we adapted this



Figure 1: Rosie embodied on a Fetch robot learning a new puzzle.

formulation to enable the learning of hierarchical composi-
tions of task element in the ITL agent Rosie [Mohan et al.,
2012]. Rosie, built on the Soar cognitive architecture [Laird,
2012], learns goal-oriented and procedural tasks for physi-
cal robotic platforms (Magicbot, Fetch, and a tabletop robot)
and simulated domains, through instruction and demonstra-
tion. Figure 1 shows Rosie embodied on the Fetch robot
learning a version of Five-Puzzle with blocks. Rosie is an
end-to-end ITL agent that learns from basic primitives, with
interfaces to those environments (vision systems, manipulator
controllers, speech and text I/O, ...). It has a custom natural
language parser for the interpretation of a restricted subset
of English, and planning and reasoning capabilities for solv-
ing tasks once their definitions are learned, all implemented
within Soar [Mininger and Laird, 2018].

We extend that work by enabling Rosie to create, analyze,
and debug multiple interpretations of task elements in order
to handle scenarios where ambiguity and knowledge interfer-
ence can negatively impact the ability to accurately learn and
transfer knowledge. Our approach also enables the agent to
use the analysis of these interpretations to efficiently com-
municate with the instructor to resolve sources of ambigu-
ity when automated reasoning fails. Our extension improves
Rosie’s ability to correctly learn polysemic words and handle
the many-to-many mappings possible from words to defini-
tions: a word can have many task-specific meanings and a
meaning can be represented by different words in different
tasks. For example, depending on the context, the polysemic
word clear can mean that something is uncovered or that it is
transparent or that it is unmarked. This extension has also in-
creased the complexity of hierarchical task elements and the
breadth of terms and games that the agent can learn.

Below we present our approach, which correctly learns 40
common games and puzzles. These tasks provide a large and
varied set of problems, with goals and actions that use many
different types of concepts and capabilities. We empirically
evaluate our approach’s ability to transfer knowledge across
tasks by teaching all of these tasks in random sequences. We
then evaluate the agent’s ability to correctly generalize, dis-
ambiguate, and transfer concepts across variations in natu-
ral language descriptions, world representation, and game in-
stances, showing transfer across tasks and within tasks, with
and without interference.

2 Related Work
Previous agents have demonstrated learning of new concepts
for tasks, including agents that learn games from observa-
tion [Kaiser, 2012; Barbu et al., 2010] and ones that learn
from language [Cantrell et al., 2012; Thomason et al., 2015;
Chai et al., 2018; Scheutz et al., 2018]. These agents, most
of which learn policy knowledge, are limited in their ability
to learn new concepts, transfer knowledge to new tasks, and
interact naturally. Many agents [Hinrichs and Forbus, 2014]
learn intermediate representations to be interpreted, such as
GDL [Love et al., 2008], rather than native representations
and do not have a theory for task knowledge transfer.

Research on learning the groundings of words in situ-
ated domains has focused on learning new symbols grounded
directly in a robot’s subsymbolic sensorimotor representa-
tions. Agents that do learn groundings from existing sym-
bolic concepts only learn synonyms; they assume that for
any used term there is a single matching concept with the
identical meaning [Goldwasser and Roth, 2014]. Approaches
that require large numbers of training examples, using ma-
chine learning, have been successful at learning new adjec-
tive, prepositions, and nouns.[Roy, 2002; Bhargava et al.,
2017; Chauhan and Lopes, 2011; Dindo and Zambuto, 2010;
Orhan et al., 2013; Matuszek et al., 2012]

In general, these approaches assume that the agent only
learns a single task (rather than a sequence of many tasks),
that concepts can be directly mapped to known primitives or
subsymbolic representations, and that learning and acting are
separate processes, where learning may be an offline batch
process. With Rosie, we focus on learning many tasks at once
with instruction that is fast, interactive, and on-the-fly, and
importantly builds knowledge over time, handling the many-
to-many possible matchings between language, the external
environment, and the agent’s own knowledge representations.
A key aspect of our approach is that the elements of the prob-
lem space learned are uniform in representation, logically
composable, and teachable in hierarchical combinations that
enable partial transfer. This allows the agent to opportunisti-
cally engage the teacher to fill in gaps, resolve discrepancies,
and transfer already learned relevant knowledge.

3 Task Element Learning
In this section, we define the process by which Rosie learns
to recognize and apply task elements: actions, goals, fail-
ure conditions, and words with task-specific meaning, such
as “occupied.” A task element can be thought of having a
condition, which is a description of the context in which the
task element is appropriate to apply. Therefore, learning a
task element involves learning to associate that condition with
the appropriate act: when an action can be legally applied,
when a goal has been achieved, when a failure state has been
reached, or when a task-specific term exists.

To enable learning (and grounding) a task element, Rosie
asks the user to create a state in which the conditions of
the task element are satisfied. For an action, this is a state
in which the action legally applies, while for the goal, it
is a goal state, and so on. Rosie’s perceptual systems ex-
tract objects and primitive features and relations, including



Types Primitives

Object types location, block
Colors* red, green, purple, yellow, orange,

black, white, blue, brown
Labels garbage, destination, card, bank,

pawn, king, knight, rook, queen
Shapes* cube, sphere, cylinder, rectangle
Sizes* tiny, small, medium, large
Comparitors less than, more than, equal to,

x–less/more than, same
Functions subset, product, numeric between,

attribute of, count, sum
Spatial relations* on, below, near, adjacent, diagonal,

left, right, above, under, between

Table 1: Primitive knowledge encoded in the agent. Previous imple-
mentations have learned classifiers for the “*” concepts.

colors (red, green), sizes (large, small), spatial relations
(next to, below), object types (location, block), and labels
(bank, destination) in order to create an internal representa-
tion of the state. Rosie also knows a set of primitive functions
(attribute-of , sum). Rosie’s primitive knowledge is shown
in Table 1, organized by type, including those that are used to
learn the games taught in the evaluation.

Figure 2 shows the external state (left side) and derived
internal symbolic representation (right side) for an instance
of Tic-Tac-Toe where red and blue blocks are used as pieces.
The state can be used to teach the goal for the red player. The
objects and locations in the figure are indexed with numbers
1-16, so that the red block 12 is on location 7.

In our approach, determining whether a task element can
be recognized and applied requires an internal relational sym-
bolic representation of the agent’s perception of the world in
order to ground learning in the current context. The agent
asks for a description of the conditions of the task element,
and converts the natural language into a relational represen-
tation. The agent learns to recognize the task element by
recursively learning all the supporting terms (other task ele-
ments) needed to ground the structure to the world state. Be-
low, we explain how the task elements are applied, and how
ambiguous scenarios and knowledge interference are handled
through the creation of multiple versions of recognition struc-
tures for each possible interpretation.

Figure 2: Internal state representations created for Tic-Tac-Toe.

Figure 3: External and internal representation of Tower of Hanoi.
On the right is a graphical representation of the internal relational
structure Rosie created for the goal.

3.1 Recognition Structure Learning
As mentioned above, Rosie processes natural language using
a custom parser to create an internal, relational representa-
tion of the task element. From that representation, Rosie con-
structs a conjunction of predicates that represents the condi-
tions of the task element. For example, from the description
“The goal is that a small block is on a medium block and
a large block is below the medium block,” Rosie learns the
conjunction goal(x1, x2, x3) = small(x1)∧medium(x2)∧
large(x3)∧ on(x1, x2)∧ below(x3, x2). More generally, the
conjunction can be defined as the unification over n predi-
cates fi() and m objects xj as show in Equation 1.

f(x1, ..., xm) =

n⋂
i=1

fi(xj , ...) 1 ≥ j ≤ m (1)

The conjunction of predicates, p(x, ..), is defined over a set of
objects, x, which can be objects in the environment, strings,
numeric values, or sets of x. Predicates represent binary
values over unary features (red, large), n-ary relationships
(on, behind), set operations (subset), and functions (count).
Predicates in the conjunction can be negated (¬below).

In this representation, set operations and functions y =
f(x...) are reified to the truth test p(y, x..). For example,
the predicate created for “the number of blocks is three” is
count(3, blocks). Knowledge about primitives includes how
they are referred to in relational representations created by the
parser, so that the agent can convert utterances such as “the
number of X is Y” to the function count(y, x). New predi-
cates can be learned from the primitives as the agent learns
task elements for task-specific terms, which enables the defi-
nition of hierarchical task elements through composition.

Rosie converts the predicate conjunction into a tree struc-
ture to help support composition of task elements and partial
knowledge transfer. The leaf nodes are predicate tests that
are evaluated against the agent’s perception of the world, and
any objects that satisfy a predicate are passed up to the parent
node during the grounding of concepts.

An example of the tree structure created for a goal exam-
ple is graphically depicted in Figure 3. The agent constructs
the structure with the unary predicates at the bottom (block)
and the binary predicates at the top. Once that structure is
built, Rosie links the learned condition structure to the lin-
guistic term. The red letters A-Z (on the right) are indexes
for the objects, unique identifiers generated by the agent for
objects in the environment (on the left). The structure is eval-
uated against the world, bottom up, with the results of each



Algorithm 1 Recursive Grounding Function RGF [f(x)]

1: if f(x) can be satisfied then
2: terminal condition
3: end if
4: if f(x) is undefined then
5: Ask teacher for definition of f(x)
6: end if
7: for each fi in f(x) do
8: if fi(xj ...) is not satisfiable then
9: Propose learning new grounding RGF [fi(xj)]

10: end if
11: end for
12: Also propose learning new grounding RGF [f(x)]
13: Use heuristics to select RGF [] recursive call

predicate test labeled in red directly above. Logically, the
constructed tree structures are equivalent to the conjunction
of a set of predicates represented in Equation 1. To construct
this predicate structure, Rosie adds the predicates to the struc-
ture in an order based on the predicate arity and dependency
information extracted during parsing. First, unary predicates
(block, small) are added, then any predicates created from
dependent clauses (such as “the block that is on a location”),
then binary predicates (on, below), and finally n-ary predi-
cates (such as between). This ordering decreases the number
of objects tested by each predicate.

The final step is to attempt to ground the structure to the
agent’s internal state, using interpretation knowledge about
functions, primitive predicates, and learned predicates. Es-
sentially Rosie is figuring out how to interpret, or ground,
the declarative structure in a situated context given its current
state of knowledge so that is can recognize the task element
that structure defines. This allows Rosie to discover if there
are any unknown or unsatisfied terms or if the structure can-
not be satisfied given its current knowledge.

The process of learning to ground all parts of the task
element is described by the Recursive Grounding Function
(RGF) depicted in Algorithm 1. The input is the generated
recognition structure, here represented as a conjunction of
predicates as shown in Equation 1. The terminal condition is
that the input function f(x) can be satisfied, meaning that an
instance of the task element is detected in the environment by
applying the recognition structure. If no definition is known
for f(x), the agent prompts the teacher for a definition.

Otherwise, for each of the unsatisfied predicates fi() used
to define f(x), Rosie proposes a recursive function call
RGF [fi()]. The agent also proposes RGF [f()] to consider
learning a new definition for f(x) even though it already has
one (many-to-many mappings). Because there may be many
unsatisfied predicates, heuristics are used to select which re-
cursive function call to make. These are simple heuristics that
leverage the tree structure and hierarchy, such as preferring
lower predicates, predicates with satisfied predicates beneath
them, and predicates lower in the hierarchy (RGF [fi()] >
RGF [f()]). This learning function terminates when it has
learned to recognize and apply the task element f(x) and all
supporting task-element fi(x) used to describe it.

Figure 4: Learned recognition structures for Tic-Tac-Toe goal.

Rosie (its interactions shown in bold) learns the goal of Tic-
Tac-Toe (Figure 2) from the teacher in the example below.

The name of the goal is three-in-a-row.
Please setup the goal.
Ok.
Please describe the conditions of the goal.
The goal is that three of the captured locations are in a
line.
Can you define ‘captured?’
If a location is below a red block then it is captured.
Can you define ‘in a line?’
If the locations are linear then they are in a line.

From this goal description (and state example) Rosie learns
the new predicate conjunction three-in-a-row(x1, x2) =
locations(x2)∧captured(x2)∧choose-3(x1, x2)∧line(x1).
For primitive functions, such as the subset function choose-
X , the agent innately knows how the function is referred to
in the parsed relational representation. In this case, when
Rosie sees “X of Y ”, where X is a number (three) and
Y is a set of objects (locations), it creates the predicate
choose − X(Z, Y ), where Z represents output of the func-
tion: the created subsets.

Figure 4 shows a representation of the recognition tree
Rosie creates. The primitive terms known a priori to the agent
are labeled in blue. Predicates for captured, choose-3, and
line are not satisfied, and captured is lowest in the tree, so
RGF [captured(x)] is called first. The agent doesn’t know
captured, so it asks for a definition. In Figure 4, an ar-
row points from captured to the structure created from the
teacher’s response: “If a location is below a red block then it
is captured.” Rosie satisfies this definition by matching loca-
tions 1, 4, 7, and 9 from the state in Figure 2.

Figure 5 shows that that captured can be satisfied by lo-
cations [1, 4, 7, 9]. These feed into the primitive function

Figure 5: Learned recognition structures for Tic-Tac-Toe goal.



choose-3 which generates all subsets of size 3. However line
is still unsatisfied and so Rosie calls RGF [line(x)]. It does
not have any definition, so Rosie asks the teacher for one:
“Can you define in a line?” The learned structure for line al-
lows the agent to detect the concept, and finally Rosie can
satisfy entire goal three-in-a-row(x1, x2) with [1, 4, 7].

3.2 Task Element Application
The agent uses the learned task elements to attempt to per-
form the task. The details of task element application depend
on the type of task element. An action is proposed when its
conditions match the current state. For goals, the agent de-
tects that it solved the puzzle or won the game when the con-
ditions match, and for failure conditions, the agent detects
that it has found a bad solution path or lost the game. Task-
specific terms are evaluated as needed to determine if other
tasks elements are satisfied. For example, if Rosie is attempt-
ing to determine if the goal of Tic-Tac-Toe is satisfied, it will
eventually evaluate captured in the current game state.

3.3 Creating Multiple Interpretations of Task
Elements

During the task element learning process, many sources of
ambiguity can arise that make it difficult to find the correct in-
terpretation and can cause interference when trying to transfer
knowledge from previous tasks. These sources include:
• Multiple Definitions: Due to the many-to-many map-

pings between words and meanings across tasks, the
agent can have multiple meanings for the same word.
• Environmental Distractors: The state can contain ob-

jects and features that although not relevant to the de-
scribed concept, can create ambiguity when the agent
attempts to ground the representations.

To ensure that it correctly interprets an ambiguous situa-
tion, Rosie generates all possible recognition structures, f(x)
(Equation 1), for each known meaning of the defining terms,
fi(x). Because Rosie generates recognition structures, f(x),
for all possible combinations of the known meaning for the
given terms, the number of structures grows exponentially
with respect to n, the number of fi(x) terms, and the num-
ber of definitions for each term. However descriptions are
limited to a single sentence and the number of terms (n) with
multiple meanings is rarely more than 3, so in practice, it is
computationally feasible to generate all interpretations.

To determine the correct interpretation from the set of gen-
erated structures, Rosie leverages the situated external state
example. If it finds that only one of the recognition struc-
tures can be satisfied or detected, it learns this interpretation.
If instead the agent finds that multiple structures from dif-
ferent interpretations can be satisfied in the current state, the
agent analyzes each of the potential matching interpretations
to try to find ways to differentiate them. Based of this anal-
ysis Rosie, uses one of three different strategies to try de-
termine which interpretation is correct. In this analysis, the
agent looks for task elements that return different numbers of
results (the number of occurrences from each interpretation).

First, the agent determines if it can find a difference for the
highest task element in the hierarchy f(x), the one describ-

ing a goal, action, or failure condition, such as when the dif-
ferent interpretations of an action result in different numbers
of actions being detected. Rosie counts the relative occur-
rences and determines the correct interpretation by asking the
teacher: “How many actions are present X or Y?”

If the agent cannot detect a a difference between the num-
bers of results for different interpretations of that task element
f(x), it examines numerical differences in the occurrence of
the supporting task elements fi(x), such as clear(x). If Rosie
finds a task element fi(x) that produces different numbers of
results in different interpretations, Rosie uses this difference
to generate a similar disambiguating question: “How many
clear locations are present X or Y?”

Finally, if the agent fails to detect any differences in the
number of occurrences of task elements in different inter-
pretation, it abandons attempting to resolve the differences
through questioning, and asks the teacher to provide a dif-
ferent state demonstration: “Can you setup another state that
contains the [goal,action,failure]?” The hope is that in this
new state, the agent can satisfy and detect only one interpre-
tation, or if there are multiple, find a numerical difference
in the occurrence of one of the task elements, using the first
two strategies. The agent will continue to ask for new state
demonstrations until it can select a single interpretation.

4 Task Transfer Without Interference
To evaluate transfer when there is no ambiguity, we created
instructions for 40 common games and puzzles so that no
task elements were overloaded with multiple meanings, and
so that there was maximum similarity in game descriptions
and simulated environments. For example, the states for Tic-
Tac-Toe and Three Men’s Morris always contain red blocks
for the agent and blue blocks for the opponent, and captured
is defined as “below a red block” for both tasks. To study
transfer, we taught the agent sequences of the 40 games in
1000 randomly generated permutations. In each permutation,
each game is taught, one after another, using scripts that sim-
ulate a teacher. The scripts ensure that if a concept had been
previously learned the “teacher” will not try to teach it again.

These 40 games, which include variants indicated by (to-
tal number) or (names), are Tower of Hanoi (3), N-Puzzle
(4), Sudoku, Killer Sudoku, Jigsawdoku, KenKen (2), Logi-
5, Map 4-Coloring, Chess puzzles (N-Queens, N-Kings, N-
Rooks), Peg solitaires (2), Card solitaires (Golf, Pyramid,
Tri Peaks), Fox River crossing puzzle, Jealous Husband (2),
Traveling Salesman in a grid, 3x3 stone games (Tic-Tac-Toe,
Three Men’s Morris, Picaria, Nine Holes), Frogs and Toads,
Stacking Frogs (3), Blocks World (2), Mazes (simple, block
pushing), Mahjong puzzle, and a sorting puzzle. Teaching
scripts and state representations for these games, as well as a
video of Rosie learning, are available online.1

All 40 games are learned correctly in each permutation.
Figure 6 shows the number of words, on average, used to
teach each game in each position in the teaching order. At po-
sition 0, no other games have been taught, and at position 39
all other games have been taught. As more games are taught,
the number of words required to teach a game decreases if

1www.umich.edu/∼jrkirk/ijcai2019.html

www.umich.edu/~jrkirk/ijcai2019.html
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Figure 6: The number of words required to teach each of 40 games
by teaching order. Results are averages of 1000 permutations.

there is across-task transfer of the task elements shared be-
tween games. Games that have substantial conceptual over-
lap, such as Five-Puzzle and Eight-Puzzle, which share ac-
tions (slide) and learned predicates (clear, matched, adjacent),
can be defined using very few words (only 31) at the end. The
gradual decrease in the number of words is a reflection of the
gradual increase in the probability that a related game is pre-
viously taught.

The red line highlighted is for Killer Sudoku, a Sudoku
variant that has constraints about the sum of values in spec-
ified section (as in KenKen). The number of words required
to initially teach (position 0) this puzzle is high due to the
number of constraints in the puzzle. However, because of the
overlap in concepts with the other tasks (Sudoku, KenKen),
it benefits the most from knowledge transfer, with a decrease
of more than a factor of three. The Frogs and Toads puzzle
(blue) and Blocks World puzzle (green) show the least trans-
fer because they share only clear with other tasks.

This experiment was then repeated with small clusters of
games to further analyze knowledge transfer. These task clus-
ters contain tasks that have a large conceptual overlap: Tic-
Tac-Toe, Three Men’s Morris, Nine Holes; Killer Sudoku,
KenKen, Sudoku; and N Queens, N Rooks, and N Kings.
The final cluster contains tasks with little overlap, with a sin-
gle task selected from each of the other clusters. Figure 7
shows the results, again showing the number of words re-
quired to teach the task based on the position in the teach-
ing order. Plots A-C show the dramatic effects of transfer in
clusters of similar tasks, while Plot D shows almost no trans-
fer between the unrelated tasks. This result is expected, but
other task learning approaches that learn directly from sub-
symbolic representation have failed to replicate this type of
task transfer that leads to dramatic learning speed up.

5 Task Transfer with Interference
For the cases where there is interference, a scripted-based
evaluation as in Section 3 is not possible because it is ex-

0.0 0.2 0.4 0.6 0.8 1.0

Learning order position

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.N
um

be
r

of
W

or
ds

0 1 2
0

50

100

150

200

250
A

0 1 2
0

50

100

150

200

250
B

0 1 2
0

50

100

150

200

250
C

0 1 2
0

50

100

150

200

250
D

Three Mens Morris
Nine Holes
Tic-Tac-Toe

Killer Sudoku
KenKen
Sudoku

N Queens
N Rooks
N Kings

Figure 7: Number of words required to teach clusters of tasks A-D.

tremely difficult to predict a priori what questions the agent
will ask in ambiguous situations. Instead, we use a series of
case studies to illustrate the agent’s ability to handle interfer-
ence using the process described in Section 2.3: determining
if multiple interpretations can be satisfied, detecting the rela-
tive occurrences of each task element in the competing inter-
pretations, and asking disambiguating questions to determine
the correct interpretation.

5.1 Case 1: Ambiguous Word Meaning
One source of ambiguity is that the agent may know multi-
ple definitions for the same word. Consider when the agent
has previously learned two definitions for clear: that a loca-
tion is not below anything (from the blocks world) and that
a location is unmarked (from KenKen). Figure 8 shows the
internal symbolic representation (right side) Rosie generates
of the external state (left side) for a version of the Frogs and
Toads side-swapping puzzle. The teacher’s description of the
first action of the puzzle, moving a toad, includes the term
clear, as shown in the dialog below. Instead of asking for
a definition of clear, Rosie attempts to use its existing defi-
nitions, which leads to two recognition structures, shown in
Figure 9, one for each interpretation of clear.

Figure 8: The internal state generated by the agent for the Frogs
puzzle, with objects identified by red indexes. On the right are unary
features and binary relations that the agent extracts from the state.



Figure 9: Recognition structures created for two interpretations of an
action. Red values indicate the indexes of objects in the environment
that results from grounding the structure to the external state.

If a toad is to the right of a clear location then you can
move the toad onto the location.
How many actions are present two or one?
There is one.

Rosie analyzes these structures to find a difference in how
they map to the current state. In this case, they generate dif-
ferent numbers of actions due to the agent believing that for
the structure on the left, where clear is an unmarked location,
location 4 is clear. Rosie uses this difference to disambiguate
between the two interpretation by asking a simple question.
When the teacher responds “There is one,” Rosie can deter-
mine that the representation on the right, that only detects the
action move (object) 8 onto (object) 3, is the correct structure,
and then uses it for learning this task element.

5.2 Case 2: Ambiguous External State
Another source of ambiguity is that the state can contain ob-
jects, features, and relations that are distractors, irrelevant to
the concept the agent is trying to learn. For example, consider
the state given in Figure 10 for teaching the second action for
the Frogs and Toads puzzle, jumping over a frog. When given
the following action description, Rosie once again generates
two recognition structures for each meaning of clear.

If a toad is to the right of a frog that is right of a clear
location then you can move the toad onto the location.
How many clear locations are there one or five?
There is one.

When Rosie analyzes how these interpretations ground to the
current example, they refer to the same action: move object
9 onto object 3. This is due to the constraint provided by
the position of the frog: even in the interpretation where all
locations are clear, the toad (object 9) can only jump over the
frog (object 7). Although both interpretations ground to the
same action, Rosie needs to determine which interpretation
of clear is correct so that the correct condition is learned.

Rosie finds a distinguishing result further down the recog-
nition structures, where the predicate clear produces a dif-
ferent number of objects for each interpretation. As shown
above, Rosie uses that difference to generate a disambuguat-
ing question. When the teacher responds indicating there is
only one clear location, Rosie selects the correct interpreta-
tion structure to learn.

Figure 10: A representation of the internal state generated by the
agent for describing jumping in the Frogs and Toads puzzle.

5.3 Case 3: Symmetric State Ambiguity
In some scenarios, the occurrences of task elements in dif-
ferent interpretations is the same. This often occurs in states
with symmetry. For example, consider when Rosie is learn-
ing the goal of Tic-Tac-Toe, as described in Section 2.1, but
where the state contains winning conditions for both Rosie
and the opponent. If Rosie knows multiple definitions for
captured from previous games where the ownership of red
and blue pieces have swapped, from its perspective, there is
no way to disambiguate between the different interpretations.

When the other strategies fail, Rosie’s final disambiguation
strategy is to ask the teacher to demonstrate another example
of the concept in the environment: “Can you setup another
state that contains the goal?” If the teacher creates a state that
contains only the goal as in Figure 2, or a state with more
red blocks placed than blue ones, the agent can determine the
correct interpretation (automatically in the first case and by
asking about the number of captured locations in the second).

6 Conclusion
The ability to create, analyze, and debug multiple hierarchical
symbolic recognition structures extends Rosie so that it can
learn to correctly recognize and apply the element of a tasks
when the conditions of learning are ambiguous and many in-
terpretation are possible. Furthermore it enables Rosie to
efficiently communicate to resolve the ambiguity and select
interpretations. Using this strategy, Rosie can learn a large
number of tasks (40), and transfer knowledge between tasks
even when there is knowledge interference. We plan to ex-
plore additional disambiguation strategies, such as asking
questions directly about the learned representations, such as:
“Does captured mean the it is below a red object?” Future
plans include expanding the agent to learn heuristics and re-
ward functions, and expanding to other types of tasks.

A current limitation is that there is no perceptual attention
mechanisms, so that it is computational expensive to detect
task elements for states with large number of objects and re-
lations (such as in Chess). A second limitation is that the lan-
guage Roise understands, although sufficient for these games,
is more rigid than natural language.
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