
The Soar User’s Manual

Version 9.6.0

John E. Laird, Clare Bates Congdon,
Mazin Assanie, Nate Derbinsky and Joseph Xu

Additional contributions by:

Mitchell Bloch, Karen J. Coulter, Steven Jones,
Aaron Mininger, Preeti Ramaraj and Bryan Stearns

Division of Computer Science and Engineering
University of Michigan

Draft of: November 2, 2017

Errors may be reported to John E. Laird (laird@umich.edu)

Copyright c© 1998 - 2017, The Regents of the University of Michigan

Development of earlier versions of this manual were supported under contract N00014-92-
K-2015 from the Advanced Systems Technology Office of the Advanced Research Projects
Agency and the Naval Research Laboratory, and contract N66001-95-C-6013 from the Ad-
vanced Systems Technology Office of the Advanced Research Projects Agency and the Naval
Command and Ocean Surveillance Center, RDT&E division.

2

Contents

Contents vii

1 Introduction 1
1.1 Using this Manual . 2
1.2 Contacting the Soar Group . 3
1.3 Different Platforms and Operating Systems 4

2 The Soar Architecture 5
2.1 An Overview of Soar . 5

2.1.1 Types of Procedural Knowledge in Soar 6
2.1.2 Problem-Solving Functions in Soar 7
2.1.3 An Example Task: The Blocks-World 7
2.1.4 Representation of States, Operators, and Goals 8
2.1.5 Proposing candidate operators . 9
2.1.6 Comparing candidate operators: Preferences 9
2.1.7 Selecting a single operator: Decision 11
2.1.8 Applying the operator . 11
2.1.9 Making inferences about the state . 12
2.1.10 Problem Spaces . 12

2.2 Working memory: The Current Situation . 14
2.3 Production Memory:

Long-term Procedural Knowledge . 16
2.3.1 The structure of a production . 17
2.3.2 Architectural roles of productions . 18
2.3.3 Production Actions and Persistence 18

2.4 Preference Memory: Selection Knowledge . 19
2.4.1 Preference Semantics . 19
2.4.2 How preferences are evaluated to decide an operator 21

2.5 Soar’s Execution Cycle: Without Substates 24
2.6 Input and Output . 25
2.7 Impasses and Substates . 27

2.7.1 Impasse Types . 28
2.7.2 Creating New States . 28
2.7.3 Results . 29
2.7.4 Justifications: Support for results . 31
2.7.5 Chunking: Learning Procedural Knowledge 32

i

ii CONTENTS

2.7.6 The calculation of o-support . 32
2.7.7 Removal of Substates: Impasse Resolution 34
2.7.8 Soar’s Cycle: With Substates . 36
2.7.9 Removal of Substates: The Goal Dependency Set 37

3 The Syntax of Soar Programs 43
3.1 Working Memory . 43

3.1.1 Symbols . 44
3.1.2 Objects . 44
3.1.3 Timetags . 45
3.1.4 Acceptable preferences in working memory 46
3.1.5 Working Memory as a Graph . 46
3.1.6 Working Memory Activation . 48

3.2 Preference Memory . 48
3.3 Production Memory . 48

3.3.1 Production Names . 50
3.3.2 Documentation string (optional) . 50
3.3.3 Production type (optional) . 50
3.3.4 Comments (optional) . 51
3.3.5 The condition side of productions (or LHS) 52
3.3.6 The action side of productions (or RHS) 67
3.3.7 Grammars for production syntax . 82

3.4 Impasses in Working Memory and in Productions 84
3.4.1 Impasses in working memory . 84
3.4.2 Testing for impasses in productions 86

3.5 Soar I/O: Input and Output in Soar . 86
3.5.1 Overview of Soar I/O . 87
3.5.2 Input and output in working memory 87
3.5.3 Input and output in production memory 90

4 Procedural Knowledge Learning 91
4.1 Chunking . 91
4.2 Explanation-based Chunking . 92
4.3 Overview of the EBC Algorithm . 94

4.3.1 Identity . 95
4.3.2 The Five Main Components of Explanation-Based Chunking 98

4.4 What EBC Does Prior to the Learning Episode 99
4.4.1 Identity Assignment and Propagation 99
4.4.2 Relevant Operator Selection Knowledge Tracking 101

4.5 What EBC Does During the Learning Episode 102
4.5.1 Calculating the Complete Set of Results 102
4.5.2 Backtracing and the Three Types of Analysis Performed 103
4.5.3 Rule Formation . 105

4.6 Subtleties of EBC . 108
4.6.1 Relationship Between Chunks and Justifications 108
4.6.2 Chunk Inhibition . 108

CONTENTS iii

4.6.3 Chunks Based on Chunks . 109
4.6.4 Mixing Chunks and Justifications . 109
4.6.5 Generality and Correctness of Learned Rules 109
4.6.6 Over-specialization and Over-generalization 110
4.6.7 Previous Results and Rule Repair . 110
4.6.8 Missing Operator Selection Knowledge 111
4.6.9 Generalizing Over Operators Selected Probabilistically 111
4.6.10 Collapsed Negative Reasoning . 112
4.6.11 Problem-Solving That Doesn’t Test The Superstate 112
4.6.12 Disjunctive Context Conflation . 113
4.6.13 Generalizing knowledge retrieved from

semantic or episodic memory . 113
4.6.14 Learning from Instruction . 114
4.6.15 Determining Which OSK Preferences are Relevant 115
4.6.16 Generalizing Knowledge From Math

and Other Right-Hand Side Functions 116
4.6.17 Situations in which a Chunk is Not Learned 117

4.7 Usage . 118
4.7.1 Overview of the chunk command . 118
4.7.2 Enabling Procedural Learning . 119
4.7.3 Fine-tuning What Your Agent Learns 119
4.7.4 Examining What Was Learned . 120

4.8 Explaining Learned Procedural Knowledge 123
4.9 Visualizing the Explanation . 128

5 Reinforcement Learning 131
5.1 RL Rules . 131
5.2 Reward Representation . 133
5.3 Updating RL Rule Values . 134

5.3.1 Gaps in Rule Coverage . 136
5.3.2 RL and Substates . 137
5.3.3 Eligibility Traces . 138
5.3.4 GQ(λ) . 139

5.4 Automatic Generation of RL Rules . 139
5.4.1 The gp Command . 139
5.4.2 Rule Templates . 140
5.4.3 Chunking . 141

6 Semantic Memory 143
6.1 Working Memory Structure . 143
6.2 Knowledge Representation . 144

6.2.1 Integrating Long-Term Identifiers with Soar 144
6.3 Storing Semantic Knowledge . 145

6.3.1 Store command . 145
6.3.2 Store-new command . 146
6.3.3 User-Initiated Storage . 146

iv CONTENTS

6.3.4 Storage Location . 147
6.4 Retrieving Semantic Knowledge . 147

6.4.1 Non-Cue-Based Retrievals . 148
6.4.2 Cue-Based Retrievals . 148
6.4.3 Retrieval with Depth . 152

6.5 Performance . 153
6.5.1 Math queries . 153
6.5.2 Performance Tweaking . 153

7 Episodic Memory 155
7.1 Working Memory Structure . 155
7.2 Episodic Storage . 156

7.2.1 Episode Contents . 156
7.2.2 Storage Location . 156

7.3 Retrieving Episodes . 157
7.3.1 Cue-Based Retrievals . 158
7.3.2 Absolute Non-Cue-Based Retrieval 159
7.3.3 Relative Non-Cue-Based Retrieval . 160
7.3.4 Retrieval Meta-Data . 160

7.4 Performance . 161
7.4.1 Performance Tweaking . 162

8 Spatial Visual System 165
8.1 The scene graph . 166

8.1.1 svs viewer . 168
8.2 Scene Graph Edit Language . 168

8.2.1 Examples . 169
8.3 Commands . 169

8.3.1 add node . 170
8.3.2 copy node . 170
8.3.3 delete node . 171
8.3.4 set transform . 171
8.3.5 set tag . 172
8.3.6 delete tag . 172
8.3.7 extract and extract once . 172

8.4 Filters . 173
8.4.1 Result lists . 174
8.4.2 Filter List . 174
8.4.3 Examples . 176

8.5 Writing new filters . 177
8.5.1 Filter subclasses . 177
8.5.2 Generic Node Filters . 179

8.6 Command line interface . 181

9 The Soar User Interface 183
9.1 Basic Commands for Running Soar . 184

CONTENTS v

9.1.1 soar . 185
9.1.2 run . 191
9.1.3 exit . 194
9.1.4 help . 194
9.1.5 decide . 194
9.1.6 alias . 198

9.2 Procedural Memory Commands . 200
9.2.1 sp . 200
9.2.2 gp . 203
9.2.3 production . 204

9.3 Short-term Memory Commands . 215
9.3.1 print . 216
9.3.2 wm . 219
9.3.3 preferences . 227
9.3.4 svs . 230

9.4 Learning . 232
9.4.1 chunk . 232
9.4.2 rl . 237

9.5 Long-term Declarative Memory . 242
9.5.1 smem . 242
9.5.2 epmem . 252

9.6 Other Debugging Commands . 258
9.6.1 trace . 259
9.6.2 output . 266
9.6.3 explain . 270
9.6.4 visualize . 276
9.6.5 stats . 279
9.6.6 debug . 282

9.7 File System I/O Commands . 284
9.7.1 File System . 285
9.7.2 load . 286
9.7.3 save . 290
9.7.4 echo . 292

Index 295

Summary of Soar Aliases, Variables, and Functions 301

vi CONTENTS

List of Figures

2.1 Soar is continually trying to select and apply operators. 5
2.2 The initial state and goal of the “blocks-world” task. 8
2.3 The initial state of the blocks world as working memory objects 9
2.4 The WM state in blocks world after the first operator is selected 10
2.5 Six proposed blocks world operators . 10
2.6 The blocks-world problem space . 13
2.7 An abstract view of production memory . 16
2.8 The preference resolution process . 22
2.9 A detailed illustration of Soar’s decision cycle. 26
2.10 A simplified version of the Soar algorithm. 27
2.11 A simplified illustration of a subgoal stack. 30
2.12 Simplified Representation of the context dependencies 39
2.13 The Dependency Set in Soar. 39

3.1 A semantic net illustration of four objects in working memory. 47
3.2 An example production from the example blocks-world task. 49
3.3 An example portion of the input link for the blocks-world task. 88
3.4 An example portion of the output link for the blocks-world task. 89

4.1 A Soar 9.4.0 chunk vs. an explanation-based chunk 92
4.2 A comparison of a working memory trace and an explanation trace 93
4.3 A visualization of an explanation trace . 94
4.4 An explanation trace of two simple rules that matched in a substate 96
4.5 An explanation trace after identity analysis 97
4.6 The five main components of explanation-based chunking 98
4.7 The seven stages of rule formation . 105
4.8 A colored visualization of an explanation trace 128

5.1 Example Soar substate operator trace. 137

6.1 Example long-term identifier with four augmentations. 144

7.1 Example episodic memory cache setting data. 163

8.1 SVS environment setup . 165
8.2 SVS scene graph representation . 167

vii

viii LIST OF FIGURES

Chapter 1

Introduction

Soar has been developed to be an architecture for constructing general intelligent systems.
It has been in use since 1983, and has evolved through many different versions. This manual
documents the most current of these: version 9.6.0.

Our goals for Soar include that it ultimately be an architecture that can:

• be used to build systems that work on the full range of tasks expected of an
intelligent agent, from highly routine to extremely difficult, open-ended problems;

• represent and use appropriate forms of knowledge, such as procedural, declarative,
episodic, and possibly iconic;

• employ the full range of possible problem solving methods;

• interact with the outside world; and

• learn about all aspects of the tasks and its performance on those tasks.

In other words, our intention is for Soar to support all the capabilities required of a general
intelligent agent. Below are the major principles that are the cornerstones of Soar’s design:

1. The number of distinct architectural mechanisms should be minimized. Classically
Soar had only a single representation of permanent knowledge (production rules), a
single representation of temporary knowledge (objects with attributes and values), a
single mechanism for generating goals (automatic subgoaling), and a single learning
mechanism (chunking). It was only as Soar was applied to diverse tasks in complex
environments that we found these mechanisms to be insufficient and added new long-
term memories (semantic and episodic) and learning mechanisms (semantic, episodic,
and reinforcement learning) to extend Soar agents with crucial new functionalities.

2. All decisions are made through the combination of relevant knowledge at run-time.
In Soar, every decision is based on the current interpretation of sensory data and any
relevant knowledge retrieved from permanent memory. Decisions are never precompiled
into uninterruptible sequences.

1

2 CHAPTER 1. INTRODUCTION

1.1 Using this Manual

We expect that novice Soar users will read the manual in the order it is presented. Not
all users will makes use of the mechanisms described in chapters 4-8, but it is important to
know that these capabilities exist.

Chapter 2 and Chapter 3 describe Soar from different perspectives: Chapter 2 de-
scribes the Soar architecture, but avoids issues of syntax, while Chapter 3 describes
the syntax of Soar, including the specific conditions and actions allowed in Soar pro-
ductions.

Chapter 4 describes chunking, Soar’s mechanism to learn new procedural knowledge (pro-
ductions).

Chapter 5 describes reinforcement learning (RL), a mechanism by which Soar’s procedural
knowledge is tuned given task experience.

Chapter 6 and Chapter 7 describe Soar’s long-term declarative memory systems, seman-
tic and episodic.

Chapter 8 describes the Spatial Visual System (SVS), a mechanism by which Soar can
convert complex perceptual input into practical semantic knowledge.

Chapter 9 describes the Soar user interface — how the user interacts with Soar. The
chapter is a catalog of user-interface commands, grouped by functionality. The most
accurate and up-to-date information on the syntax of the Soar User Interface is found
online, at the Soar web site, at https://github.com/SoarGroup/Soar/wiki/CommandIndex .

Advanced users will refer most often to Chapter 9, flipping back to Chapters 2 and 3 to
answer specific questions.

Chapters 2 and 3 make use of a Blocks World example agent. The Soar code for this agent
can be downloaded at https://web.eecs.umich.edu/ soar/blocksworld.soar .

Additional Back Matter

After these chapters is an index; the last pages of this manual contain a summary and index
of the user-interface functions for quick reference.

Not Described in This Manual

Some of the more advanced features of Soar are not described in this manual, such as how
to interface with a simulator, or how to create Soar applications using multiple interact-
ing agents. The Soar project website (see link below) has additional help documents and
resources.

https://github.com/SoarGroup/Soar/wiki/CommandIndex
https://web.eecs.umich.edu/~soar/blocksworld.soar

1.2. CONTACTING THE SOAR GROUP 3

For novice Soar users, try The Soar 9 Tutorial, which guides the reader through several
example tasks and exercises.

1.2 Contacting the Soar Group

Resources on the Internet

The primary website for Soar is:

http://soar.eecs.umich.edu/

Look here for the latest Soar-related downloads, documentation, FAQs, and announcements,
as well as links to information about specific Soar research projects and researchers.

Soar kernel development is hosted on GitHub at

https://github.com/SoarGroup

This site contains the public GitHub repository, a wiki describing the command-line interface,
and an issue tracker where users can report bugs or suggests features.

To contact the Soar group or get help, or to receive notifications of significant developments
in Soar, we recommend that you register with one or both of our email lists:

For questions about using Soar, you can use the soar-help list. For other discussion or to
receive announcements, use the soar-group list.

Also, please do not hesitate to file bugs on our issue tracker:

https://github.com/SoarGroup/Soar/issues

To avoid redundant entries, please search for duplicate issues first.

http://soar.eecs.umich.edu/
https://github.com/SoarGroup
https://sourceforge.net/projects/soar/lists/soar-help
https://sourceforge.net/projects/soar/lists/soar-group
https://github.com/SoarGroup/Soar/issues

4 CHAPTER 1. INTRODUCTION

For Those Without Internet Access

Mailing Address:

The Soar Group
Artificial Intelligence Laboratory
University of Michigan
2260 Hayward Street
Ann Arbor, MI 48109-2121
USA

1.3 Different Platforms and Operating Systems

Soar runs on a wide variety of platforms, including Linux, Unix (although not heavily tested),
Mac OS X, and Windows 10, 7, possibly 8 and Vista, XP, 2000 and NT). We currently test
Soar on both 32-bit and 64-bit versions of Ubuntu Linux, OS X 10, and Windows 10.

This manual documents Soar generally, although all references to files and directories use
Unix format conventions rather than Windows-style folders.

Chapter 2

The Soar Architecture

This chapter describes the Soar architecture. It covers all aspects of Soar except for the
specific syntax of Soar’s memories and descriptions of the Soar user-interface commands.

This chapter gives an abstract description of Soar. It starts by giving an overview of Soar and
then goes into more detail for each of Soar’s main memories (working memory, production
memory, and preference memory) and processes (the decision procedure, learning, and input
and output).

2.1 An Overview of Soar

The design of Soar is based on the hypothesis that all deliberate goal -oriented behavior can
be cast as the selection and application of operators to a state. A state is a representation
of the current problem-solving situation; an operator transforms a state (makes changes to
the representation); and a goal is a desired outcome of the problem-solving activity.

As Soar runs, it is continually trying to apply the current operator and select the next
operator (a state can have only one operator at a time), until the goal has been achieved.
The selection and application of operators is illustrated in Figure 2.1.

Soar has separate memories (and different representations) for descriptions of its current

select apply select apply select apply

Soar execution

. . .

Figure 2.1: Soar is continually trying to select and apply operators.

5

6 CHAPTER 2. THE SOAR ARCHITECTURE

situation and its long-term procedural knowledge. In Soar, the current situation, including
data from sensors, results of intermediate inferences, active goals, and active operators is
held in working memory. Working memory is organized as objects. Objects are described
in terms of their attributes ; the values of the attributes may correspond to sub-objects, so
the description of the state can have a hierarchical organization. (This need not be a strict
hierarchy; for example, there’s nothing to prevent two objects from being “substructure” of
each other.)

Long-term procedural knowledge is held in production memory. Procedural knowledge
specifies how to respond to different situations in working memory, can be thought of as the
program for Soar. The Soar architecture cannot solve any problems without the addition of
long-term procedural knowledge. (Note the distinction between the “Soar architecture” and
the “Soar program”: The former refers to the system described in this manual, common to
all users, and the latter refers to knowledge added to the architecture.)

A Soar program contains the knowledge to be used for solving a specific task (or set of tasks),
including information about how to select and apply operators to transform the states of the
problem, and a means of recognizing that the goal has been achieved.

2.1.1 Types of Procedural Knowledge in Soar

Soar’s procedural knowledge can be categorized into four distinct types of knowledge:

1. Inference Rules
In Soar, we call these state elaborations. This knowledge provides monotonic inferences
that can be made about the state in a given situation. The knowledge created by such
rules are not persistent and exist only as long as the conditions of the rules are met.

2. Operator Proposal Knowledge
Knowledge about when a particular operator is appropriate for a situation. Note
that multiple operators may be appropriate in a given context. So, Soar also needs
knowledge to determine which of the candidates to choose:

3. Operator Selection Knowledge:
Knowledge about the desirability of an operator in a particular situation. Such knowl-
edge can be either in terms of a single operator (e.g. never choose this operator in this
situation) or relational (e.g. prefer this operator over another in this situation).

4. Operator Application Rules
Knowledge of how a specific selected operator modifies the state. This knowledge
creates persistent changes to the state that remain even after the rule no longer matches
or the operator is no longer selected.

Note that state elaborations can indirectly affect operator selection and application by cre-
ating knowledge that the proposal and application rules match on.

2.1. AN OVERVIEW OF SOAR 7

2.1.2 Problem-Solving Functions in Soar

These problem-solving functions are the primitives for generating behavior that is relevant to
the current situation: elaborating the state, proposing candidate operators, comparing the
candidates, and applying the operator by modifying the state. These functions are driven
by the knowledge encoded in a Soar program.

Soar represents that knowledge as production rules. Production rules are similar to “if-
then” statements in conventional programming languages. (For example, a production might
say something like “if there are two blocks on the table, then suggest an operator to move
one block on top of the other block”). The “if” part of the production is called its conditions
and the “then” part of the production is called its actions. When the conditions are met in
the current situation as defined by working memory, the production is matched and it will
fire, which means that its actions are executed, making changes to working memory.

Selecting the current operator, involves making a decision once sufficient knowledge has
been retrieved. This is performed by Soar’s decision procedure, which is a fixed procedure
that interprets preferences that have been created by the knowledge retrieval functions. The
knowledge-retrieval and decision-making functions combine to form Soar’s decision cycle.

When the knowledge to perform the problem-solving functions is not directly available in
productions, Soar is unable to make progress and reaches an impasse. There are three types
of possible impasses in Soar:

1. An operator cannot be selected because no new operators are proposed.

2. An operator cannot be selected because multiple operators are proposed and the com-
parisons are insufficient to determine which one should be selected.

3. An operator has been selected, but there is insufficient knowledge to apply it.

In response to an impasse, the Soar architecture creates a substate in which operators can be
selected and applied to generate or deliberately retrieve the knowledge that was not directly
available; the goal in the substate is to resolve the impasse. For example, in a substate,
a Soar program may do a lookahead search to compare candidate operators if comparison
knowledge is not directly available. Impasses and substates are described in more detail in
Section 2.7.

2.1.3 An Example Task: The Blocks-World

We will use a task called the blocks-world as an example throughout this manual. In the
blocks-world task, the initial state has three blocks named A, B, and C on a table; the
operators move one block at a time to another location (on top of another block or onto the
table); and the goal is to build a tower with A on top, B in the middle, and C on the bottom.
The initial state and the goal are illustrated in Figure 2.2.

The Soar code for this task is available online at
https://web.eecs.umich.edu/~soar/blocksworld.soar.
You do not need to look at the code at this point.

https://web.eecs.umich.edu/~soar/blocksworld.soar

8 CHAPTER 2. THE SOAR ARCHITECTURE

C

Goal

C

Initial State

A B

B

A

Figure 2.2: The initial state and goal of the “blocks-world” task.

The operators in this task move a single block from its current location to a new location;
each operator is represented with the following information:

• the name of the block being moved

• the current location of the block (the “thing” it is on top of)

• the destination of the block (the “thing” it will be on top of)

The goal in this task is to stack the blocks so that C is on the table, with block B on top of
block C, and block A on top of block B.

2.1.4 Representation of States, Operators, and Goals

The initial state in our blocks-world task — before any operators have been proposed or
selected — is illustrated in Figure 2.3.

A state can have only one selected operator at a time but it may also have a number
of potential operators that are in consideration. These proposed operators should not be
confused with the active, selected operator.

Figure 2.4 illustrates working memory after the first operator has been selected. There are
six operators proposed, and only one of these is actually selected.

Goals are either represented explicitly as substructures of the working memory state with
general rules that recognize when the goal is achieved, or are implicitly represented in the
Soar program by goal-specific rules that test the state for specific features and recognize
when the goal is achieved. The point is that sometimes a description of the goal will be
available in the state for focusing the problem solving, whereas other times it may not.
Although representing a goal explicitly has many advantages, some goals are difficult to
explicitly represent on the state.

For example, the goal in our blocks-world task is represented implicitly in the provided Soar
program. This is because a single production rule monitors the state for completion of the
goal and halts Soar when the goal is achieved. (Syntax of Soar programs will be explained
in Chapter 3.) If the goal was an explicit working memory structure, a rule could compare

2.1. AN OVERVIEW OF SOAR 9

B1
B1 is a block
B1 is named A
B1 is clear

B2
B2 is a block
B2 is named B
B2 is clear

B3
B3 is a block
B3 is named C
B3 is clear

T1
T1 is a table
T1 is named table
T1 is clearS1

S1 is a state
S1 has a problem−space blocks
S1 has a thing B1
S1 has a thing B2
S1 has a thing B3
S1 has a thing T1
S1 has an ontop O1
S1 has an ontop O2
S1 has an ontop O3
(S1 has no operator)

O1 has a top−block B1
O1 has a bottom−block T1O1

O2 O2 has a top−block B2
O2 has a bottom−block T1

O3 O3 has a top−block B3
O3 has a bottom−block T1

An Abstract View of Working Memory

Figure 2.3: An abstract illustration of the initial state of the blocks world as working memory
objects. At this stage of problem solving, no operators have been proposed or selected.

the configuration of blocks to that structure instead of having the goal embedded within the
rule’s programming.

2.1.5 Proposing candidate operators

As a first step in selecting an operator, one or more candidate operators are proposed.
Operators are proposed by rules that test features of the current state. When the blocks-
world task is run, the Soar program will propose six distinct (but similar) operators for
the initial state as illustrated in Figure 2.5. These operators correspond to the six different
actions that are possible given the initial state.

2.1.6 Comparing candidate operators: Preferences

The second step Soar takes in selecting an operator is to evaluate or compare the candidate
operators. In Soar, this is done via rules that test the proposed operators and the current
state, and then create preferences (stored in preference memory). Preferences assert the
relative or absolute merits of the candidate operators. For example, a preference may say
that operator A is a “better” choice than operator B at this particular time, or a preference
may say that operator A is the “best” thing to do at this particular time. Preferences are
discussed in detail in section 2.4.2.

10 CHAPTER 2. THE SOAR ARCHITECTURE

B1
B1 is a block
B1 is named A
B1 is clear

B2
B2 is a block
B2 is named B
B2 is clear

B3
B3 is a block
B3 is named C
B3 is clear

T1
T1 is a table
T1 is named table
T1 is clearS1

O1 has a top−block B1
O1 has a bottom−block T1O1

O2 O2 has a top−block B2
O2 has a bottom−block T1

O3 O3 has a top−block B3
O3 has a bottom−block T1

O7 O7 is named move−block
O7 has moving−block B3
O7 has destination B2

+O4

+O5

+O6

+O8

+O9

+O7

S1 is a state
S1 has a problem−space blocks
S1 has a thing B1
S1 has a thing B2
S1 has a thing B3
S1 has a thing T1
S1 has an ontop O1
S1 has an ontop O2
S1 has an ontop O3
S1 has operator O7
S1 has six proposed operators

O4 is named move−block
O4 has moving−block B2
O4 has destination B1
O5 is named move−block
O5 has moving−block B3
O5 has destination B1
O6 is named move−block
O6 has moving−block B1
O6 has destination B2

O8 is named move−block
O8 has moving−block B1
O8 has destination B3
O9 is named move−block
O9 has moving−block B2
O9 has destination B3

(links from operators to blocks
are omitted for simplicity)

An Abstract View of Working Memory

Figure 2.4: An abstract illustration of working memory in the blocks world after the first operator
has been selected.

C

Initial State

A B

CB

A
move A
on top
of B

CB

A
move A
on top
of C

CA

B
move B
 on top
 of A

CA

B
move B
on top
of C

A

C

B

move C
 on top
 of A

A

C

B

move C
 on top
 of B

Figure 2.5: The six operators proposed for the initial state of the blocks world each move one
block to a new location.

2.1. AN OVERVIEW OF SOAR 11

2.1.7 Selecting a single operator: Decision

Soar attempts to select a single operator as a decision, based on the preferences available for
the candidate operators. There are four different situations that may arise:

1. The available preferences unambiguously prefer a single operator.

2. The available preferences suggest multiple operators, and prefer a subset that can be
selected from randomly.

3. The available preferences suggest multiple operators,but neither case 1 or 2 above hold.

4. The available preferences do not suggest any operators.

In the first case, the preferred operator is selected. In the second case, one of the subset is
selected randomly. In the third and fourth cases, Soar has reached an impasse in problem
solving, and a new substate is created. Impasses are discussed in Section 2.7.

In our blocks-world example, the second case holds, and Soar can select one of the operators
randomly.

2.1.8 Applying the operator

An operator applies by making changes to the state; the specific changes that are appro-
priate depend on the operator and the current state.

There are two primary approaches to modifying the state: indirect and direct. Indirect
changes are used in Soar programs that interact with an external environment: The Soar
program sends motor commands to the external environment and monitors the external
environment for changes. The changes are reflected in an updated state description, garnered
from sensors. Soar may also make direct changes to the state; these correspond to Soar
doing problem solving “in its head”. Soar programs that do not interact with an external
environment can make only direct changes to the state.

Internal and external problem solving should not be viewed as mutually exclusive activities in
Soar. Soar programs that interact with an external environment will generally have operators
that make direct and indirect changes to the state: The motor command is represented as
substructure of the state and it is a command to the environment. Also, a Soar program may
maintain an internal model of how it expects an external operator will modify the world; if
so, the operator must update the internal model (which is substructure of the state).

When Soar is doing internal problem solving, it must know how to modify the state descrip-
tions appropriately when an operator is being applied. If it is solving the problem in an
external environment, it must know what possible motor commands it can issue in order to
affect its environment.

The example blocks-world task described here does not interact with an external environ-
ment. Therefore, the Soar program directly makes changes to the state when operators are

12 CHAPTER 2. THE SOAR ARCHITECTURE

applied. There are four changes that may need to be made when a block is moved in our
task:

1. The block that is being moved is no longer where it was (it is no longer “on top” of
the same thing).

2. The block that is being moved is in a new location (it is “on top” of a new thing).

3. The place that the block used to be in is now clear.

4. The place that the block is moving to is no longer clear — unless it is the table, which
is always considered “clear”.1

The blocks-world task could also be implemented using an external simulator. In this case,
the Soar program does not update all the “on top” and “clear” relations; the updated state
description comes from the simulator.

2.1.9 Making inferences about the state

Making monotonic inferences about the state is the other role that Soar long-term procedural
knowledge may fulfill. Such elaboration knowledge can simplify the encoding of operators
because entailments of a set of core features of a state do not have to be explicitly included
in application of the operator. In Soar, these inferences will be automatically retracted when
the situation changes such that the inference no longer holds.

For instance, our example blocks-world task uses an elaboration to keep track of whether
or not a block is “clear”. The elaboration tests for the absence of a block that is “on top”
of a particular block; if there is no such “on top”, the block is “clear”. When an operator
application creates a new “on top”, the corresponding elaboration retracts, and the block is
no longer “clear”.

2.1.10 Problem Spaces

If we were to construct a Soar system that worked on a large number of different types of
problems, we would need to include large numbers of operators in our Soar program. For
a specific problem and a particular stage in problem solving, only a subset of all possible
operators are actually relevant. For example, if our goal is to count the blocks on the table,
operators having to do with moving blocks are probably not important, although they may
still be “legal”. The operators that are relevant to current problem-solving activity define
the space of possible states that might be considered in solving a problem, that is, they
define the problem space.

Soar programs are implicitly organized in terms of problem spaces because the conditions
for proposing operators will restrict an operator to be considered only when it is relevant.
The complete problem space for the blocks world is shown in Figure 2.6. Typically, when

1 In this blocks-world task, the table always has room for another block, so it is represented as always
being “clear”.

2.1. AN OVERVIEW OF SOAR 13

(move−block
 C B)

A B C

A
B C

A
B C

A
B

C A
B
C

A B
C

A B
C

A
B

C
A
B

C

A
B
C A

B
C

A

B
C

A

B
C

= operators

A B C = states

(move−block
B A)

(move−block
B T)

(move−block C T)(move−block
B A)

(move−block
 A T)

(move−
 block
 A C)

(move−block
 A B)

(move−block
 C A)

(move−block
B C)

(move−block
 B T)

(move−block
 C T)

(move−
 block
 A C)

(move−block
 A T)

(move−
 block
 C B) (move−

 block
 C T)

(move−
 block
 A T)

(move−block
 A B)

(move−
 block
 C A)

(move−
 block
 C T)

(move−
 block
 A T)

(move−block
 B T)

(move−
 block
 B T) (move−

 block
 B C)

Figure 2.6: The problem space in the blocks-world includes all operators that move blocks from
one location to another and all possible configurations of the three blocks.

Soar solves a problem in this problem space, it does not explicitly generate all of the states,
examine them, and then create a path. Instead, Soar is in a specific state at a given time
(represented in working memory), attempting to select an operator that will move it to a
new state. It uses whatever knowledge it has about selecting operators given the current
situation, and if its knowledge is sufficient, it will move toward its goal.

The same problem could be recast in Soar as a planning problem, where the goal is to develop
a plan to solve the problem, instead of just solving the problem. In that case, a state in Soar
would consist of a plan, which in turn would have representations of blocks-world states and
operators from the original space. The operators would perform editing operations on the
plan, such as adding new blocks-world operators, simulating those operators, etc. In both
formulations of the problem, Soar is still applying operators to generate new states, it is just
that the states and operators have different content.

The remaining sections in this chapter describe the memories and processes of Soar: work-
ing memory, production memory, preference memory, Soar’s execution cycle (the decision
procedure), learning, and how input and output fit in.

14 CHAPTER 2. THE SOAR ARCHITECTURE

2.2 Working memory: The Current Situation

Soar represents the current problem-solving situation in its working memory. Thus, working
memory holds the current state and operator and is Soar’s “short-term” knowledge, reflecting
the current knowledge of the world and the status in problem solving.

Working memory contains elements called working memory elements, or WMEs for short.
Each WME contains a very specific piece of information; for example, a WME might say
that “B1 is a block”. Several WMEs collectively may provide more information about the
same object, for example, “B1 is a block”, “B1 is named A”, “B1 is on the table”, etc. These
WMEs are related because they are all contributing to the description of something that
is internally known to Soar as “B1”. B1 is called an identifier ; the group of WMEs that
share this identifier are referred to as an object in working memory. Each WME describes a
different attribute of the object, for example, its name or type or location; each attribute
has a value associated with it, for example, the name is A, the type is block, and the
position is on the table. Therefore, each WME is an identifier-attribute-value triple, and all
WMEs with the same identifier are part of the same object.

Objects in working memory are linked to other objects: The value of one WME may be an
identifier of another object. For example, a WME might say that “B1 is ontop of T1”, and
another collection of WMEs might describe the object T1: “T1 is a table”, “T1 is brown”,
and “T1 is ontop of F1”. And still another collection of WMEs might describe the object
F1: “F1 is a floor”, etc. All objects in working memory must be linked to a state, either
directly or indirectly (through other objects). Objects that are not linked to a state will be
automatically removed from working memory by the Soar architecture.

WMEs are also often called augmentations because they “augment” the object, providing
more detail about it. While these two terms are somewhat redundant, WME is a term that
is used more often to refer to the contents of working memory (as a single identifier-attribute-
value triple), while augmentation is a term that is used more often to refer to the description
of an object. Working memory is illustrated at an abstract level in Figure 2.3 on page 9.

The attribute of an augmentation is usually a constant, such as “name” or “type”, because
in a sense, the attribute is just a label used to distinguish one link in working memory from
another.2

The value of an augmentation may be either a constant, such as “red”, or an identifier, such
as 06. When the value is an identifier, it refers to an object in working memory that may
have additional substructure. In semantic net terms, if a value is a constant, then it is a
terminal node with no links; if it is an identifier it is a nonterminal node.

One key concept of Soar is that working memory is a set, which means that there can never
be two elements in working memory at the same time that have the same identifier-attribute-
value triple (this is prevented by the architecture). However, it is possible to have multiple
working memory elements that have the same identifier and attribute, but that each have

2 In order to allow these links to have some substructure, the attribute name may be an identifier, which
means that the attribute may itself have attributes and values, as specified by additional working memory
elements.

2.2. WORKING MEMORY: THE CURRENT SITUATION 15

different values. When this happens, we say the attribute is a multi-valued attribute, which
is often shortened to be multi-attribute.

An object is defined by its augmentations and not by its identifier. An identifier is simply a
label or pointer to the object. On subsequent runs of the same Soar program, there may be
an object with exactly the same augmentations, but a different identifier, and the program
will still reason about the object appropriately. Identifiers are internal markers for Soar;
they can appear in working memory, but they never appear in a production.

There is no predefined relationship between objects in working memory and “real objects”
in the outside world. Objects in working memory may refer to real objects, such as block

A; features of an object, such as the color red or shape cube; a relation between objects,
such as ontop; classes of objects, such as blocks; etc. The actual names of attributes and
values have no meaning to the Soar architecture (aside from a few WMEs created by the
architecture itself). For example, Soar doesn’t care whether the things in the blocks world
are called “blocks” or “cubes” or “chandeliers”. It is up to the Soar programmer to pick
suitable labels and to use them consistently.

The elements in working memory arise from one of four sources:

1. Productions: The actions on the RHS of productions create most working memory
elements.

2. Architecture:

(a) State augmentations: The decision procedure automatically creates some special
state augmentations (type, superstate, impasse, ...) whenever a state is created.
States are created during initialization (the first state) or because of an impasse
(a substate).

(b) Operator augmentations: The decision procedure creates the operator augmenta-
tion of the state based on preferences. This records the selection of the current
operator.

3. Memory Systems

4. SVS

5. The Environment: External I/O systems create working memory elements on the
input-link for sensory data.

The elements in working memory are removed in six different ways:

1. The decision procedure automatically removes all state augmentations it creates when
the impasse that led to their creation is resolved.

2. The decision procedure removes the operator augmentation of the state when that
operator is no longer selected as the current operator.

3. Production actions that use reject preferences remove working memory elements that
were created by other productions.

4. The architecture automatically removes i-supported WMEs when the productions that
created them no longer match.

5. The I/O system removes sensory data from the input-link when it is no longer valid.

6. The architecture automatically removes WMEs that are no longer linked to a state
(because some other WME has been removed).

16 CHAPTER 2. THE SOAR ARCHITECTURE

condition1

(maybe some more conditions)

production−name

C A

C A

C A

C A

C A C AC A

C A

C A

C AC A

C A

C A

C A

C A

C A

C AC A

C A

action1

(Maybe some more actions)

An Abstract View of Production Memory

Figure 2.7: An abstract view of production memory. The productions are not related to one
another.

For the most part, the user is free to use any attributes and values that are appropriate for the
task. However, states have special augmentations that cannot be directly created, removed,
or modified by rules. These include the augmentations created when a state is created, and
the state’s operator augmentation that signifies the current operator (and is created based
on preferences). The specific attributes that the Soar architecture automatically creates are
listed in Section 3.4. Productions may create any other attributes for states.

Preferences are held in a separate preference memory where they cannot be tested by pro-
ductions. There is one notable exception. Since a soar program may need to reason about
candidate operators, acceptable preferences are made available in working memory as well.
The acceptable preferences can then be tested by productions, which allows a Soar program
to reason about candidates operators to determine which one should be selected. Preference
memory and the different types of preferences will be discussed in Section 2.4.

2.3 Production Memory:

Long-term Procedural Knowledge

Soar represents long-term procedural knowledge as productions that are stored in produc-
tion memory, illustrated in Figure 2.7. Each production has a set of conditions and a set of
actions. If the conditions of a production match working memory, the production fires, and
the actions are performed.

2.3. PRODUCTION MEMORY: LONG-TERM PROCEDURAL KNOWLEDGE 17

2.3.1 The structure of a production

In the simplest form of a production, conditions and actions refer directly to the presence
(or absence) of objects in working memory. For example, a production might say:

CONDITIONS: block A is clear

block B is clear

ACTIONS: suggest an operator to move block A ontop of block B

This is not the literal syntax of productions, but a simplification. The actual syntax is
presented in Chapter 3.

The conditions of a production may also specify the absence of patterns in working memory.
For example, the conditions could also specify that “block A is not red” or “there are no red
blocks on the table”. But since these are not needed for our example production, there are
no examples of negated conditions for now.

The order of the conditions of a production do not matter to Soar except that the first
condition must directly test the state. Internally, Soar will reorder the conditions so that the
matching process can be more efficient. This is a mechanical detail that need not concern
most users. However, you may print your productions to the screen or save them in a file; if
they are not in the order that you expected them to be, it is likely that the conditions have
been reordered by Soar.

2.3.1.1 Variables in productions and multiple instantiations

In the example production above, the names of the blocks are “hardcoded”, that is, they are
named specifically. In Soar productions, variables are used so that a production can apply
to a wider range of situations.

When variables are bound to specific symbols in working memory elements by Soars matching
process, Soar creates an instantiation of the production. This instantiation consists of the
matched production along with a specific and consistent set of symbols that matched the
variables. A production instantiation is consistent only if every occurrence of a variable is
bound to the same value. Multiple instantiations of the same production can be created
since the same production may match multiple times, each with different variable bindings.
If blocks A and B are clear, the first production (without variables) will suggest one operator.
However, consider a new proposal production that used variables to test the names of the
block. Such a production will be instantiated twice and therefore suggest two operators: one
operator to move block A on top of block B and a second operator to move block B on top of
block A.

Because the identifiers of objects are determined at runtime, literal identifiers cannot appear
in productions. Since identifiers occur in every working memory element, variables must be
used to test for identifiers, and using the same variables across multiple occurrences is what
links conditions together.

Just as the elements of working memory must be linked to a state in working memory, so

18 CHAPTER 2. THE SOAR ARCHITECTURE

must the objects referred to in a production’s conditions. That is, one condition must test
a state object and all other conditions must test that same state or objects that are linked
to that state.

2.3.2 Architectural roles of productions

Soar productions can fulfill the following four roles, by retrieving different types of procedural
knowledge, all described on page 6:

1. Operator proposal

2. Operator comparison

3. Operator application

4. State elaboration

A single production should not fulfill more than one of these roles (except for proposing an
operator and creating an absolute preference for it). Although productions are not declared
to be of one type or the other, Soar examines the structure of each production and classi-
fies the rules automatically based on whether they propose and compare operators, apply
operators, or elaborate the state.

2.3.3 Production Actions and Persistence

Generally, actions of a production either create preferences for operator selection, or cre-
ate/remove working memory elements. For operator proposal and comparison, a production
creates preferences for operator selection. These preferences should persist only as long as
the production instantiation that created them continues to match. When the production
instantiation no longer matches, the situation has changed, making the preference no longer
relevant. Soar automatically removes the preferences in such cases. These preferences are
said to have i-support (for “instantiation support”). Similarly, state elaborations are simple
inferences that are valid only so long as the production matches. Working memory elements
created as state elaborations also have i-support and remain in working memory only as
long as the production instantiation that created them continues to match working memory.
For example, the set of relevant operators changes as the state changes, thus the proposal
of operators is done with i-supported preferences. This way, the operator proposals will be
retracted when they no longer apply to the current situation.

However, the actions of productions that apply an operator, either by adding or removing
elements from working memory, persist regardless of whether the operator is still selected or
the operator application production instantiation still matches. For example, in placing a
block on another block, a condition is that the second block be clear. However, the action of
placing the first block removes the fact that the second block is clear, so the condition will
no longer be satisfied.

Thus, operator application productions do not retract their actions, even if they no longer
match working memory. This is called o-support (for “operator support”). Working memory

2.4. PREFERENCE MEMORY: SELECTION KNOWLEDGE 19

elements that participate in the application of operators are maintained throughout the
existence of the state in which the operator is applied, unless explicitly removed (or if they
become unlinked). Working memory elements are removed by a reject action of a operator-
application rule.

Whether a working memory element receives o-support or i-support is determined by the
structure of the production instantiation that creates the working memory element. O-
support is given only to working memory elements created by operator-application produc-
tions in the state where the operator was selected.

An operator-application production tests the current operator of a state and modifies the
state. Thus, a working memory element receives o-support if it is for an augmentation of
the current state or substructure of the state, and the conditions of the instantiation that
created it test augmentations of the current operator.

During productions matching, all productions that have their conditions met fire, creating
preferences which may add or remove working memory elements. Also, working memory
elements and preferences that lose i-support are removed from working memory. Thus,
several new working memory elements and preferences may be created, and several existing
working memory elements and preferences may be removed at the same time. (Of course,
all this doesnt happen literally at the same time, but the order of firings and retractions is
unimportant, and happens in parallel from a functional perspective.)

2.4 Preference Memory: Selection Knowledge

The selection of the current operator is determined by the preferences in preference mem-
ory. Preferences are suggestions or imperatives about the current operator, or information
about how suggested operators compare to other operators. Preferences refer to operators
by using the identifier of a working memory element that stands for the operator. After
preferences have been created for a state, the decision procedure evaluates them to select
the current operator for that state.

For an operator to be selected, there will be at least one preference for it, specifically, a
preference to say that the value is a candidate for the operator attribute of a state (this is
done with either an “acceptable” or “require” preference). There may also be others, for
example to say that the value is “best”.

Preferences remain in preference memory until removed for one of the reasons previously
discussed in Section 2.3.3.

2.4.1 Preference Semantics

This section describes the semantics of each type of preference. More details on the preference
resolution process are provided in section 2.4.2.

Only a single value can be selected as the current operator, that is, all values are mutually

20 CHAPTER 2. THE SOAR ARCHITECTURE

exclusive. In addition, there is no implicit transitivity in the semantics of preferences. If A
is indifferent to B, and B is indifferent to C, A and C will not be indifferent to one another
unless there is a preference that A is indifferent to C (or C and A are both indifferent to all
competing values).

Acceptable (+) An acceptable preference states that a value is a candidate for selection.
All values, except those with require preferences, must have an acceptable preference
in order to be selected. If there is only one value with an acceptable preference (and
none with a require preference), that value will be selected as long as it does not also
have a reject or a prohibit preference.

Reject (−) A reject preference states that the value is not a candidate for selection.

Better (> value), Worse (< value) A better or worse preference states, for the two
values involved, that one value should not be selected if the other value is a candidate.
Better and worse allow for the creation of a partial ordering between candidate values.
Better and worse are simple inverses of each other, so that A better than B is equivalent
to B worse than A.

Best (>) A best preference states that the value may be better than any competing value
(unless there are other competing values that are also “best”). If a value is best (and
not rejected, prohibited, or worse than another), it will be selected over any other
value that is not also best (or required). If two such values are best, then any re-
maining preferences for those candidates (worst, indifferent) will be examined to
determine the selection. Note that if a value (that is not rejected or prohibited) is
better than a best value, the better value will be selected. (This result is counter-
intuitive, but allows explicit knowledge about the relative worth of two values to dom-
inate knowledge of only a single value. A require preference should be used when a
value must be selected for the goal to be achieved.)

Worst (<) A worst preference states that the value should be selected only if there are no
alternatives. It allows for a simple type of default specification. The semantics of the
worst preference are similar to those for the best preference.

Unary Indifferent (=) A unary indifferent preference states that there is positive
knowledge that a single value is as good or as bad a choice as other expected al-
ternatives.

When two or more competing values both have indifferent preferences, by default, Soar
chooses randomly from among the alternatives. (The decide indifferent-selection

function can be used to change this behavior as described on page 196 in Chapter 9.)

Binary Indifferent (= value) A binary indifferent preference states that two values
are mutually indifferent and it does not matter which of these values are selected. It
behaves like a unary indifferent preference, except that the operator value given
this preference is only made indifferent to the operator value given as the argument.

Numeric-Indifferent (= number) A numeric-indifferent preference is used to bias
the random selection from mutually indifferent values. This preference includes a unary

indifferent preference, and behaves in that manner when competing with another

2.4. PREFERENCE MEMORY: SELECTION KNOWLEDGE 21

value having a unary indifferent preference. But when a set of competing operator val-
ues have numeric-indifferent preferences, the decision mechanism will choose an op-
erator based on their numeric-indifferent values and the exploration policy. The avail-
able exploration policies and how they calculate selection probability are detailed in the
documentation for the indifferent-selection command on page 196. When a single
operator is given multiple numeric-indifferent preferences, they are either averaged or
summed into a single value based on the setting of the numeric-indifferent-mode

command (see page 196).

Numeric-indifferent preferences that are created by RL rules can be adjusted by the
reinforcement learning mechanism. In this way, it’s possible for an agent to begin a
task with only arbitrarily initialized numeric indifferent preferences and with experience
learn to make the optimal decisions. See chapter 5 for more information.

Require (!) A require preference states that the value must be selected if the goal is to be
achieved. A required value is preferred over all others. Only a single operator value
should be given a require preference at a time.

Prohibit (∼) A prohibit preference states that the value cannot be selected if the goal is
to be achieved. If a value has a prohibit preference, it will not be selected for a value
of an augmentation, independent of the other preferences.

If there is an acceptable preference for a value of an operator, and there are no other
competing values, that operator will be selected. If there are multiple acceptable preferences
for the same state but with different values, the preferences must be evaluated to determine
which candidate is selected.

If the preferences can be evaluated without conflict, the appropriate operator augmentation
of the state will be added to working memory. This can happen when they all suggest the
same operator or when one operator is preferable to the others that have been suggested.
When the preferences conflict, Soar reaches an impasse, as described in Section 2.7.

Preferences can be confusing; for example, there can be two suggested values that are both
“best” (which again will lead to an impasse unless additional preferences resolve this conflict);
or there may be one preference to say that value A is better than value B and a second
preference to say that value B is better than value A.

2.4.2 How preferences are evaluated to decide an operator

During the decision phase, operator preferences are evaluated in a sequence of eight steps,
in an effort to select a single operator. Each step handles a specific type of preference, as
illustrated in Figure 2.8. (The figure should be read starting at the top where all the operator
preferences are collected and passed into the procedure. At each step, the procedure either
exits through a arrow to the right, or passes to the next step through an arrow to the left.)

Input to the procedure is the set of current operator preferences, and the output consists of:

1. A subset of the candidate operators, which is either the empty set, a single, winning
candidate, or a larger set of candidates that may be conflicting, tied, or indifferent.

22 CHAPTER 2. THE SOAR ARCHITECTURE

RequireTest

AcceptableCollect

ProhibitFilter

RejectFilter

BetterWorseFilter

BestFilter

WorstFilter

IndifferentTes

All operator
preferences

else

all acceptable
candidates are
passed on

all nonprohibited
candidates are
passed on

all nonrejected
candidates are
passed on

pass along only
candidates that
are not worse

pass along only
candidates that are
best; if none, pass
on all candidates

all nonworst
candidates are
passed on

one required operator

multiple required operators

require is also prohibited

one candidate remaining

no candidates remaining

all candidates are
worse than another

remining candidates are
ALL mutually indifferen

remaining candidates are
NOT mutually indifferen

one candidate remaining

no candidates remaining

Outcome of
preference
resolution

winner returned

constraintfailure
impasse

winner returned

none selected
(no-change impasse)

conflict impass

winner returned

winner will be
chosen based on
userselect setting

tie impasse

none selected
(no-change impasse)

}

Preference resolution:
 -all operator preferences are input to the resolution procedure
 -each step may add or remove some operator candidates
 -only some steps may exit

Figure 2.8: An illustration of the preference resolution process. There are eight steps; only five of
these provide exits from the resolution process.

2. An impasse-type.

The procedure has several potential exit points. Some occur when the procedure has detected
a particular type of impasse. The others occur when the number of candidates has been
reduced to one (necessarily the winner) or zero (a no-change impasse).

Each step in Figure 2.8 is described below:

RequireTest (!) This test checks for required candidates in preference memory and also
constraint-failure impasses involving require preferences (see Section 2.7 on page 27).

2.4. PREFERENCE MEMORY: SELECTION KNOWLEDGE 23

• If there is exactly one candidate operator with a require preference and that
candidate does not have a prohibit preference, then that candidate is the winner
and preference semantics terminates.

• Otherwise — If there is more than one required candidate, then a constraint-
failure impasse is recognized and preference semantics terminates by returning
the set of required candidates.

• Otherwise — If there is a required candidate that is also prohibited, a constraint-
failure impasse with the required/prohibited value is recognized and preference
semantics terminates.

• Otherwise — There is no required candidate; candidates are passed to Accept-
ableCollect.

AcceptableCollect (+) This operation builds a list of operators for which there is an
acceptable preference in preference memory. This list of candidate operators is passed
to the ProhibitFilter.

ProhibitFilter (∼) This filter removes the candidates that have prohibit preferences in
memory. The rest of the candidates are passed to the RejectFilter.

RejectFilter (−) This filter removes the candidates that have reject preferences in mem-
ory.

Exit Point 1 :

• At this point, if the set of remaining candidates is empty, a no-change impasse is
created with no operators being selected.

• If the set has one member, preference semantics terminates and this set is re-
turned.

• Otherwise, the remaining candidates are passed to the BetterWorseFilter.

BetterWorseFilter (>), (<) This filter removes any candidates that are worse than an-
other candidate.

Exit Point 2 :

• If the set of remaining candidates is empty, a conflict impasse is created returning
the set of all candidates passed into this filter, i.e. all of the conflicted operators.

• If the set of remaining candidates has one member, preference semantics termi-
nates and this set is returned.

• Otherwise, the remaining candidates are passed to the BestFilter.

BestFilter (>) If some remaining candidate has a best preference, this filter removes any
candidates that do not have a best preference. If there are no best preferences for any
of the current candidates, the filter has no effect. The remaining candidates are passed
to the WorstFilter.

24 CHAPTER 2. THE SOAR ARCHITECTURE

Exit Point 3 :

• At this point, if the set of remaining candidates is empty, a no-change impasse is
created with no operators being selected.

• If the set has one member, preference semantics terminates and this set is re-
turned.

• Otherwise, the remaining candidates are passed to the WorstFilter.

WorstFilter (<) This filter removes any candidates that have a worst preference. If all
remaining candidates have worst preferences or there are no worst preferences, this
filter has no effect.

Exit Point 4 :

• At this point, if the set of remaining candidates is empty, a no-change impasse is
created with no operators being selected.

• If the set has one member, preference semantics terminates and this set is re-
turned.

• Otherwise, the remaining candidates are passed to the IndifferentFilter.

IndifferentFilter (=) This operation traverses the remaining candidates and marks each
candidate for which one of the following is true:

• the candidate has a unary indifferent preference

• the candidate has a numeric indifferent preference

This filter then checks every candidate that is not one of the above two types to see if it
has a binary indifferent preference with every other candidate. If one of the candidates
fails this test, then the procedure signals a tie impasse and returns the complete set of
candidates that were passed into the IndifferentFilter. Otherwise, the candidates are
mutually indifferent, in which case an operator is chosen according to the method set
by the decide indifferent-selection command, described on page 196.

2.5 Soar’s Execution Cycle: Without Substates

The execution of a Soar program proceeds through a number of decision cycles. Each
cycle has five phases:

1. Input: New sensory data comes into working memory.

2. Proposal: Productions fire (and retract) to interpret new data (state elaboration),
propose operators for the current situation (operator proposal), and compare pro-
posed operators (operator comparison). All of the actions of these productions are
i-supported. All matched productions fire in parallel (and all retractions occur in par-
allel), and matching and firing continues until there are no more additional complete
matches or retractions of productions (quiescence).

2.6. INPUT AND OUTPUT 25

3. Decision: A new operator is selected, or an impasse is detected and a new state is
created.

4. Application: Productions fire to apply the operator (operator application). The
actions of these productions will be o-supported. Because of changes from operator
application productions, other productions with i-supported actions may also match
or retract. Just as during proposal, productions fire and retract in parallel until qui-
escence.

5. Output: Output commands are sent to the external environment.

The cycles continue until the halt action is issued from the Soar program (as the action of
a production) or until Soar is interrupted by the user.

An important aspect of productions in Soar to keep in mind is that all productions will
always fire whenever their conditions are met, and retract whenever their conditions are no
longer met. The exact details of this process are shown in Figure 2.9. The Proposal and
Application phases described above are both composed of as many elaboration cycles as
are necessary to reach quiescence. In each elaboration cycle, all matching productions fire
and the working memory changes or operator preferences described through their actions are
made. After each elaboration cycle, if the working memory changes just made change the
set of matching productions, another cycle ensues. This repeats until the set of matching
rules remains unchanged, a situation called quiescence.

After quiescence is reached in the Proposal phase, the Decision phase ensues, which is the
architectural selection of a single operator, if possible. Once an operator is selected, the
Apply phase ensues, which is practically the same as the Proposal phase, except that any
productions that apply the chosen operator (they test for the selection of that operator in
their conditions) will now match and fire.

During the processing of these phases, it is possible that the preferences that resulted in
the selection of the current operator could change. Whenever operator preferences change,
the preferences are re-evaluated and if a different operator selection would be made, then
the current operator augmentation of the state is immediately removed. However, a new
operator is not selected until the next decision phase, when all knowledge has had a chance
to be retrieved. In other words, if, during the Apply phase, the production(s) that proposed
the selected operator retract, that Apply phase will immediately end.

2.6 Input and Output

Many Soar users will want their programs to interact with a real or simulated environment.
For example, Soar programs may control a robot, receiving sensory inputs and sending
command outputs. Soar programs may also interact with simulated environments, such as a
flight simulator. Input is viewed as Soar’s perception and output is viewed as Soar’s motor
abilities.

26 CHAPTER 2. THE SOAR ARCHITECTURE

D

DD

Elaboration Phase Decision Phase

Decision 1

Quiescence

Decision 2 Decision 3

Elaboration Cycle Elaboration Phase

Preference
 Phase

Working Memory
Phase

1. all non-operator-preference
 actions are considered

2. the actions are
 evaluated

3. elements are added and
 deleted from working memory

Quiescence

Decision Phase

1. all operator preferences
 are considered

2. the preferences are
 evaluated

3. a new operator is selected
 OR
 a new state is created

no more
productions
are eligible
to fire or
retract

Decision Cycle

Decision Phase

d d d

E E E

p p p p

newly instantiated
productions fire
 AND
productions that
are no longer
instantiated are
retracted

Figure 2.9: A detailed illustration of Soar’s decision cycle.

When Soar interacts with an external environment, it must make use of mechanisms that
allow it to receive input from that environment and to effect changes in that environment;
the mechanisms provided in Soar are called input functions and output functions.

Input functions add and delete elements from working memory in response to changes in
the external environment.

Output functions attempt to effect changes in the external environment.

Input is processed at the beginning of each execution cycle and output occurs at the end of
each execution cycle. See Section 3.5 for more information.

2.7. IMPASSES AND SUBSTATES 27

Soar

while (HALT not true) Cycle;

Cycle

InputPhase;

ProposalPhase;

DecisionPhase;

ApplicationPhase;

OutputPhase;

ProposalPhase

while (some i-supported productions are waiting to fire or retract)

FireNewlyMatchedProductions;

RetractNewlyUnmatchedProductions;

DecisionPhase

for (each state in the stack,

starting with the top-level state)

until (a new decision is reached)

EvaluateOperatorPreferences; /* for the state being considered */

if (one operator preferred after preference evaluation)

SelectNewOperator;

else /* could be no operator available or */

CreateNewSubstate; /* unable to decide between more than one */

ApplicationPhase

while (some productions are waiting to fire or retract)

FireNewlyMatchedProductions;

RetractNewlyUnmatchedProductions;

Figure 2.10: A simplified version of the Soar algorithm.

2.7 Impasses and Substates

When the decision procedure is applied to evaluate preferences and determine the operator
augmentation of the state, it is possible that the preferences are either incomplete or incon-
sistent. The preferences can be incomplete in that no acceptable operators are suggested,
or that there are insufficient preferences to distinguish among acceptable operators. The
preferences can be inconsistent if, for instance, operator A is preferred to operator B, and
operator B is preferred to operator A. Since preferences are generated independently across
different production instantiations, there is no guarantee that they will be consistent.

28 CHAPTER 2. THE SOAR ARCHITECTURE

2.7.1 Impasse Types

There are four types of impasses that can arise from the preference scheme.

Tie impasse — A tie impasse arises if the preferences do not distinguish between two or
more operators that have acceptable preferences. If two operators both have best

or worst preferences, they will tie unless additional preferences distinguish between
them.

Conflict impasse — A conflict impasse arises if at least two values have conflicting better
or worse preferences (such as A is better than B and B is better than A) for an operator,
and neither one is rejected, prohibited, or required.

Constraint-failure impasse — A constraint-failure impasse arises if there is more than
one required value for an operator, or if a value has both a require and a prohibit

preference. These preferences represent constraints on the legal selections that can be
made for a decision and if they conflict, no progress can be made from the current
situation and the impasse cannot be resolved by additional preferences.

No-change impasse — A no-change impasse arises if a new operator is not selected during
the decision procedure. There are two types of no-change impasses: state no-change
and operator no-change:

State no-change impasse — A state no-change impasse occurs when there are no
acceptable (or require) preferences to suggest operators for the current state
(or all the acceptable values have also been rejected). The decision procedure
cannot select a new operator.

Operator no-change impasse — An operator no-change impasse occurs when ei-
ther a new operator is selected for the current state but no additional productions
match during the application phase, or a new operator is not selected during the
next decision phase.

There can be only one type of impasse at a given level of subgoaling at a time. Given the
semantics of the preferences, it is possible to have a tie or conflict impasse and a constraint-
failure impasse at the same time. In these cases, Soar detects only the constraint-failure
impasse.

The impasse is detected during the selection of the operator, but happens because one of the
four problem-solving functions (described in section 2.1.2) was incomplete.

2.7.2 Creating New States

Soar handles these inconsistencies by creating a new state, called a substate in which the
goal of the problem solving is to resolve the impasse. Thus, in the substate, operators will
be selected and applied in an attempt either to discover which of the tied operators should
be selected, or to apply the selected operator piece by piece. The substate is often called a
subgoal because it exists to resolve the impasse, but is sometimes called a substate because
the representation of the subgoal in Soar is as a state.

2.7. IMPASSES AND SUBSTATES 29

The initial state in the subgoal contains a complete description of the cause of the impasse,
such as the operators that could not be decided among (or that there were no operators
proposed) and the state that the impasse arose in. From the perspective of the new state,
the latter is called the superstate. Thus, the superstate is part of the substructure of each
state, represented by the Soar architecture using the superstate attribute. (The initial
state, created in the 0th decision cycle, contains a superstate attribute with the value of
nil — the top-level state has no superstate.)

The knowledge to resolve the impasse may be retrieved by any type of problem solving, from
searching to discover the implications of different decisions, to asking an outside agent for
advice. There is no a priori restriction on the processing, except that it involves applying
operators to states.

In the substate, operators can be selected and applied as Soar attempts to solve the sub-
goal. (The operators proposed for solving the subgoal may be similar to the operators in
the superstate, or they may be entirely different.) While problem solving in the subgoal,
additional impasses may be encountered, leading to new subgoals. Thus, it is possible for
Soar to have a stack of subgoals, represented as states: Each state has a single superstate
(except the initial state) and each state may have at most one substate. Newly created
subgoals are considered to be added to the bottom of the stack; the first state is therefore
called the top-level state.3 See Figure 2.11 for a simplified illustrations of a subgoal stack.

Soar continually attempts to retrieve knowledge relevant to all goals in the subgoal stack,
although problem-solving activity will tend to focus on the most recently created state.
However, problem solving is active at all levels, and productions that match at any level will
fire.

2.7.3 Results

In order to resolve impasses, subgoals must generate results that allow the problem solving
at higher levels to proceed. The results of a subgoal are the working memory elements and
preferences that were created in the substate, and that are also linked directly or indirectly
to a superstate (any superstate in the stack). A preference or working memory element is
said to be created in a state if the production that created it tested that state and this is
the most recent state that the production tested. Thus, if a production tests multiple states,
the preferences and working memory elements in its actions are considered to be created in
the most recent of those states (the lowest-level state) and is not considered to have been
created in the other states. The architecture automatically detects if a preference or working
memory element created in a substate is also linked to a superstate.

These working memory elements and preferences will not be removed when the impasse is
resolved because they are still linked to a superstate, and therefore, they are called the results
of the subgoal. A result has either i-support or o-support; the determination of support is
described below.

3 The original state is the “top” of the stack because as Soar runs, this state (created first), will be at
the top of the computer screen, and substates will appear on the screen below the top-level state.

30 CHAPTER 2. THE SOAR ARCHITECTURE

superstate

attribute

choices

impasse

nil

thing

B1

B2

B3

T1

S1

O2

operator

operator

superstate

S2

operator

superstate

no−change

operator

none

S3

O9

attribute

choices

impasse tie

operator

multiple

O4 O5 O6

O1

item

O7 O8 O9

Top−level
state

Subgoal
level 1

Subgoal
level 2

operator

operator

operator

= acceptable preferences
 for operators

= state and operator
 objects

= other objects

= operator decisions that
 have not yet been made

O2

nil

This subgoal was created
because Soar didn’t know
how to apply operator O2
in state S1

No operator has been
selected yet for S2

This subgoal was
created because Soar
didn’t know which
of the three operators
(O4, O5, or O6)
to select in state S2

Figure 2.11: A simplified illustration of a subgoal stack.

2.7. IMPASSES AND SUBSTATES 31

A working memory element or preference will be a result if its identifier is already linked to
a superstate. A working memory element or preference can also become a result indirectly
if, after it is created and it is still in working memory or preference memory, its identifier
becomes linked to a superstate through the creation of another result. For example, if the
problem solving in a state constructs an operator for a superstate, it may wait until the
operator structure is complete before creating an acceptable preference for the operator in
the superstate. The acceptable preference is a result because it was created in the state
and is linked to the superstate (and, through the superstate, is linked to the top-level state).
The substructures of the operator then become results because the operator’s identifier is
now linked to the superstate.

2.7.4 Justifications: Support for results

Recall from Section 2.3.3 that WMEs with i-support disappear as soon as the production
that created them retract,4 whereas WMEs with o-support (created through applying an
operator) persist in working memory until deliberately removed.

Some results receive i-support, while others receive o-support. The type of support received
by a result is determined by the function it plays in the superstate, and not the function it
played in the state in which it was created. For example, a result might be created through
operator application in the state that created it; however, it might only be a state elaboration
in the superstate. The first function would lead to o-support, but the second would lead to
i-support.

In order for the architecture to determine whether a result receives i-support or o-support,
Soar must first determine the function that the working memory element or preference plays
(that is, whether the result should be considered an operator application or not). To do this,
Soar creates a temporary production, called a justification. The justification summarizes
the processing in the substate that led to the result:

The conditions of a justification are those working memory elements that exist in the
superstate (and above) that were necessary for producing the result. This is determined
by collecting all of the working memory elements tested by the productions that fired
in the subgoal that led to the creation of the result, and then removing those conditions
that test working memory elements created in the subgoal.

The action of the justification is the result of the subgoal.

Thus, when the substate disappears, the generated justification serves as the production that
supports any subgoal results.

Soar determines i-support or o-support for the justification and its actions just as it would
for any other production, as described in Section 2.3.3. If the justification is an operator
application, the result will receive o-support. Otherwise, the result gets i-support from the

4 Technically, an i-supported WME is only retracted when it loses instantiation support, not when
the creating production is retracting. For example, a WME could receive i-support from several different
instantiated productions and the retraction of only one would not lead to the retraction of the WME.

32 CHAPTER 2. THE SOAR ARCHITECTURE

justification. If such a result loses i-support from the justification, it will be retracted if there
is no other support.

Justifications include any negated conditions that were in the original productions that
participated in producing the results, and that test for the absence of superstate working
memory elements. Negated conditions that test for the absence of working memory elements
that are local to the substate are not included, which can lead to overgeneralization in the
justification (see Sections 4.5.2.1 and 4.6.10 for details).

2.7.5 Chunking: Learning Procedural Knowledge

When an operator impasse is resolved, it means that Soar has, through problem solving,
gained access to knowledge that was not readily available before. Therefore, when an impasse
is resolved, Soar has an opportunity to learn, by summarizing and generalizing the processing
in the substate.

One of Soar’s learning mechanisms is called chunking (See chapter 4 for more information);
it attempts to create a new production, called a chunk. The conditions of the chunk are the
elements of the state that (through some chain of production firings) allowed the impasse to
be resolved; the action of the production is the working memory element or preference that
resolved the impasse (the result of the impasse). The conditions and action are variablized
so that this new production may match in a similar situation in the future and prevent an
impasse from arising.

Chunks and justifications are very similar in that they both summarize substate results.
They are, in fact, generated by the architecture using the same result dependency trace
mechanisms. However, there are some important distinctions:

1. Justifications disappear as soon as its conditions no longer match.

2. Chunks contain variables so that they may match working memory in other situations;
justifications are similar to an instantiated chunk.

In other words, a chunk might be thought of as a permanent and potentially more generalized
form of a justification. Since the result that solves the impasse problem is learned in a
chunk, whenever the agent encounters the same situation again as that which resulted in the
original impasse, it can simply fire the chunk to generate the same result previously derived,
preempting the need for a substate and repeated deliberate problem solving.

2.7.6 The calculation of o-support

This section provides a more detailed description of when an action is given o-support by
an instantiation.5 The content here is somewhat more advanced, and the reader unfamiliar

5 In the past, Soar had various experimental support mode settings. Since version 9.6, the support mode
used is what was previously called mode 4.

2.7. IMPASSES AND SUBSTATES 33

with rule syntax (explained in Chapter 3) may wish to skip this section and return at a later
point.

Support is given by the production; that is, all working memory changes generated by the
actions of a single instantiated production will have the same support (an action that is not
given o-support will have i-support). The conditions and actions of a production rule will
here be referred to using the shorthand of LHS and RHS (for Left-Hand Side and Right-Hand
Side), respectively.

A production must meet the following two requirements to have o-supported actions:

1. The RHS has no operator proposals, i.e. nothing of the form

(<s> ^operator <o> +)

2. The LHS has a condition that tests the current operator, i.e. something of the form

(<s> ^operator <o>)

In condition 1, the variable <s> must be bound to a state identifier. In condition 2, the
variable <s> must be bound to the lowest state identifier. That is to say, each (positive)
condition on the LHS takes the form (id ^attr value), some of these id’s match state
identifiers, and the system looks for the deepest matched state identifier. The tested current
operator must be on this state. For example, in this production,

sp {elaborate*state*operator*name

(state <s> ^superstate <s1>)

(<s1> ^operator <o>)

(<o> ^name <name>)

-->

(<s> ^name something)}

the RHS action gets i-support. Of course, the state bound to <s> is destroyed when (<s1>

^operator <o>) retracts, so o-support would make little difference. On the other hand, this
production,

sp {operator*superstate*application

(state <s> ^superstate <s1>)

^operator <o>)

(<o> ^name <name>)

-->

(<s1> ^sub-operator-name <name>)}

gives o-support to its RHS action, which remains after the substate bound to <s> is destroyed.

An extension of condition 1 is that operator augmentations should always receive i-support
(augmentations define the proposed operator). Soar has been written to recognize augmen-
tations directly off the operator
(ie, (<o> ^augmentation value)), and to attempt to give them i-support. However, what

34 CHAPTER 2. THE SOAR ARCHITECTURE

should be done about a production that simultaneously tests an operator, doesn’t propose
an operator, adds an operator augmentation, and adds a non-operator augmentation? For
example:

sp {operator*augmentation*application

(state <s> ^task test-support

^operator <o>)

-->

(<o> ^new augmentation)

(<s> ^new augmentation)}

In such cases, both receive i-support. Soar will print a warning on firing this production,
because this is considered bad coding style.

2.7.7 Removal of Substates: Impasse Resolution

Problem solving in substates is an important part of what Soar does, and an operator impasse
does not necessarily indicate a problem in the Soar program. They are a way to decompose
a complex problem into smaller parts and they provide a context for a program to deliberate
about which operator to select. Operator impasses are necessary, for example, for Soar to
do any learning about problem solving (as will be discussed in Chapter 4). This section
describes how impasses may be resolved during the execution of a Soar program, how they
may be eliminated during execution without being resolved, and some tips on how to modify
a Soar program to prevent a specific impasse from occurring in the first place.

Resolving Impasses

An impasse is resolved when processing in a subgoal creates results that lead to the selection
of a new operator for the state where the impasse arose. When an operator impasse is
resolved, Soar has an opportunity to learn, and the substate (and all its substructure) is
removed from working memory.

Here are possible approaches for resolving specific types of impasses are listed below:

Tie impasse — A tie impasse can be resolved by productions that create preferences that
prefer one option (better, best, require), eliminate alternatives (worse, worst,
reject, prohibit), or make all of the objects indifferent (indifferent).

Conflict impasse — A conflict impasse can be resolved by productions that create prefer-
ences to require one option (require), or eliminate the alternatives (reject, prohibit).

Constraint-failure impasse — A constraint-failure impasse cannot be resolved by addi-
tional preferences, but may be prevented by changing productions so that they create
fewer require or prohibit preferences. A substate can resolve a constraint-failure
impasse through actions that cause all but one of the conflicting preferences to retract.

2.7. IMPASSES AND SUBSTATES 35

State no-change impasse — A state no-change impasse can be resolved by productions
that create acceptable or require preferences for operators.

Operator no-change impasse — An operator no-change impasse can be resolved by pro-
ductions that apply the operator, change the state so the operator proposal no longer
matches, or cause other operators to be proposed and preferred.

Eliminating Impasses

An impasse is resolved when results are created that allow progress to be made in the state
where the impasse arose. In Soar, an impasse can be eliminated (but not resolved) when
a higher level impasse is resolved, eliminated, or regenerated. In these cases, the impasse
becomes irrelevant because higher-level processing can proceed. An impasse can also become
irrelevant if input from the outside world changes working memory which in turn causes
productions to fire that make it possible to select an operator. In these cases, the impasse
is eliminated, but not “resolved”, and Soar does not learn in this situation.

For example, in the blocks-world domain, an agent might deliberate in a substate to deter-
mine whether it should move block A onto block C or block B onto block C in its current
situation. If a child suddenly throws block A out a window, this problem solving becomes
irrelevant, and the impasse is eliminated.

Regenerating Impasses

An impasse is regenerated when the problem solving in the subgoal becomes inconsistent with
the current situation. During problem solving in a subgoal, Soar monitors which aspect of the
surrounding situation (the working memory elements that exist in superstates) the problem
solving in the subgoal has depended upon. If those aspects of the surrounding situation
change, either because of changes in input or because of results, the problem solving in the
subgoal is inconsistent, and the state created in response to the original impasse is removed
and a new state is created. Problem solving will now continue from this new state. The
impasse is not “resolved”, and Soar does not learn in this situation.

The reason for regeneration is to guarantee that the working memory elements and prefer-
ences created in a substate are consistent with higher level states. As stated above, incon-
sistency can arise when a higher level state changes either as a result of changes in what is
sensed in the external environment, or from results produced in the subgoal. The problem
with inconsistency is that once inconsistency arises, the problem being solved in the subgoal
may no longer be the problem that actually needs to be solved. Luckily, not all changes to
a superstate lead to inconsistency.

In order to detect inconsistencies, Soar maintains a Goal Dependency Set (GDS) for every
subgoal/substate. The dependency set consists of all working memory elements that were
tested in the conditions of productions that created o-supported working memory elements
that are directly or indirectly linked to the substate (in other words, any superstate knowl-
edge used to derive persistent substate knowledge). Whenever such an o-supported WME is

36 CHAPTER 2. THE SOAR ARCHITECTURE

created, Soar records which superstate WMEs were tested, directly or indirectly, to create
it. Whenever any of the WMEs in the dependency set of a substate change, the substate is
regenerated. (See Sections 9.3.1.2 and 9.6.1.1 for how to examine GDS information through
the user-interface.)

Note that the creation of i-supported structures in a subgoal does not increase the dependency
set, nor do o-supported results. Thus, only subgoals that involve the creation of internal
o-support working memory elements risk regeneration, and then only when the basis for the
creation of those elements changes.

Substate Removal

Whenever a substate is removed, all working memory elements and preferences that were
created in the substate that are not results are removed from working memory. In Figure
2.11, state S3 will be removed from working memory when the impasse that created it is
resolved, that is, when sufficient preferences have been generated so that one of the operators
for state S2 can be selected. When state S3 is removed, operator O9 will also be removed,
as will the acceptable preferences for O7, O8, and O9, and the impasse, attribute, and
choices augmentations of state S3. These working memory elements are removed because
they are no longer linked to the subgoal stack. The acceptable preferences for operators O4,
O5, and O6 remain in working memory. They were linked to state S3, but since they are also
linked to state S2, they will stay in working memory until S2 is removed (or until they are
retracted or rejected).

2.7.8 Soar’s Cycle: With Substates

When there are multiple substates, Soar’s cycle remains basically the same but has a few
minor changes.

The main change when there are multiple substates is that at each phase of the decision
cycle, Soar goes through the substates, from oldest (highest) to newest (lowest), completing
any necessary processing at that level for that phase before doing any processing in the next
substate. When firing productions for the proposal or application phases, Soar processes
the firing (and retraction) of rules, starting from those matching the oldest substate to the
newest. Whenever a production fires or retracts, changes are made to working memory
and preference memory, possibly changing which productions will match at the lower levels
(productions firing within a given level are fired in parallel – simulated). Productions firings
at higher levels can resolve impasses and thus eliminate lower states before the productions
at the lower level ever fire. Thus, whenever a level in the state stack is reached, all production
activity is guaranteed to be consistent with any processing that has occurred at higher levels.

2.7. IMPASSES AND SUBSTATES 37

2.7.9 Removal of Substates: The Goal Dependency Set

This subsection describes the Goal Dependency Set (GDS) with discussions on the motivation
for the GDS and behavioral consequences of the GDS from a developer/modeler’s point of
view. It goes into greater detail than might be beneficial for someone becoming familiar with
the general operation of Soar for the first time. Readers may skip this section and return
later if desired.

2.7.9.1 Why the GDS was needed

As a symbol system, Soar attempts to approximate a true knowledge level but will neces-
sarily always fall short. We can informally think of the way in which Soar falls short as
its peculiar “psychology.” Those interested in using Soar to model human cognition would
like Soar’s psychology to approximate human psychology. Those using Soar to create agent
systems would like to make Soar’s processing approximate the knowledge level as closely as
possible. Soar 7 had a number of symbol-level quirks that appeared inconsistent with human
psychology and that made building large-scale, knowledge-based systems in Soar more diffi-
cult than necessary. Bob Wray’s thesis6 addressed many of these symbol-level problems in
Soar, among them logical inconsistency in symbol manipulations, non-contemporaneous con-
straints in chunks , race conditions in rule firings and in the decision process, and contention
between original task knowledge and learned knowledge .

The Goal Dependency Set implements a solution to logical inconsistencies between persis-
tent (o-supported) WMEs in a substate and its “context”. The context consists of all the
WMEs in any superstates above the local goal/state.7 In Soar, any action (application) of
an operator receives an o-support preference. This preference makes the resulting WME per-
sistent: it will remain in memory until explicitly removed or until its local state is removed,
regardless of whether it continues to be justified.

Persistent WMEs are pervasive in Soar, because operators are the main unit of problem
solving. Persistence is necessary for taking any non-monotonic step in a problem space.
However, persistent WMEs also are dependent on WMEs in the superstate context. The
problem in Soar prior to GDS, especially when trying to create a large-scale system, is that
the knowledge developer must always think about which dependencies can be “ignored”
and which may affect the persistent WME. For example, imagine an exploration robot that
makes a persistent decision to travel to some distant destination based, in part, on its power
reserves. Now suppose that the agent notices that its power reserves have failed. If this
change is not communicated to the state where the travel decision was made, the agent will
continue to act as if its full power reserves were still available.

Of course, for this specific example, the knowledge designer can encode some knowledge to

6 Robert E. Wray. Ensuring Reasoning Consistency in Hierarchical Architectures. PhD thesis, University
of Michigan, 1998.

7 This subsection will primarily use “state,” not “goal.” While these terms are often used nearly-
interchangeably in the context of Soar, states refer to the set of WMEs comprising knowledge related to
a peculiar level of goal. The Goal Dependency Set is the set of state elements upon which a goal depends.

38 CHAPTER 2. THE SOAR ARCHITECTURE

react to this inconsistency. The fundamental problem is that the knowledge designer has
to consider all possible interactions between all o-supported WMEs and all contexts. Soar
systems often use the architecture’s impasse mechanism to realize a form of decomposition.
These potential interactions mean that the knowledge developer cannot focus on individual
problem spaces in isolation when creating knowledge, which makes knowledge development
more difficult. Further, in all but the simplest systems, the knowledge designer will miss
some potential interactions. The result is that agents were unnecessarily brittle, failing in
difficult-to-understand, difficult-to-duplicate ways.

The GDS also solves the the problem of non-contemporaneous constraints in chunks. A
non-contemporaneous constraint refers to two or more conditions that never co-occur simul-
taneously. An example might be a driving robot that learned a rule that attempted to match
“red light” and “green light” simultaneously. Obviously, for functioning traffic lights, this
rule would never fire. By ensuring that local persistent elements are always consistent with
the higher-level context, non-contemporaneous constraints in chunks are guaranteed not to
happen.

The GDS captures context dependencies during processing, meaning the architecture will
identify and respond to inconsistencies automatically. The knowledge designer then does
not have to consider potential inconsistencies between local, o-supported WMEs and the
context.

2.7.9.2 Behavior-level view of the Goal Dependency Set

The following discussion covers what the GDS does, and how that impacts production knowl-
edge design and implementation.

Operation of the Goal Dependency Set: Consider i-support. The persistence of an
i-supported (“instantiation supported”) WME depends upon the creating production in-
stantiation (and, more specifically, the features the instantiation tests). When one of the
conditions in the production instantiation no longer matches, the instantiation is retracted,
resulting in the loss of that support for the WME. I-support is illustrated in Figure 2.12. A
copy of A in the subgoal, As, is retracted automatically when A changes to A’. The substate
WME persists only as long as it remains justified by A.

In the broadest sense, we can say that some feature is “dependent” upon another
element<a> if<a> was used in the creation of, i.e., if<a> was tested in the production
instantiation that created . Further, a dependent change with respect to feature
is a change to any of its instantiating features. This applies to both i-supported and o-
supported WMEs. In Figure 2.12, the change from A to A’ is a dependent change for
feature 1 because A was used to create 1.

When A changes, the persistent WME 1 may be no longer consistent with its context
(e.g., A’). The specific solution to this problem through GDS is inspired by the dependency
analysis portion of the justification/chunking algorithm (see Chapter 4). Whenever an o-
supported WME is created in the local state, the superstate dependencies of that new feature

2.7. IMPASSES AND SUBSTATES 39

A A’

1 2 3

3

As A’

I-Supported Feature

O-Supported Feature

s

Figure 2.12: Simplified Representation of the context dependencies (above the line), local o-
supported WMEs (below the line), and the generation of a result. Prior to GDS, this situation led
to non-contemporaneous constraints in the chunk that generates 3.

A B C D E

1 2 4

3

5

E¢

t1 t2 t3

A¢

t0 Dependency Set:
t0 = Æ
t1 = (A, D)
t2 = (A, B, C, D)
t3 = (A, B, C, D)

D´

Figure 2.13: The Dependency Set in Soar.

are determined and added to the goal dependency set (GDS) of that state. Conceptually
speaking, whenever a working memory change occurs, the dependency sets for every state
in the context hierarchy are compared to working memory changes. If a removed element
is found in a GDS, the state is removed from memory (along with all existing substructure).
The dependency set includes only dependencies for o-supported features. For example, in
Figure 2.13, at time t0, because only i-supported features have been created in the subgoal,
the dependency set is empty.

40 CHAPTER 2. THE SOAR ARCHITECTURE

Three types of features can be tested in the creation of an o-supported feature. Each requires
a slightly different type of update to the dependency set.

1. Elements in the superstate: WMEs in the superstate are added directly to the
goal’s dependency set. In Figure 2.13, the persistent subgoal item 3 is dependent upon
A and D. These superstate WMEs are added to the subgoal’s dependency set when 3
is added to working memory at time t1. It does not matter that A is i-supported and
D o-supported.

2. Local i-supported features: Local i-supported features are not added to the goal
dependency set. Instead, the superstate WMEs that led to the creation of the i-
supported feature are determined and added to the GDS. In the example, when 4
is created, A, B and C must be added to the dependency set because they are the
superstate features that led to 1, which in turn led to 2 and finally 4. However, because
item A was previously added to the dependency set at t1, it is unnecessary to add it
again.

3. Local o-supported features: The dependencies of a local o-supported feature have
already been added to the state’s GDS. Thus, tests of local o-supported WMEs do not
require additions to the dependency set. In Figure 2.13, the creation of element 5 does
not change the dependency set because it is dependent only upon persistent items 3
and 4, whose features had been previously added to the GDS.

At any time after t1, either the D to D’ or A to A’ transition would cause the removal of
the entire subgoal. The E to E’ transition causes no retraction because E is not in the goal’s
dependency set.

The role of the GDS in agent design: The GDS places some design time constraints
on operator implementation. These constraints are:

• Operator actions that are used to remember a previous state/situation should be as-
serted in the top state.

• All operator elaborations should be i-supported.

• Any operator with local actions should be designed to be re-entrant.

Because any dependencies for o-supported subgoal WMEs will be added to the GDS, the
developer must decide if an o-supported element should be represented in a substate or the
top state. This decision is straightforward if the functional role of the persistent element is
considered. Four important capabilities that require persistence are:

1. Reasoning hypothetically: Some structures may need to reflect hypothetical states.
These are “assumptions” because a hypothetical inference cannot always be grounded
in the current context. In problem solvers with truth maintenance, only assumptions
are persistent.

2. Reasoning non-monotonically: Sometimes the result of an inference changes one
of the structures on which the inference is dependent. As an example, consider the
task of counting. Each newly counted item replaces the old value of the count.

2.7. IMPASSES AND SUBSTATES 41

3. Remembering: Agents oftentimes need to remember an external situation or stimu-
lus, even when that perception is no longer available.

4. Avoiding Expensive Computations: In some situations, an agent may have the
information needed to derive some belief in a new world state but the expense of
performing the necessary computation makes this derivation undesirable. For example,
in dynamic, complex domains, determining when to make an expensive calculation is
often formulated as an explicit agent task.

When remembering or avoiding an expensive computation, the agent/designer is making
a commitment to retain something even though it might not be supported in the current
context. These WMEs should be asserted in the top state. For many Soar systems, especially
those focused on execution in a dynamic environment, most o-supported elements will need
to be stored on the top state.

For any kind of local, non-monotonic reasoning about the context (counting, projection
planning), features should be stored locally. When a dependent context change occurs,
the GDS interrupts the processing by removing the state. While this may seem like a
severe over-reaction, formal and empirical analysis have suggested that this solution is less
computationally expensive than attempting to identify the specific dependent assumption .

42 CHAPTER 2. THE SOAR ARCHITECTURE

Chapter 3

The Syntax of Soar Programs

This chapter describes in detail the syntax of elements in working memory, preference mem-
ory, and production memory, and how impasses and I/O are represented in working memory
and in productions. Working memory elements and preferences are created as Soar runs,
while productions are created by the user or through chunking. The bulk of this chapter
explains the syntax for writing productions.

The first section of this chapter describes the structure of working memory elements in Soar;
the second section describes the structure of preferences; and the third section describes
the structure of productions. The fourth section describes the structure of impasses. An
overview of how input and output appear in working memory is presented in the fifth section.
Further discussion of Soar I/O can be found on the Soar website.

This chapter assumes that you understand the operating principles of Soar, as presented in
Chapter 2.

3.1 Working Memory

Working memory contains working memory elements (WME’s). As described in Section 2.2,
WME’s can be created by the actions of productions, the evaluation of preferences, the Soar
architecture, and via the input/output system.

A WME is a tuple consisting of three symbols: an identifier, an attribute, and a value, where
the entire WME is enclosed in parentheses and the attribute is preceded by an up-arrow (ˆ).
A template for a working memory element is:

(identifier ^attribute value)

The first position always holds an internal identifier symbol, generated by the Soar architec-
ture as it runs. The attribute and value positions can hold either identifiers or constants.
The term identifier is used to refer both to the first position of a WME, as well as to the
symbols that occupy that position. If a WME’s attribute or value is an identifier, there is
at least one WME that has that identifier symbol in its first position.

43

44 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

3.1.1 Symbols

Soar distinguishes between two types of working memory symbols: identifiers and constants.

Identifiers: An identifier is a unique symbol, created at runtime when a new object is
added to working memory. The names of identifiers are created by Soar, and consist of a
single uppercase letter followed by a string of digits, such as G37 or O22.

(The Soar user interface will also allow users to specify identifiers using lowercase letters in a
case-insensitive manner, for example, when using the print command. But internally, they
are actually uppercase letters.)

Constants: There are three types of constants: integers, floating-point, and symbolic
constants:

• Integer constants (numbers). The range of values depends on the machine and imple-
mentation you’re using, but it is at least [-2 billion...+2 billion].

• Floating-point constants (numbers). The range depends on the machine and imple-
mentation you’re using.

• Symbolic constants. These are symbols with arbitrary names. A constant can use
any combination of letters, digits, or $%&*+-/:<=>?_ Other characters (such as blank
spaces) can be included by surrounding the complete constant name with vertical
bars: |This is a constant|. (The vertical bars aren’t part of the name; they’re
just notation.) A vertical bar can be included by prefacing it with a backslash inside
surrounding vertical bars: |Odd-symbol\|name|

Identifiers should not be confused with constants, although they may “look the same”;
identifiers are generated (by the Soar architecture) at runtime and will not necessarily be
the same for repeated runs of the same program. Constants are specified in the Soar program
and will be the same for repeated runs.

Even when a constant “looks like” an identifier, it will not act like an identifier in terms of
matching. A constant is printed surrounded by vertical bars whenever there is a possibility of
confusing it with an identifier: |G37| is a constant while G37 is an identifier. To avoid possible
confusion, you should not use letter-number combinations as constants or for production
names.

3.1.2 Objects

Recall from Section 2.2 that all WME’s that share an identifier are collectively called an object
in working memory. The individual working memory elements that make up an object are
often called augmentations, because they augment the object. A template for an object in
working memory is:

(identifier ^attribute-1 value-1 ^attribute-2 value-2

^attribute-3 value-3... ^attribute-n value-n)

3.1. WORKING MEMORY 45

For example, if you run Soar with the supplementary blocks-world program provided online,
after one elaboration cycle, you can look at the top-level state object by using the print

command:

soar> print s1

(S1 ^io I1 ^ontop O2 ^ontop O3 ^ontop O1 ^problem-space blocks

^superstate nil ^thing B3 ^thing T1 ^thing B1 ^thing B2

^type state)

The attributes of an object are printed in alphabetical order to make it easier to find a
specific attribute.

Working memory is a set, so that at any time, there are never duplicate versions of working
memory elements. However, it is possible for several working memory elements to share
the same identifier and attribute but have different values. Such attributes are called multi-
valued attributes or multi-attributes. For example, state S1, above, has two attributes that
are multi-valued: thing and ontop.

3.1.3 Timetags

When a working memory element is created, Soar assigns it a unique integer timetag. The
timetag is a part of the working memory element, and therefore, WME’s are actually quadru-
ples, rather than triples. However, the timetags are not represented in working memory and
cannot be matched by productions. The timetags are used to distinguish between multiple
occurrences of the same WME. As preferences change and elements are added and deleted
from working memory, it is possible for a WME to be created, removed, and created again.
The second creation of the WME — which bears the same identifier, attribute, and value as
the first WME — is different, and therefore is assigned a different timetag. This is important
because a production will fire only once for a given instantiation, and the instantiation is de-
termined by the timetags that match the production and not by the identifier-attribute-value
triples.

To look at the timetags of WMEs, the print --internal command can be used:

soar> print --internal S1

(3: S1 ^io I1)

(10: S1 ^ontop O2)

(9: S1 ^ontop O3)

(11: S1 ^ontop O1)

(4: S1 ^problem-space blocks)

(2: S1 ^superstate nil)

(6: S1 ^thing B3)

(5: S1 ^thing T1)

(8: S1 ^thing B1)

(7: S1 ^thing B2)

(1: S1 ^type state)

https://web.eecs.umich.edu/~soar/blocksworld.soar

46 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

This shows all the individual augmentations of S1, each is preceded by an integer timetag.

3.1.4 Acceptable preferences in working memory

The acceptable preferences for operators appear in working memory as identifier-attribute-
value-preference quadruples. No other preferences appear in working memory. A template
for an acceptable preference in working memory is:

(identifier ^operator value +)

For example, if you run Soar with the example blocks-world program linked above, after the
first operator has been selected, you can again look at the top-level state using the print

--internal command:

soar> print --internal s1

(3: S1 ^io I1)

(9: S1 ^ontop O3)

(10: S1 ^ontop O2)

(11: S1 ^ontop O1)

(48: S1 ^operator O4 +)

(49: S1 ^operator O5 +)

(50: S1 ^operator O6 +)

(51: S1 ^operator O7 +)

(54: S1 ^operator O7)

(52: S1 ^operator O8 +)

(53: S1 ^operator O9 +)

(4: S1 ^problem-space blocks)

(2: S1 ^superstate nil)

(5: S1 ^thing T1)

(8: S1 ^thing B1)

(6: S1 ^thing B3)

(7: S1 ^thing B2)

(1: S1 ^type state)

The state S1 has six augmentations of acceptable preferences for different operators (O4
through O9). These have plus signs following the value to denote that they are acceptable
preferences. The state has exactly one operator, O7. This state corresponds to the illustration
of working memory in Figure 2.4.

3.1.5 Working Memory as a Graph

Not only is working memory a set, it is also a graph structure where the identifiers are nodes,
attributes are links, and constants are terminal nodes. Working memory is not an arbitrary
graph, but a graph rooted in the states (e.g. S1). Therefore, all WMEs are linked either

3.1. WORKING MEMORY 47

O43
X44

apple red small

grams

mass

200

box largeorange

ball red big

isa color size

contains

color
size

isa
inside

sizecolorisa

unit

property

inside

O53

O87

= attributesname

state = values

= identifiersS1

Figure 3.1: A semantic net illustration of four objects in working memory.

directly or indirectly to a state. The impact of this constraint is that all WMEs created by
actions are linked to WMEs tested in the conditions. The link is one-way, from the identifier
to the value. Less commonly, the attribute of a WME may be an identifier.

Figure 3.1 illustrates four objects in working memory; the object with identifier X44 has
been linked to the object with identifier O43, using the attribute as the link, rather than the
value. The objects in working memory illustrated by this figure are:

(O43 ^isa apple ^color red ^inside O53 ^size small ^X44 200)

(O87 ^isa ball ^color red ^inside O53 ^size big)

(O53 ^isa box ^size large ^color orange ^contains O43 O87)

(X44 ^unit grams ^property mass)

In this example, object O43 and object O87 are both linked to object O53
through (O53 ^contains O43) and (O53 ^contains O87), respectively (the contains at-
tribute is a multi-valued attribute). Likewise, object O53 is linked to object O43 through
(O43 ^inside O53) and linked to object O87 through (O87 ^inside O53). Object X44 is
linked to object O43 through (O43 ^X44 200).

Links are transitive so that O53 is linked to X44 (because O53 is linked to O43 and O43 is
linked to X44). However, since links are not symmetric, X44 is not linked to O53.

48 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

3.1.6 Working Memory Activation

WMEs have a form of base level activation associated with them that is not accessible to
the agent, but that is used by the architecture. Working Memory Activation (WMA) is
subsymbolic metadata associated with a given element and represents its usage. A WME has
been used if it has been matched in a rule that fired. WMA is not recorded or maintained
when disabled, which is the default. See Section 9.3.2 for working memory settings and
options for enabling WMA.

Simply enabling WMA has no impact on any agent’s behavior outside of a small additional
computational cost. However, working memory activation is used for other features. Pri-
marily, it is necessary for allowing the forgetting of memory elements from working memory.
When working memory forgetting is turned on, those working memory elements with acti-
vation below a given threshold are removed from working memory. This allows agents to
maintain a bounded working memory size without explicit memory size management. It also
has a role in determining spreading activation values, discussed in section 6.4.2.1.

3.2 Preference Memory

Preferences are created by production firings and express the relative or absolute merits for
selecting an operator for a state. When preferences express an absolute rating, they are
identifier-attribute-value-preference quadruples; when preferences express relative ratings,
they are identifier-attribute-value-preference-value quintuples

For example,

(S1 ^operator O3 +)

is a preference that asserts that operator O3 is an acceptable operator for state S1, while

(S1 ^operator O3 > O4)

is a preference that asserts that operator O3 is a better choice for the operator of state S1
than operator O4.

The semantics of preferences and how they are processed were described in Section 2.4,
which also described each of the eleven different types of preferences. Multiple production
instantiations may create identical preferences. Unlike working memory, preference memory
is not a set: Duplicate preferences are allowed in preference memory.

3.3 Production Memory

Production memory contains productions, which can be entered in by a user (typed in while
Soar is running or loaded from a file) or generated by chunking while Soar is running.
Productions (both user-defined productions and chunks) may be examined using the print

3.3. PRODUCTION MEMORY 49

sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^thing <thing1> {<> <thing1> <thing2>}

^ontop <ontop>)

(<thing1> ^type block ^clear yes)

(<thing2> ^clear yes)

(<ontop> ^top-block <thing1>

^bottom-block <> <thing2>)

-->

(<s> ^operator <o> +)

(<o> ^name move-block

^moving-block <thing1>

^destination <thing2>)}

Figure 3.2: An example production from the example blocks-world task.

command, described in Section 9.3.1 on page 216.

Each production has three required components: a name, a set of conditions (also called the
left-hand side, or LHS), and a set of actions (also called the right-hand side, or RHS). There
are also two optional components: a documentation string and a type.

Syntactically, each production consists of the symbol sp, followed by: an opening curly brace,
{; the production’s name; the documentation string (optional); the production type (op-
tional); comments (optional); the production’s conditions; the symbol --> (literally: dash-
dash-greaterthan); the production’s actions; and a closing curly brace, }. Each element of a
production is separated by white space. Indentation and linefeeds are used by convention,
but are not necessary.

sp {production-name

"Documentation string"

:type

CONDITIONS

-->

ACTIONS

}

An example production, named “blocks-world*propose*move-block”, is shown in Figure
3.2. This production proposes operators named move-block that move blocks from one
location to another. The details of this production will be described in the following sections.

Conventions for indenting productions

Productions in this manual are formatted using conventions designed to improve their read-
ability. These conventions are not part of the required syntax. First, the name of the pro-
duction immediately follows the first curly bracket after the sp. All conditions are aligned

50 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

with the first letter after the first curly brace, and attributes of an object are all aligned
The arrow is indented to align with the conditions and actions and the closing curly brace
follows the last action.

3.3.1 Production Names

The name of the production is an almost arbitrary constant. (See Section 3.1.1 for a de-
scription of constants.) By convention, the name describes the role of the production, but
functionally, the name is just a label primarily for the use of the programmer.

A production name should never be a single letter followed by numbers, which is the format
of identifiers.

The convention for naming productions is to separate important elements with asterisks; the
important elements that tend to appear in the name are:

1. The name of the task or goal (e.g., blocks-world).
2. The name of the architectural function (e.g., propose).
3. The name of the operator (or other object) at issue. (e.g., move-block)
4. Any other relevant details.

This name convention enables one to have a good idea of the function of a production just
by examining its name. This can help, for example, when you are watching Soar run and
looking at the specific productions that are firing and retracting. Since Soar uses white space
to delimit components of a production, if whitespace inadvertently occurs in the production
name, Soar will complain that an open parenthesis was expected to start the first condition.

3.3.2 Documentation string (optional)

A production may contain an optional documentation string. The syntax for a documenta-
tion string is that it is enclosed in double quotes and appears after the name of the production
and before the first condition (and may carry over to multiple lines). The documentation
string allows the inclusion of internal documentation about the production; it will be printed
out when the production is printed using the print command.

3.3.3 Production type (optional)

A production may also include an optional production type, which may specify that the
production should be considered a default production (:default) or a chunk (:chunk),
or may specify that a production should be given o-support (:o-support) or i-support
(:i-support). Users are discouraged from using these types.

Another flag (:template) can be used to specify that a production should be used to generate
new reinforcement learning rules. See Section 5.4.2 on page 140 for details.

3.3. PRODUCTION MEMORY 51

There is one additional flag (:interrupt) which can be placed at this location in a produc-
tion. However this flag does not specify a production type, but is a signal that the production
should be marked for special debugging capabilities. For more information, see Section 9.2.1
on Page 200.

These types are described in Section 9.2.1, which begins on Page 200.

3.3.4 Comments (optional)

Productions may contain comments, which are not stored in Soar when the production is
loaded, and are therefore not printed out by the print command. A comment is begun with
a pound sign character # and ends at the end of the line. Thus, everything following the #

is not considered part of the production, and comments that run across multiple lines must
each begin with a #.

For example:

sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^thing <thing1> {<> <thing1> <thing2>}

^ontop <ontop>)

(<thing1> ^type block ^clear yes)

(<thing2> ^clear yes)

(<ontop> ^top-block <thing1>

^bottom-block <> <thing2>)

-->

(<s> ^operator <o> +)

(<o> ^name move-block # you can also use in-line comments

^moving-block <thing1>

^destination <thing2>)}

When commenting out conditions or actions, be sure that all parentheses remain balanced
outside the comment.

External comments

Comments may also appear in a file with Soar productions, outside the curly braces of the
sp command. Comments must either start a new line with a # or start with ;#. In both
cases, the comment runs to the end of the line.

imagine that this is part of a "Soar program" that contains

Soar productions as well as some other code.

load file blocks.soar ;# this is also a comment

52 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

3.3.5 The condition side of productions (or LHS)

The condition side of a production, also called the left-hand side (or LHS) of the production,
is a pattern for matching one or more WMEs. When all of the conditions of a production
match elements in working memory, the production is said to be instantiated, and is ready
to perform its action. (Each instance binds the rule to specific WMEs.)

The following subsections describe the condition side of a production, including predicates,
disjunctions, conjunctions, negations, acceptable preferences for operators, and a few ad-
vanced topics.

3.3.5.1 Conditions

The condition side of a production consists of a set of conditions. Each condition tests for
the existence or absence (explained later in Section 3.3.5.6) of working memory elements.
Each condition consists of a open parenthesis, followed by a test for the identifier, and the
tests for augmentations of that identifier, in terms of attributes and values. The condition
is terminated with a close parenthesis. A single condition might test properties of a single
working memory element, or properties of multiple working memory elements that constitute
an object.

(identifier-test ^attribute1-test value1-test

^attribute2-test value2-test

^attribute3-test value3-test

...)

The first condition in a production must match against a state in working memory. Thus,
the first condition must begin with the additional symbol “state”. All other conditions
and actions must be linked directly or indirectly to this condition. This linkage may be
direct to the state, or it may be indirect, through objects specified in the conditions. If
the identifiers of the actions are not linked to the state, a warning is printed when the
production is parsed, and the production is not stored in production memory. In the actions
of the example production shown in Figure 3.2, the operator preference is directly linked to
the state and the remaining actions are linked indirectly via the operator preference.

Although all of the attribute tests in the example condition above are followed by value tests,
it is possible to test for only the existence of an attribute and not test any specific value
by just including the attribute and no value. Another exception to the above template is
operator preferences, which have the following structure where a plus sign follows the value
test.

(state-identifier-test ^operator value1-test +

...)

In the remainder of this section, we describe the different tests that can be used for identifiers,
attributes, and values. The simplest of these is a constant, where the constant specified in
the attribute or value must match the same constant in a working memory element.

3.3. PRODUCTION MEMORY 53

3.3.5.2 Variables in productions

Variables match against symbols in WMEs in the identifier, attribute, or value positions.
Variables can be further constrained by additional tests (described in later sections) or by
multiple occurrences in conditions. If a variable occurs more than once in the condition of
a production, the production will match only if the variables match the same identifier or
constant. However, there is no restriction that prevents different variables from binding to
the same identifier or constant.

Because identifiers are generated by Soar at run time, it impossible to include tests for
specific identifiers in conditions. Therefore, variables are used in conditions whenever an
identifier is to be matched.

Variables also provide a mechanism for passing identifiers and constants which match in
conditions to the action side of a rule.

Syntactically, a variable is a symbol that begins with a left angle-bracket (i.e., <), ends with
a right angle-bracket (i.e., >), and contains at least one non-pipe (|) character in between.

In the example production in Figure 3.2, there are seven variables: <s>, <clear1>, <clear2>,
<ontop>, <block1>, <block2>, and <o>.

The following table gives examples of legal and illegal variable names.

Legal variables Illegal variables
<s> <>

<1> <1

<variable1> variable>

<abc1> <a b>

3.3.5.3 Predicates for values

A test for an identifier, attribute, or value in a condition (whether constant or variable) can
be modified by a preceding predicate. There are six general predicates that can be used:
<>, <=>, <, <=, >=, >.

Predicate Semantics of Predicate
<> Not equal. Matches anything except the value immediately following it.
<=> Same type. Matches any symbol that is the same type (identifier, integer,

floating-point, non-numeric constant) as the value immediately following it.
< Numerically less than the value immediately following it.
<= Numerically less than or equal to the value immediately following it.
>= Numerically greater than or equal to the value immediately following it.
> Numerically greater than the value immediately following it.

The following table shows examples of legal and illegal predicates:

54 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

Legal predicates Illegal predicates
> <valuex> > > <valuey>

< 1 1 >

<=> <y> = 10

There are also four special predicates that can be used to test Long-Term Indentifier (LTI)
links held by working memory identifiers: @, !@, @+, @-

Predicate Semantics of Predicate
@ Same LTI. Matches when the two values are working memory identifiers

linked to the same LTI.
!@ Different LTI. Matches when the values are not both identifiers linked to the

same LTI.
@+ Matches if the value is an identifier linked to some LTI.
@- Matches if the value is not an identifier linked to some LTI.

See Section 6.2 for more information on long-term semantic memory and LTIs.

Example Productions

sp {propose-operator*to-show-example-predicate

(state <s> ^car <c>)

(<c> ^style convertible ^color <> rust)

-->

(<s> ^operator <o> +)

(<o> ^name drive-car ^car <c>) }

In this production, there must be a “color” attribute for the working memory object that
matches <c>, and the value of that attribute must not be “rust”.

sp {example*lti*predicates

(state <s> ^existing-item { @+ <orig-sti> }

^smem.result.retrieved { @ <orig-sti> <result-sti> })

-->

... }

In this production, <orig-sti>, is tested for whether it is linked to some LTI. It is also com-
pared against <result-sti> (a working memory element retrieved from long-term mem-
ory and known to be linked to an LTI) to see if the two elements point to the same
long-term memory. Note the the @+ in this example is actually unnecessary, since the
{ @ <orig-sti> <result-sti> } test will fail to match if either value tested is not linked
to an LTI.

3.3. PRODUCTION MEMORY 55

3.3.5.4 Disjunctions of values

A test for an identifier, attribute, or value may also be for a disjunction of constants. With a
disjunction, there will be a match if any one of the constants is found in a working memory
element (and the other parts of the working memory element matches). Variables and
predicates may not be used within disjunctive tests.

Syntactically, a disjunctive test is specified with double angle brackets (i.e., << and >>).
There must be spaces separating the brackets from the constants.

The following table provides examples of legal and illegal disjunctions:

Legal disjunctions Illegal disjunctions
<< A B C 45 I17 >> << <var> A >>

<< 5 10 >> << < 5 > 10 >>

<< good-morning good-evening >> <<A B C >>

Example Production

For example, the third condition of the following production contains a disjunction that
restricts the color of the table to red or blue:

sp {blocks*example-production-conditions

(state ^operator <o> + ^table <t>)

(<o> ^name move-block)

(<t> ^type table ^color << red blue >>)

-->

... }

Note

Disjunctions of complete conditions are not allowed in Soar. Multiple (similar) productions
fulfill this role.

3.3.5.5 Conjunctions of values

A test for an identifier, attribute, or value in a condition may include a conjunction of tests,
all of which must hold for there to be a match.

Syntactically, conjuncts are contained within curly braces (i.e., { and }). The following table
shows some examples of legal and illegal conjunctive tests:

56 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

Legal conjunctions Illegal conjunctions
{ <= <a> >= } { <x> < <a> + }
{ <x> > <y> } { > > }
{ <> <x> <y> } { <a> }
{ <y> <> <x> }
{ << A B C >> <x> }
{ <=> <x> > <y> << 1 2 3 4 >> <z> }

Because those examples are a bit difficult to interpret, let’s go over the legal examples one
by one to understand what each is doing.

In the first example, the value must be less than or equal to the value bound to variable <a>

and greater than or equal to the value bound to variable .

In the second example, the value is bound to the variable <x>, which must also be greater
than the value bound to variable <y>.

The third and fourth examples are equivalent. They state that the value must not be equal to
the value bound to variable <x> and should be bound to variable <y>. Note the importance
of order when using conjunctions with predicates: in the second example, the predicate
modifies <y>, but in the third example, the predicate modifies <x>.

In the fifth example, the value must be one of A, B, or C, and the second conjunctive test
binds the value to variable <x>.

In the sixth example, there are four conjunctive tests. First, the value must be the same
type as the value bound to variable <x>. Second, the value must be greater than the value
bound to variable <y>. Third, the value must be equal to 1, 2, 3, or 4. Finally, the value
should be bound to variable <z>.

In Figure 3.2, a conjunctive test is used for the thing attribute in the first condition.

Note that it is illegal syntax for a condition to test the equality of two variables, as demon-
strated in the last illegal conjunction above. Any such test can instead be coded in simpler
terms by only using one variable in the places where either would be referenced throughout
the rule.

3.3.5.6 Negated conditions

In addition to the positive tests for elements in working memory, conditions can also test for
the absence of patterns. A negated condition will be matched only if there does not exist a
working memory element consistent with its tests and variable bindings. Thus, it is a test
for the absence of a working memory element.

Syntactically, a negated condition is specified by preceding a condition with a dash (i.e.,
“-”).

For example, the following condition tests the absence of a working memory element of the
object bound to <p1> ^type father.

3.3. PRODUCTION MEMORY 57

-(<p1> ^type father)

A negation can be used within an object with many attribute-value pairs by having it precede
a specific attribute:

(<p1> ^name john -^type father ^spouse <p2>)

In that example, the condition would match if there is a working memory element that
matches (<p1> ^name john) and another that matches (<p1> ^spouse <p2>), but is no
working memory element that matches (<p1> ^type father) (when p1 is bound to the
same identifier).

On the other hand, the condition:

-(<p1> ^name john ^type father ^spouse <p2>)

would match only if there is no object in working memory that matches all three attribute-
value tests.

Example Production

sp {default*evaluate-object

(state <ss> ^operator <so>)

(<so> ^type evaluation

^superproblem-space <p>)

-(<p> ^default-state-copy no)

-->

(<so> ^default-state-copy yes) }

Notes

One use of negated conditions to avoid is testing for the absence of the working memory
element that a production creates with i-support; this would lead to an “infinite loop” in
your Soar program, as Soar would repeatedly fire and retract the production. For example,
the following rule’s actions will cause it to no longer match, which will cause the action to
retract, which will cause the rule to match, and so on:

sp {example*infinite-loop

(state <s> ^car <c>

-^road)

-->

(<s> ^road |route-66|) }

Also note that syntactically it is invalid for the first condition of a rule to be a negated
condition. For example, the following production would fail to load:

58 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

sp {example*invalid-negated-first-condition

(state <s> -^road <r>

^car <c>)

-->

... }

3.3.5.7 Negated conjunctions of conditions

Conditions can be grouped into conjunctive sets by surrounding the set of conditions with {
and }. The production compiler groups the test in these conditions together. This grouping
allows for negated tests of more than one working memory element at a time. In the example
below, the state is tested to ensure that it does not have an object on the table.

sp {blocks*negated-conjunction-example

(state <s> ^name top-state)

-{(<s> ^ontop <on>)

(<on> ^bottom-object <bo>)

(<bo> ^type table)}

-->

(<s> ^nothing-ontop-table true) }

When using negated conjunctions of conditions, the production has nested curly braces. One
set of curly braces delimits the production, while the other set delimits the conditions to be
conjunctively negated.

If only the last condition, (<bo> ^type table) were negated, the production would match
only if the state had an ontop relation, and the ontop relation had a bottom-object, but
the bottom object wasn’t a table. Using the negated conjunction, the production will also
match when the state has no ontop augmentation or when it has an ontop augmentation
that doesn’t have a bottom-object augmentation.

The semantics of negated conjunctions can be thought of in terms of mathematical logic,
where the negation of (A ∧B ∧ C):

¬(A ∧B ∧ C)

can be rewritten as:

(¬A) ∨ (¬B) ∨ (¬C)

That is, “not (A and B and C)” becomes “(not A) or (not B) or (not C)”.

3.3.5.8 Multi-valued attributes

An object in working memory may have multiple augmentations that specify the same at-
tribute with different values; these are called multi-valued attributes, or multi-attributes for
short. To shorten the specification of a condition, tests for multi-valued attributes can be
shortened so that the value tests are together.

3.3. PRODUCTION MEMORY 59

For example, the condition:

(<p1> ^type father ^child sally ^child sue)

could also be written as:

(<p1> ^type father ^child sally sue)

Multi-valued attributes and variables

When variables are used with multi-valued attributes, remember that variable bindings are
not unique unless explicitly forced to be so. For example, to test that an object has two
values for attribute child, the variables in the following condition can match to the same
value.

(<p1> ^type father ^child <c1> <c2>)

To do tests for multi-valued attributes with variables correctly, conjunctive tests must be
used, as in:

(<p1> ^type father ^child <c1> {<> <c1> <c2>})

The conjunctive test {<> <c1> <c2>} ensures that <c2> will bind to a different value than
<c1> binds to.

Negated conditions and multi-valued attributes

A negation can also precede an attribute with multiple values. In this case it tests for the
absence of the conjunction of the values. For example

(<p1> ^name john -^child oprah uma)

is the same as

(<p1> ^name john)

-{(<p1> ^child oprah)

(<p1> ^child uma)}

and the match is possible if either (<p1> ^child oprah) or (<p1> ^child uma) cannot be
found in working memory with the binding for <p1> (but not if both are present).

3.3.5.9 Acceptable preferences for operators

The only preferences that can appear in working memory are acceptable preferences for oper-
ators, and therefore, the only preferences that may appear in the conditions of a production
are acceptable preferences for operators.

Acceptable preferences for operators can be matched in a condition by testing for a “+”

60 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

following the value. This allows a production to test the existence of a candidate operator
and its properties, and possibly create a preference for it, before it is selected.

In the example below, ^operator <o> + matches the acceptable preference for the operator
augmentation of the state. This does not test that operator <o> has been selected as the
current operator.

sp {blocks*example-production-conditions

(state ^operator <o> + ^table <t>)

(<o> ^name move-block)

-->

... }

In the example below, the production tests the state for acceptable preferences for two
different operators (and also tests that these operators move different blocks):

sp {blocks*example-production-conditions

(state ^operator <o1> + <o2> + ^table <t>)

(<o1> ^name move-block ^moving-block <m1> ^destination <d1>)

(<o2> ^name move-block ^moving-block {<m2> <> <m1>}

^destination <d2>)

-->

... }

3.3.5.10 Attribute tests

The previous examples applied all of the different tests to the values of working memory
elements. All of the tests that can be used for values can also be used for attributes and
identifiers (except those including constants).

Variables in attributes

Variables may be used with attributes, as in:

sp {blocks*example-production-conditions

(state <s> ^operator <o> +

^thing <t> {<> <t> <t2>})

(operator <o> ^name group

^by-attribute <a>

^moving-block <t>

^destination <t2>)

(<t> ^type block ^<a> <x>)

(<t2> ^type block ^<a> <x>)

-->

(<s> ^operator <o> >) }

This production tests that there is acceptable operator that is trying to group blocks accord-

3.3. PRODUCTION MEMORY 61

ing to some attribute, <a>, and that block <t> and <t2> both have this attribute (whatever
it is), and have the same value for the attribute.

Predicates in attributes

Predicates may be used with attributes, as in:

sp {blocks*example-production-conditions

(state ^operator <o> + ^table <t>)

(<t> ^<> type table)

-->

... }

which tests that the object with its identifier bound to <t> must have an attribute whose
value is table, but the name of this attribute is not type.

Disjunctions of attributes

Disjunctions may also be used with attributes, as in:

sp {blocks*example-production-conditions

(state ^operator <o> + ^table <t>)

(<t> ^<< type name>> table)

-->

... }

which tests that the object with its identifier bound to <t> must have either an attribute
type whose value is table or an attribute name whose value is table.

Conjunctive tests for attributes

Section 3.3.5.5 illustrated the use of conjunctions for the values in conditions. Conjunctive
tests may also be used with attributes, as in:

sp {blocks*example-production-conditions

(state ^operator <o> + ^table <t>)

(<t> ^{<ta> <> name} table)

-->

... }

which tests that the object with its identifier bound to <t> must have an attribute whose
value is table, and the name of this attribute is not name, and the name of this attribute
(whatever it is) is bound to the variable <ta>.

When attribute predicates or attribute disjunctions are used with multi-valued attributes, the
production is rewritten internally to use a conjunctive test for the attribute; the conjunctive

62 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

test includes a variable used to bind to the attribute name. Thus,

(<p1> ^type father ^ <> name sue sally)

is interpreted to mean:

(<p1> ^type father

^{<> name <a*1>} sue

^<a*1> sally)

3.3.5.11 Attribute-path notation

Often, variables appear in the conditions of productions only to link the value of one attribute
with the identifier of another attribute. Attribute-path notation provides a shorthand so that
these intermediate variables do not need to be included.

Syntactically, path notation lists a sequence of attributes separated by dots (.), after the ˆ
in a condition.

For example, using attribute path notation, the production:

sp {blocks-world*monitor*move-block

(state <s> ^operator <o>)

(<o> ^name move-block

^moving-block <block1>

^destination <block2>)

(<block1> ^name <block1-name>)

(<block2> ^name <block2-name>)

-->

(write (crlf) |Moving Block: | <block1-name>

| to: | <block2-name>) }

could be written as:

sp {blocks-world*monitor*move-block

(state <s> ^operator <o>)

(<o> ^name move-block

^moving-block.name <block1-name>

^destination.name <block2-name>)

-->

(write (crlf) |Moving Block: | <block1-name>

| to: | <block2-name>) }

Attribute-path notation yields shorter productions that are easier to write, less prone to
errors, and easier to understand.

When attribute-path notation is used, Soar internally expands the conditions into the multi-
ple Soar objects, creating its own variables as needed. Therefore, when you print a produc-
tion (using the print command), the production will not be represented using attribute-path

3.3. PRODUCTION MEMORY 63

notation.

Negations and attribute path notation

A negation may be used with attribute path notation, in which case it amounts to a negated
conjunction. For example, the production:

sp {blocks*negated-conjunction-example

(state <s> ^name top-state)

-{(<s> ^ontop <on>)

(<on> ^bottom-object <bo>)

(<bo> ^type table)}

-->

(<s> ^nothing-ontop-table true) }

could be rewritten as:

sp {blocks*negated-conjunction-example

(state <s> ^name top-state -^ontop.bottom-object.type table)

-->

(<s> ^nothing-ontop-table true) }

Multi-valued attributes and attribute path notation

Attribute path notation may also be used with multi-valued attributes, such as:

sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^clear.block <block1> { <> <block1> <block2> }

^ontop <ontop>)

(<block1> ^type block)

(<ontop> ^top-block <block1>

^bottom-block <> <block2>)

-->

(<s> ^operator <o> +)

(<o> ^name move-block +

^moving-block <block1> +

^destination <block2> +) }

Multi-attributes and attribute-path notation

Note: It would not be advisable to write the production in Figure 3.2 using attribute-path
notation as follows:

sp {blocks-world*propose*move-block*dont-do-this

(state <s> ^problem-space blocks

64 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

^clear.block <block1>

^clear.block { <> <block1> <block2> }

^ontop.top-block <block1>

^ontop.bottom-block <> <block2>)

(<block1> ^type block)

-->

...

}

This is not advisable because it corresponds to a different set of conditions than those in
the original production (the top-block and bottom-block need not correspond to the same
ontop relation). To check this, we could print the original production at the Soar prompt:

soar> print blocks-world*propose*move-block*dont-do-this

sp {blocks-world*propose*move-block*dont-do-this

(state <s> ^problem-space blocks ^thing <thing2>

^thing { <> <thing2> <thing1> } ^ontop <o*1> ^ontop <o*2>)

(<thing2> ^clear yes)

(<thing1> ^clear yes ^type block)

(<o*1> ^top-block <thing1>)

(<o*2> ^bottom-block { <> <thing2> <b*1> })

-->

(<s> ^operator <o> +)

(<o> ^name move-block

^moving-block <thing1>

^destination <thing2>) }

Soar has expanded the production into the longer form, and created two distinctive variables,
<o*1> and <o*2> to represent the ontop attribute. These two variables will not necessarily
bind to the same identifiers in working memory.

Negated multi-valued attributes and attribute-path notation

Negations of multi-valued attributes can be combined with attribute-path notation. How-
ever; it is very easy to make mistakes when using negated multi-valued attributes with
attribute-path notation. Although it is possible to do it correctly, we strongly discourage its
use.

For example,

sp {blocks*negated-conjunction-example

(state <s> ^name top-state -^ontop.bottom-object.name table A)

-->

(<s> ^nothing-ontop-A-or-table true) }

gets expanded to:

sp {blocks*negated-conjunction-example

3.3. PRODUCTION MEMORY 65

(state <s> ^name top-state)

-{(<s> ^ontop <o*1>)

(<o*1> ^bottom-object <b*1>)

(<b*1> ^name A)

(<b*1> ^name table)}

-->

(<s> ^nothing-ontop-A-or-table true) }

This example does not refer to two different blocks with different names. It tests that there
is not an ontop relation with a bottom-block that is named A and named table. Thus,
this production probably should have been written as:

sp {blocks*negated-conjunction-example

(state <s> ^name top-state

-^ontop.bottom-object.name table

-^ontop.bottom-object.name A)

-->

(<s> ^nothing-ontop-A-or-table true) }

which expands to:

sp {blocks*negated-conjunction-example

(state <s> ^name top-state)

-{(<s> ^ontop <o*2>)

(<o*2> ^bottom-object <b*2>)

(<b*2> ^name a)}

-{(<s> ^ontop <o*1>)

(<o*1> ^bottom-object <b*1>)

(<b*1> ^name table)}

-->

(<s> ^nothing-ontop-a-or-table true +) }

Notes on attribute-path notation

• Attributes specified in attribute-path notation may not start with a digit. For example,
if you type ^foo.3.bar, Soar thinks the .3 is a floating-point number. (Attributes
that don’t appear in path notation can begin with a number.)

• Attribute-path notation may be used to any depth.

• Attribute-path notation may be combined with structured values, described in Section
3.3.5.12.

3.3.5.12 Structured-value notation

Another convenience that eliminates the use of intermediate variables is structured-value
notation.

66 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

Syntactically, the attributes and values of a condition may be written where a variable would
normally be written. The attribute-value structure is delimited by parentheses.

Using structured-value notation, the production in Figure 3.2 (on page 49) may also be
written as:

sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^thing <thing1>

^thing {<> <thing1> <thing2>}

^ontop (^top-block <thing1>

^bottom-block <> <thing2>))

(<thing1> ^type block ^clear yes)

(<thing2> ^clear yes)

-->

(<s> ^operator <o> +)

(<o> ^name move-block

^moving-block <thing1>

^destination <thing2>) }

Thus, several conditions may be “collapsed” into a single condition.

Using variables within structured-value notation

Variables are allowed within the parentheses of structured-value notation to specify an iden-
tifier to be matched elsewhere in the production. For example, the variable <ontop> could
be added to the conditions (although it is not referenced again, so this is not helpful in this
instance):

sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^thing <thing1>

^thing {<> <thing1> <thing2>}

^ontop (<ontop>

^top-block <thing1>

^bottom-block <> <thing2>))

(<thing1> ^type block ^clear yes)

(<thing2> ^clear yes)

-->

(<s> ^operator <o> +)

(<o> ^name move-block

^moving-block <thing1>

^destination <thing2>) }

Structured values may be nested to any depth. Thus, it is possible to write our example
production using a single condition with multiple structured values:

3.3. PRODUCTION MEMORY 67

sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^thing <thing1>

({<> <thing1> <thing2>}

^clear yes)

^ontop (^top-block

(<thing1>

^type block

^clear yes)

^bottom-block <> <thing2>))

-->

(<s> ^operator <o> +)

(<o> ^name move-block

^moving-block <thing1>

^destination <thing2>) }

Notes on structured-value notation

• Attribute-path notation and structured-value notation are orthogonal and can be com-
bined in any way. A structured value can contain an attribute path, or a structure can
be given as the value for an attribute path.

• Structured-value notation can be combined with negations and with multi-attributes.

• Structured-value notation can not be used in the actions of productions.

3.3.6 The action side of productions (or RHS)

The action side of a production, also called the right-hand side (or RHS) of the production,
consists of individual actions that can:

• Add new elements to working memory.

• Remove elements from working memory.

• Create preferences.

• Perform other actions

When the conditions of a production match working memory, the production is said to
be instantiated, and the production will fire during the next elaboration cycle. Firing the
production involves performing the actions using the same variable bindings that formed the
instantiation.

3.3.6.1 Variables in Actions

Variables can be used in actions. A variable that appeared in the condition side will be
replaced with the value that is was bound to in the condition. A variable that appears only

68 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

in the action side will be bound to a new identifier that begins with the first letter of that
variable (e.g., <o> might be bound to o234). This symbol is guaranteed to be unique and it
will be used for all occurrences of the variable in the action side, appearing in all working
memory elements and preferences that are created by the production action.

3.3.6.2 Creating Working Memory Elements

An element is created in working memory by specifying it as an action. Multiple augmen-
tations of an object can be combined into a single action, using the same syntax as in
conditions, including path notation and multi-valued attributes.

-->

(<s> ^block.color red

^thing <t1> <t2>) }

The action above is expanded to be:

-->

(<s> ^block <*b>)

(<*b> ^color red)

(<s> ^thing <t1>)

(<s> ^thing <t2>) }

This will add four elements to working memory with the variables replaced with whatever
values they were bound to on the condition side.

Since Soar is case sensitive, different combinations of upper- and lowercase letters represent
different constants. For example, “red”, “Red”, and “RED” are all distinct symbols in Soar.
In many cases, it is prudent to choose one of uppercase or lowercase and write all constants
in that case to avoid confusion (and bugs).

The constants that are used for attributes and values have a few restrictions on them:

1. There are a number of architecturally created augmentations for state and impasse
objects; see Section 3.4 for a listing of these special augmentations. User-defined
productions can not create or remove augmentations of states that use these attribute
names.

2. Attribute names should not begin with a number if these attributes will be used in
attribute-path notation.

3.3.6.3 Removing Working Memory Elements

A element is explicitly removed from working memory by following the value with a dash:
-, also called a reject.

-->

(<s> ^block -)}

3.3. PRODUCTION MEMORY 69

If the removal of a working memory element removes the only link between the state and
working memory elements that had the value of the removed element as an identifier, those
working memory elements will be removed. This is applied recursively, so that all item that
become unlinked are removed.

The removal should be used with an action that will be o-supported. If removal is attempted
with i-support, the working memory element will reappear if the removal loses i-support and
the element still has support.

3.3.6.4 The syntax of preferences

Below are the eleven types of preferences as they can appear in the actions of a production
for the selection of operators:

RHS preferences Semantics
(id ^operator value) acceptable
(id ^operator value +) acceptable
(id ^operator value !) require
(id ^operator value ∼) prohibit
(id ^operator value -) reject
(id ^operator value > value2) better
(id ^operator value < value2) worse
(id ^operator value >) best
(id ^operator value <) worst
(id ^operator value =) unary indifferent
(id ^operator value = value2) binary indifferent
(id ^operator value = number) numeric indifferent

The identifier and value will always be variables, such as (<s1> ^operator <o1> > <o2>).

The preference notation appears similar to the predicate tests that appear on the left-hand
side of productions, but has very different meaning. Predicates cannot be used on the right-
hand side of a production and you cannot restrict the bindings of variables on the right-hand
side of a production. (Such restrictions can happen only in the conditions.)

Also notice that the + symbol is optional when specifying acceptable preferences in the actions
of a production, although using this symbol will make the semantics of your productions
clearer in many instances. The + symbol will always appear when you inspect preference
memory (with the preferences command).

Productions are never needed to delete preferences because preferences will be retracted
when the production no longer matches. Preferences should never be created by operator
application rules, and they should always be created by rules that will give only i-support
to their actions.

70 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

3.3.6.5 Shorthand notations for preference creation

There are a few shorthand notations allowed for the creation of operator preferences on the
right-hand side of productions.

Acceptable preferences do not need to be specified with a + symbol. (<s> ^operator <op1>)

is assumed to mean (<s> ^operator <op1> +).

Note however that the + is only implicit if no other preferences are specified for that operator.
Specifying a preference that is not the acceptable preference does not also imply an acceptable
preference. For example, (<s> ^operator <op1> >) by itself cannot lead to <op1> being
selected, since it does not have an acceptable preference.

Ambiguity can easily arise when using a preference that can be either binary or unary: > <

=. The default assumption is that if a value follows the preference, then the preference is
binary. It will be unary if a carat (up-arrow), a closing parenthesis, another preference, or a
comma follows it.

Below are four examples of legal, although unrealistic, actions that have the same effect.

(<s> ^operator <o1> <o2> + <o2> < <o1> <o3> =, <o4>)

(<s> ^operator <o1> + <o2> +

<o2> < <o1> <o3> =, <o4> +)

(<s> ^operator <o1> <o2> <o2> < <o1> <o4> <o3> =)

(<s> ^operator <o1> ^operator <o2>

^operator <o2> < <o1> ^operator <o4> <o3> =)

Any one of those actions could be expanded to the following list of preferences:

(<s> ^operator <o1> +)

(<s> ^operator <o2> +)

(<s> ^operator <o2> < <o1>)

(<s> ^operator <o3> =)

(<s> ^operator <o4> +)

Note that structured-value notation may not be used in the actions of productions.

Commas are only allowed in rule syntax for this sort of use, in the RHS. They can be used
to separate actions, and if used when no disambiguation is needed will have no effect other
than syntactic sugar.

As another example, (<s> ^operator <o1> <o2> > <o3>) would be interpreted as

(<s> ^operator <o1> +

^operator <o2> > <o3>)

But (<s> ^operator <o1> <o2> >, <o3>) would be interpreted as

(<s> ^operator <o1> +

^operator <o2> >

^operator <o3> +)

3.3. PRODUCTION MEMORY 71

3.3.6.6 Right-hand side Functions

The fourth type of action that can occur in productions is called a right-hand side function.
Right-hand side functions allow productions to create side effects other than changing work-
ing memory. The RHS functions are described below, organized by the type of side effect
they have.

Stopping and pausing Soar

halt — Terminates Soar’s execution and returns to the user prompt. A halt action irre-
versibly terminates the running of a Soar program. It should not be used if the agent
is to be restarted (see the interrupt RHS action below.)

sp {

...

-->

(halt) }

interrupt — Executing this function causes Soar to stop at the end of the current phase,
and return to the user prompt. This is similar to halt, but does not terminate the
run. The run may be continued by issuing a run command from the user interface.
The interrupt RHS function has the same effect as typing stop-soar at the prompt,
except that there is more control because it takes effect exactly at the end of the phase
that fires the production.

sp {

...

-->

(interrupt) }

Soar execution may also be stopped immediately before a production fires, using the
:interrupt directive. This functionality is called a matchtime interrupt and is very
useful for debugging. See Section 9.2.1 on Page 200 for more information.

sp {production*name

:interrupt

...

-->

...

}

wait — Executing this function causes the current Soar thread to sleep for the given
integer number of milliseconds.

72 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

sp {

...

-->

(wait 1000) }

Note that use of this function is discouraged.

Text input and output

These functions are provided as production actions to do simple output of text in Soar. Soar
applications that do extensive input and output of text should use Soar Markup Language
(SML). To learn about SML, read the ”SML Quick Start Guide” which should be located
in the ”Documentation” folder of your Soar install.

write — This function writes its arguments to the standard output. It does not auto-
matically insert blanks, linefeeds, or carriage returns. For example, if <o> is bound to
4, then

sp {

...

-->

(write <o> <o> <o> | x| <o> | | <o>) }

prints

444 x4 4

crlf — Short for “carriage return, line feed”, this function can be called only within
write. It forces a new line at its position in the write action.

sp {

...

-->

(write <x> (crlf) <y>) }

log — This function is equivalent to the write function, except that it specifies a “log
channel” for output. The output will only show if that channel is active. The function
takes two arguments. First is an integer corresponding to the channel level for output,
second is the message to print.
See section 9.6.2.4 for information about agent log channels.

3.3. PRODUCTION MEMORY 73

sp {

...

-->

(log 3 |This only prints when agent-logs channel 3 is enabled.|) }

Mathematical functions

The expressions described in this section can be nested to any depth. For all of the functions
in this section, missing or non-numeric arguments result in an error.

+, -, *, / — These symbols provide prefix notation mathematical functions. These
symbols work similarly to C functions. They will take either integer or real-number
arguments. The first three functions return an integer when all arguments are integers
and otherwise return a real number, and the last two functions always return a real
number. These functions can each take any number of arguments, and will return
the result of sequentially operating on each argument. The - symbol is also a unary
function which, given a single argument, returns the product of the argument and -1.
The / symbol is also a unary function which, given a single argument, returns the
reciprocal of the argument (1/x).

sp {

...

-->

(<s> ^sum (+ <x> <y>)

^product-sum (* (+ <v> <w>) (+ <x> <y>))

^big-sum (+ <x> <y> <z> 402)

^negative-x (- <x>))

}

div, mod — These symbols provide prefix notation binary mathematical functions (they
each take two arguments). These symbols work similarly to C functions: They will
take only integer arguments (using reals results in an error) and return an integer: div
takes two integers and returns their integer quotient; mod returns their remainder.

sp {

...

-->

(<s> ^quotient (div <x> <y>)

^remainder (mod <x> <y>)) }

abs, atan2, sqrt, sin, cos — These provide prefix notation unary mathematical
functions (they each take one argument). These symbols work similarly to C functions:

74 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

They will take either integer or real-number arguments. The first function (abs) returns
an integer when its argument is an integer and otherwise returns a real number, and
the last four functions always return a real number. atan2 returns as a float in radians,
the arctangent of (first arg / second arg). sin and cos take as arguments the angle in
radians.

sp {

...

-->

(<s> ^abs-value (abs <x>)

^sqrt (sqrt <x>)) }

min, max — These symbols provide n-ary mathematical functions (they each take a list
of symbols as arguments). These symbols work similarly to C functions. They take
either integer or real-number arguments, and return a real-number value if any of their
arguments are real-numbers. Otherwise they return integers.

sp {

...

-->

(<s> ^max (max <x> 3.14 <z>)

^min (min <a> 42 <c>)) }

int — Converts a single symbol to an integer constant. This function expects either an
integer constant, symbolic constant, or floating point constant. The symbolic constant
must be a string which can be interpreted as a single integer. The floating point
constant is truncated to only the integer portion. This function essentially operates as
a type casting function.

For example, the expression 2 + sqrt(6) could be printed as an integer using the
following:

sp {

...

-->

(write (+ 2 (int sqrt(6)))) }

float — Converts a single symbol to a floating point constant. This function expects
either an integer constant, symbolic constant, or floating point constant. The symbolic
constant must be a string which can be interpreted as a single floating point number.
This function essentially operates as a type casting function.

For example, if you wanted to print out an integer expression as a floating-point num-
ber, you could do the following:

3.3. PRODUCTION MEMORY 75

sp {

...

-->

(write (float (+ 2 3))) }

ifeq — Conditionally return a symbol. This function takes four arguments. It returns
the third argument if the first two are equal and the fourth argument otherwise. Note
that symbols of different types will always be considered unequal. For example, 1.0
and 1 will be unequal because the first is a float and the second is an integer.

sp {example-rule

(state <s> ^a <a> ^b)

...

-->

(write (ifeq <a> equal not-equal)) }

Generating and manipulating symbols

A new symbol (an identifier) is generated on the right-hand side of a production whenever
a previously unbound variable is used. This section describes other ways of generating and
manipulating symbols on the right-hand side.

capitalize-symbol — Given a symbol, this function returns a new symbol with the
first character capitalized. This function is provided primarily for text output, for
example, to allow the first word in a sentence to be capitalized.

(capitalize-symbol foo)

compute-heading — This function takes four real-valued arguments of the form
(x1, y1, x2, y2), and returns the direction (in degrees) from (x1, y1) to (x2, y2), rounded
to the nearest integer.

For example:

sp {

...

-->

(<s> ^heading (compute-heading 0 0.5 32.5 28)) }

After this rule fires, working memory would look like:
(S1 ^heading 48).

76 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

compute-range — This function takes four real-valued arguments of the form
(x1, y1, x2, y2), and returns the distance from (x1, y1) to (x2, y2), rounded to the nearest
integer.

For example:

sp {

...

-->

(<s> ^distance (compute-range 0 0.5 32.5 28)) }

After this rule fires, working memory would look like:
(S1 ^distance 42).

concat — Given an arbitrary number of symbols, this function concatenates them to-
gether into a single constant symbol.

For example:

sp {example

(state <s> ^type state)

-->

(<s> ^name (concat foo bar (+ 2 4))) }

After this rule fires, the WME (S1 ^name foobar6) will be added.

deep-copy — This function returns a copy of the given symbol along with linked copies
of all descendant symbols. In other terms, a full copy is made of the working mem-
ory subgraph that can be reached when starting from the given symbol. All copied
identifiers are created as new IDs, and all copied values remain the same.

For example:

sp {

(state <s> ^tree <t>)

(<t> ^branch1 foo ^branch2)

(^branch3 <t>)

-->

(<s> ^tree-copy (deep-copy <t>)) }

After this rule fires, the following structure would exist:

(S1 ^tree T1 ^tree-copy D1)

(T1 ^branch1 foo ^branch2 B1)

(B1 ^branch3 T1)

(D1 ^branch1 foo ^branch2 B2)

(B2 ^branch3 D1)

3.3. PRODUCTION MEMORY 77

dc — This function takes no arguments, and returns the integer number of the current
decision cycle.

For example:

sp {example

(state <s> ^type state)

-->

(<s> ^dc-count (dc) }

@ (get) — This function returns the LTI number of the given ID. If the given ID is not
linked to an LTI, it does nothing.

For example:

sp {example

(state <s> ^stm <l1>)

-->

(<s> ^lti-num (@ <l1>) }

After this rule fires, the (S1 ^lti-num) WME will have an integer value such as 42.

link-stm-to-ltm — This function takes two arguments. It links the first given symbol
to the LTI indicated by the second integer value.

For example:

sp {example

(state <s> ^stm <l1>)

-->

(link-stm-to-ltm <l1> 42) }

After this rule fires, the WME (S1 ^stm <l1>) will be linked to @42.

make-constant-symbol — This function returns a new constant symbol guaranteed
to be different from all symbols currently present in the system. With no arguments, it
returns a symbol whose name starts with “constant”. With one or more arguments,
it takes those argument symbols, concatenates them, and uses that as the prefix for
the new symbol. (It may also append a number to the resulting symbol, if a symbol
with that prefix as its name already exists.)

sp {

...

-->

(<s> ^new-symbol (make-constant-symbol)) }

When this production fires, it will create an augmentation in working memory such as:

(S1 ^new-symbol constant5)

78 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

The production:

sp {

...

-->

(<s> ^new-symbol (make-constant-symbol <s>)) }

will create an augmentation in working memory such as:

(S1 ^new-symbol |S14|)

when it fires. The vertical bars denote that the symbol is a constant, rather than an
identifier; in this example, the number 4 has been appended to the symbol S1.

This can be particularly useful when used in conjunction with the timestamp function;
by using timestamp as an argument to make-constant-symbol, you can get a new
symbol that is guaranteed to be unique. For example:

sp {

...

-->

(<s> ^new-symbol (make-constant-symbol (timestamp))) }

When this production fires, it will create an augmentation in working memory such as:

(S1 ^new-symbol 8/1/96-15:22:49)

rand-float — This function takes an optional positive real-valued argument. If no
argument (or a negative argument) is given, it returns a random real-valued number
in the range [0.0, 1.0]. Otherwise, given a value n, it returns a number in the range
[0.0, n].

For example:

sp {

...

-->

(<s> ^fate (rand-float 1000)) }

After this rule fires, working memory might look like:
(S1 ^fate 275.481802).

rand-int — This function takes an optional positive integer argument. If no argument
(or a negative argument) is given, it returns a random integer number in the range
[−231, 231]. Otherwise, given a value n, it returns a number in the range [0, n].

For example:

3.3. PRODUCTION MEMORY 79

sp {

...

-->

(<s> ^fate (rand-int 1000)) }

After this rule fires, working memory might look like:
(S1 ^fate 13).

round-off — This function returns the first given value rounded to the nearest multiple
of the second given value. Values must be integers or real-numbers.

For example:

sp {

(state <s> ^pi <pi>

-->

(<s> ^pie (round-off <pi> 0.1)) }

After this rule fires, working memory might look like:
(S1 ^pi 3.14159 ^pie 3.1).

round-off-heading — This function is the same as round-off, but additionally shifts
the returned value by multiples of 360 such that −360 ≤ value ≤ 360.

For example:

sp {

(state <s> ^heading <dir>

-->

(<s> ^true-heading (round-off-heading <dir> 0.5)) }

After this rule fires, working memory might look like:
(S1 ^heading 526.432 ^true-heading 166.5).

size — This function returns an integer symbol whose value is the count of WME aug-
mentations on a given ID argument. Providing a non-ID argument results in an error.

For example:

sp {

(state <s> ^numbers <n>)

(<n> ^1 1 ^10 10 ^100 100)

-->

(<s> ^augs (size <n>)) }

After this rule fires, the value of S1 ^augs would be 3.

Note that some architecturally-maintained IDs such as (<s> ^epmem) and (<s> ^io)

are not counted by the size function.

80 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

strlen — This function returns an integer symbol whose value is the size of the given
string symbol.

For example:

sp {

(state <s> ^io.input-link.message <m>)

...

-->

(<s> ^message-len (strlen <m>)) }

timestamp — This function returns a symbol whose print name is a representation of
the current date and time.

For example:

sp {

...

-->

(write (timestamp)) }

When this production fires, it will print out a representation of the current date and
time, such as:

soar> run 1 e

8/1/96-15:22:49

trim — This function takes a single string symbol argument and returns the same string
with leading and trailing whitespace removed.

For example:

sp {

(state <s> ^message <m>)

-->

(<s> ^trimmed (trim <m>)) }

User-defined functions and interface commands as RHS actions

Any function which has a certain function signature may be registered with the Kernel (e.g.
using SML) and called as a RHS function. The function must have the following signature:

std::string MyFunction(smlRhsEventId id, void* pUserData, Agent* pAgent,

char const* pFunctionName, char const* pArgument);

3.3. PRODUCTION MEMORY 81

The Tcl and Java interfaces have similar function signatures. Any arguments passed to the
function on the RHS of a production are concatenated and passed to the function in the
pArgument argument.

Such a function can be registered with the kernel via the client interface by calling:

Kernel::AddRhsFunction(char const* pRhsFunctionName, RhsEventHandler

handler, void* pUserData);

The exec and cmd functions are used to call user-defined functions and interface commands
on the RHS of a production.

exec — Used to call user-defined registered functions. Any arguments are concatenated
without spaces. For example, if <o> is bound to x, then

sp {

...

-->

(exec MakeANote <o> 1) }

will call the user-defined MakeANote function with the argument ”x1”.

The return value of the function, if any, may be placed in working memory or passed
to another RHS function. For example, the log of a number <x> could be printed this
way:

sp {

...

-->

(write |The log of | <x> | is: | (exec log(<x>))|) }

where ”log” is a registered user-defined function.

cmd — Used to call built-in Soar commands. Spaces are inserted between concatenated
arguments. For example, the production

sp {

...

-->

(write (cmd print --depth 2 <s>)) }

will have the effect of printing the object bound to <s> to depth 2.

3.3.6.7 Controlling chunking

Chunking is described in Chapter 4.

82 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

The following two functions are provided as RHS actions to assist in development of Soar
programs; they are not intended to correspond to any theory of learning in Soar. This
functionality is provided as a development tool, so that learning may be turned off in specific
problem spaces, preventing otherwise buggy behavior.

The dont-learn and force-learn RHS actions are to be used with specific settings for
the chunk command (see page 232.) Using the chunk command, learning may be set to
one of always, never, flagged, or unflagged; chunking must be set to flagged for the
force-learn RHS action to have any effect and chunking must be set to unflagged for the
dont-learn RHS action to have any effect.

dont-learn — When chunking is set to unflagged, by default chunks can be formed
in all states; the dont-learn RHS action will cause chunking to be turned off for the
specified state.

sp {turn-learning-off

(state <s> ^feature 1 ^feature 2 -^feature 3)

-->

(dont-learn <s>) }

The dont-learn RHS action applies when chunk is set to unflagged, and has no effect
when other settings for chunk are used.

force-learn — When learning is set to flagged, by default chunks are not formed in
any state; the force-learn RHS action will cause chunking to be turned on for the
specified state.

sp {turn-learning-on

(state <s> ^feature 1 ^feature 2 -^feature 3)

-->

(force-learn <s>) }

The force-learn RHS action applies when chunk is set to flagged, and has no effect
when other settings for chunk are used.

3.3.7 Grammars for production syntax

This subsection contains the BNF grammars for the conditions and actions of productions.
(BNF stands for Backus-Naur form or Backus normal form; consult a computer science
book on theory, programming languages, or compilers for more information. However, if you
don’t already know what a BNF grammar is, it’s unlikely that you have any need for this
subsection.)

This information is provided for advanced Soar users, for example, those who need to write
their own parsers. Note that some terms (e.g. <sym constant>) are undefined; as such, this
grammar should only be used as a starting point.

3.3. PRODUCTION MEMORY 83

3.3.7.1 Grammar of Soar productions

A grammar for Soar productions is:

<soar-production> ::= sp "{" <production-name> [<documentation>] [<flags>]

<condition-side> --> <action-side> "}"

<documentation> ::= """ [<string>] """

<flags> ::= ":" (o-support | i-support | chunk | default)

Grammar for Condition Side: Below is a grammar for the condition sides of produc-
tions:

<condition-side> ::= <state-imp-cond> <cond>*

<state-imp-cond> ::= "(" (state | impasse) [<id_test>]

<attr_value_tests>+ ")"

<cond> ::= <positive_cond> | "-" <positive_cond>

<positive_cond> ::= <conds_for_one_id> | "{" <cond>+ "}"

<conds_for_one_id> ::= "(" [(state|impasse)] <id_test>

<attr_value_tests>+ ")"

<id_test> ::= <test>

<attr_value_tests> ::= ["-"] "^" <attr_test> ("." <attr_test>)*

<value_test>*

<attr_test> ::= <test>

<value_test> ::= <test> ["+"] | <conds_for_one_id> ["+"]

<test> ::= <conjunctive_test> | <simple_test>

<conjunctive_test> ::= "{" <simple_test>+ "}"

<simple_test> ::= <disjunction_test> | <relational_test>

<disjunction_test> ::= "<<" <constant>+ ">>"

<relational_test> ::= [<relation>] <single_test>

<relation> ::= "<>" | "<" | ">" | "<=" | ">=" | "=" | "<=>"

<single_test> ::= <variable> | <constant>

<variable> ::= "<" <sym_constant> ">"

<constant> ::= <sym_constant> | <int_constant> | <float_constant>

Notes on the Condition Side

• In an <id test>, only a <variable> may be used in a <single test>.

Grammar for Action Side: Below is a grammar for the action sides of productions:

<rhs> ::= <rhs_action>*

<rhs_action> ::= "(" <variable> <attr_value_make>+ ")"

| <func_call>

<func_call> ::= "(" <func_name> <rhs_value>* ")"

<func_name> ::= <sym_constant> | "+" | "-" | "*" | "/"

84 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

<rhs_value> ::= <constant> | <func_call> | <variable>

<attr_value_make> ::= "^" <variable_or_sym_constant>

("." <variable_or_sym_constant>)* <value_make>+

<variable_or_sym_constant> ::= <variable> | <sym_constant>

<value_make> ::= <rhs_value> <preference_specifier>*

<preference-specifier> ::= <unary-preference> [","]

| <unary-or-binary-preference> [","]

| <unary-or-binary-preference> <rhs_value> [","]

<unary-pref> ::= "+" | "-" | "!" | "~"

<unary-or-binary-pref> ::= ">" | "=" | "<"

3.4 Impasses in Working Memory and in Productions

When the preferences in preference memory cannot be resolved unambiguously, Soar reaches
an impasse, as described in Section 2.7:

• When Soar is unable to select a new operator (in the decision cycle), it is said to reach
an operator impasse.

All impasses lead to the creation of a new substate in working memory, and appear as objects
within that substate. These objects can be tested by productions. This section describes
the structure of state objects in working memory.

3.4.1 Impasses in working memory

There are four types of impasses.

Below is a short description of the four types of impasses. (This was described in more detail
in Section 2.7 on page 27.)

1. tie: when there is a collection of equally eligible operators competing for the value of
a particular attribute;

2. conflict : when two or more objects are better than each other, and they are not
dominated by a third operator;

3. constraint-failure: when there are conflicting necessity preferences;

4. no-change: when the proposal phase runs to quiescence without suggesting a new
operator.

The list below gives the seven augmentations that the architecture creates on the substate
generated when an impasse is reached, and the values that each augmentation can contain:

^type state

^impasse Contains the impasse type: tie, conflict, constraint-failure, or no-change.

3.4. IMPASSES IN WORKING MEMORY AND IN PRODUCTIONS 85

^choices Either multiple (for tie and conflict impasses), constraint-failure
(for constraint-failure impasses), or none (for constraint-failure or no-change impasses).

^superstate Contains the identifier of the state in which the impasse arose.

^attribute For multi-choice and constraint-failure impasses, this contains operator. For
no-change impasses, this contains the attribute of the last decision with a value (state
or operator).

^item For multi-choice and constraint-failure impasses, this contains all values involved in
the tie, conflict, or constraint-failure. If the set of items that tie or conflict changes dur-
ing the impasse, the architecture removes or adds the appropriate item augmentations
without terminating the existing impasse.

^item-count For multi-choice and constraint-failure impasses, this contains the number of
values listed under the item augmentation above.

^non-numeric For tie impasses, this contains all operators that do not have numeric indif-
ferent preferences associated with them. If the set of items that tie changes during the
impasse, the architecture removes or adds the appropriate non-numeric augmentations
without terminating the existing impasse.

^non-numeric-count For tie impasses, this contains the number of operators listed under
the non-numeric augmentation above.

^quiescence States are the only objects with quiescence t, which is an explicit statement
that quiescence (exhaustion of the elaboration cycle) was reached in the superstate.
If problem solving in the subgoal is contingent on quiescence having been reached,
the substate should test this flag. The side-effect is that no chunk will be built if it
depended on that test. See Section 4.6.11 on page 112 for details. This attribute can
be ignored when learning is turned off.

Knowing the names of these architecturally defined attributes and their possible values will
help you to write productions that test for the presence of specific types of impasses so that
you can attempt to resolve the impasse in a manner appropriate to your program. Many of
the default productions in the demos/defaults directory of the Soar distribution provide
means for resolving certain types of impasses. You may wish to make use of some of all of
these productions or merely use them as guides for writing your own set of productions to
respond to impasses.

Examples

The following is an example of a substate that is created for a tie among three operators:

(S12 ^type state ^impasse tie ^choices multiple ^attribute operator

^superstate S3 ^item O9 O10 O11 ^quiescence t)

The following is an example of a substate that is created for a no-change impasse to apply
an operator:

86 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

(S12 ^type state ^impasse no-change ^choices none ^attribute operator

^superstate S3 ^quiescence t)

(S3 ^operator O2)

3.4.2 Testing for impasses in productions

Since states appear in working memory, they may also be tested for in the conditions of
productions.

For example, the following production tests for a constraint-failure impasse on the top-level
state.

sp {default*top-goal*halt*operator*failure

"Halt if no operator can be selected for the top goal."

:default

(state <ss> ^impasse constraint-failure ^superstate <s>)

(<s> ^superstate nil)

-->

(write (crlf) |No operator can be selected for top goal.|)

(write (crlf) |Soar will halt now. Goodnight.|)

(halt)

}

3.5 Soar I/O: Input and Output in Soar

Many Soar users will want their programs to interact with a real or simulated environment.
For example, Soar programs could control a robot, receiving sensory inputs and sending
command outputs. Soar programs might also interact with simulated environments, such as
a flight simulator. The mechanisms by which Soar receives inputs and sends outputs to an
external process is called Soar I/O.

This section describes how input and output are represented in working memory and in
productions. Interfacing with a Soar agent through input and output can be done using the
Soar Markup Language (SML). The details of designing an external process that uses SML
to create the input and respond to output from Soar are beyond the scope of this manual,
but they are described online on the Soar website. This section is provided for the sake of
Soar users who will be making use of a program that has already been implemented, or for
those who would simply like to understand how I/O works in Soar.

https://soar.eecs.umich.edu/articles/articles/soar-markup-language-sml

3.5. SOAR I/O: INPUT AND OUTPUT IN SOAR 87

3.5.1 Overview of Soar I/O

When Soar interacts with an external environment, it must make use of mechanisms that
allow it to receive input from that environment and to effect changes in that environment.
An external environment may be the real world or a simulation; input is usually viewed as
Soar’s perception and output is viewed as Soar’s motor abilities.

Soar I/O is accomplished via input functions and output functions. Input functions are called
at the start of every execution cycle, and add elements directly to specific input structures
in working memory. These changes to working memory may change the set of productions
that will fire or retract. Output functions are called at the end of every execution cycle and
are processed in response to changes to specific output structures in working memory. An
output function is called only if changes have been made to the output-link structures in
working memory.

The structures for manipulating input and output in Soar are linked to a predefined attribute
of the top-level state, called the io attribute. The io attribute has substructure to represent
sensor inputs from the environment called input links ; because these are represented in
working memory, Soar productions can match against input links to respond to an external
situation. Likewise, the io attribute has substructure to represent motor commands, called
output links. Functions that execute motor commands in the environment use the values on
the output links to determine when and how they should execute an action. Generally, input
functions create and remove elements on the input link to update Soar’s perception of the
environment. Output functions respond to values of working memory elements that appear
on Soar’s output link strucure.

3.5.2 Input and output in working memory

All input and output is represented in working memory as substructure of the io attribute
of the top-level state. By default, the architecture creates an input-link attribute of the
io object and an output-link attribute of the io object. The values of the input-link and
output-link attributes are identifiers whose augmentations are the complete set of input and
output working memory elements, respectively. Some Soar systems may benefit from having
multiple input and output links, or that use names which are more descriptive of the input or
output function, such as vision-input-link, text-input-link, or motor-output-link.
In addition to providing the default io substructure, the architecture allows users to create
multiple input and output links via productions and I/O functions. Any identifiers for io

substructure created by the user will be assigned at run time and are not guaranteed to be
the same from run to run. Therefore users should always employ variables when referring to
input and output links in productions.

Suppose a blocks-world task is implemented using a robot to move actual blocks around,
with a camera creating input to Soar and a robotic arm executing command outputs.

The camera image might be analyzed by a separate vision program; this program could have
as its output the locations of blocks on an xy plane. The Soar input function could take

88 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

S1

type state

superstate
nil

 I6

B1

B2

B3

 I9

io

input−link

block

block

block

x−location

color

y−location

x−location

color

y−location

x−location

color

y−location

1

red

2

blue

3

yellow

(red) (blue) (yellow)

(0,0) (1,0) (2,0) (3,0)

(0,1)

(0,2)

0

0

0

Figure 3.3: An example portion of the input link for the blocks-world task.

the output from the vision program and create the following working memory elements on
the input link (all identifiers are assigned at runtime; this is just an example of possible
bindings):

(S1 ^io I1) [A]

(I1 ^input-link I2) [A]

(I2 ^block B1)

(I2 ^block B2)

(I2 ^block B3)

(B1 ^x-location 1)

(B1 ^y-location 0)

(B1 ^color red)

(B2 ^x-location 2)

(B2 ^y-location 0)

(B2 ^color blue)

(B3 ^x-location 3)

(B3 ^y-location 0)

(B3 ^color yellow)

The ’[A]’ notation in the example is used to indicate the working memory elements that
are created by the architecture and not by the input function. This configuration of blocks
corresponds to all blocks on the table, as illustrated in the initial state in Figure 2.2.

Then, during the Apply Phase of the execution cycle, Soar productions could respond to an
operator, such as “move the red block ontop of the blue block” by creating a structure on
the output link, such as:

3.5. SOAR I/O: INPUT AND OUTPUT IN SOAR 89

S1

type state

superstate
nil

 I6

io

(red) (blue) (yellow)

(0,0) (1,0) (2,0) (3,0)

(0,1)

(0,2)

output−link

O3

moving−block

B1

name
move−block

x−location

y−location

1

0

x−destination

y−destinaion

2

1

Figure 3.4: An example portion of the output link for the blocks-world task.

(S1 ^io I1) [A]

(I1 ^output-link I3) [A]

(I3 ^name move-block)

(I3 ^moving-block B1)

(I3 ^x-destination 2)

(I3 ^y-destination 1)

(B1 ^x-location 1)

(B1 ^y-location 0)

(B1 ^color red)

An output function would look for specific structure in this output link and translate this
into the format required by the external program that controls the robotic arm. Movement
by the robotic arm would lead to changes in the vision system, which would later be reported
on the input-link.

Input and output are viewed from Soar’s perspective. An input function adds or deletes
augmentations of the input-link providing Soar with information about some occurrence
external to Soar. An output function responds to substructure of the output-link produced
by production firings, and causes some occurrence external to Soar. Input and output occur
through the io attribute of the top-level state exclusively.

Structures placed on the input-link by an input function remain there until removed by
an input function. During this time, the structure continues to provide support for any
production that has matched against it. The structure does not cause the production to
rematch and fire again on each cycle as long as it remains in working memory; to get the

90 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

production to refire, the structure must be removed and added again.

3.5.3 Input and output in production memory

Productions involved in input will test for specific attributes and values on the input-link,
while productions involved in output will create preferences for specific attributes and values
on the output link. For example, a simplified production that responds to the vision input
for the blocks task might look like this:

sp {blocks-world*elaborate*input

(state <s> ^io.input-link <in>)

(<in> ^block <ib1>)

(<ib1> ^x-location <x1> ^y-location <y1>)

(<in> ^block {<ib2> <> <ib1>})

(<ib2> ^x-location <x1> ^y-location {<y2> > <y1>})

-->

(<s> ^block <b1>)

(<s> ^block <b2>)

(<b1> ^x-location <x1> ^y-location <y1> ^clear no)

(<b2> ^x-location <x1> ^y-location <y2> ^above <b1>)

}

This production “copies” two blocks and their locations directly to the top-level state. It
also adds information about the relationship between the two blocks. The variables used for
the blocks on the RHS of the production are deliberately different from the variable name
used for the block on the input-link in the LHS of the production. If the variable were the
same, the production would create a link into the structure of the input-link, rather than
copy the information. The attributes x-location and y-location are assumed to be values
and not identifiers, so the same variable names may be used to do the copying.

A production that creates WMEs on the output-link for the blocks task might look like this:

sp {blocks-world*apply*move-block*send-output-command

(state <s> ^operator <o> ^io.output-link <out>)

(<o> ^name move-block ^moving-block <b1> ^destination <b2>)

(<b1> ^x-location <x1> ^y-location <y1>)

(<b2> ^x-location <x2> ^y-location <y2>)

-->

(<out> ^move-block <b1>

^x-destination <x2> ^y-destination (+ <y2> 1))

}

This production would create substructure on the output-link that the output function could
interpret as being a command to move the block to a new location.

Chapter 4

Procedural Knowledge Learning

4.1 Chunking

Chunking is Soar’s experience-based mechanism for learning new procedural knowledge.
Chunking utilizes Soar’s impasse-driven model of problem decomposition into sub-goals to
create new productions dynamically during task execution. These new productions, called
chunks, summarize the substate problem-solving that occurred which led to new knowledge
in a superstate. Whenever a rule fires and creates such new superstate knowledge, which
are called results, Soar learns a new rule and immediately adds it to production memory.
In future similar situations, the new chunk will fire and create the appropriate results in a
single step, which eliminates the need to spawn another subgoal to perform similar problem-
solving. In other words, rather than contemplating and figuring out what to do, the agent
immediately knows what to do.

Chunking can effect both speed-up and transfer learning. A chunk can effect speed-up
learning because it compresses all of the problem-solving needed to produce a result into a
single step. For some real-world agents, hundreds of rule firings can be compressed into a
single rule firing. A chunk can effect transfer learning because it generalizes the problem-
solving in such a way that it can apply to other situations that are similar but have not yet
been experienced by the agent.

Chunks are created whenever one subgoal creates a result in a superstate; since most Soar
programs are continuously sub-goaling and returning results to higher-level states, chunks
are typically created continuously as Soar runs. Note that Soar builds the chunk as soon as
the result is created, rather than waiting until the impasse is resolved.

While chunking is a core capability of Soar, procedural learning is disabled by default. See
section 4.7 for more information about enabling and using chunking.

91

92 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

sp {chunk-94*process-column*apply

(state <s1> ^operator <o1>

^arithmetic-problem <a1>

^one-fact 1

^top-state <s1>

^arithmetic <a2>

^arithmetic <a3>)

(<o1> ^name process-column)

(<a1> ^operation subtraction

^current-column <c1>)

(<c1> -^new-digit1 <n1>

^digit1 0

^digit2 7

^next-column <n2>)

(<n2> ^digit1 0

^new-digit1 9

^next-column <n3>)

(<n3> ^digit1 5

^new-digit1 4)

(<a2> ^subtraction-facts <s2>

^subtraction-facts <s3>

^subtraction-facts <s4>)

(<a3> ^add10-facts <a4>)

(<a4> ^digit1 0

^digit-10 10)

(<s2> ^digit1 10 ^digit2 1

^result 9)

(<s3> ^digit1 5 ^digit2 1

^result 4)

(<s4> ^digit1 10 ^digit2 7

^result 3)

-->

(<c1> ^result 3)}

sp {chunk-96*process-column*apply

(state <s1> ^operator <o1>

^arithmetic-problem <a1>

^one-fact <o2>

^one-fact <o3>

^top-state <t1>

^arithmetic <a2>

^arithmetic <a3>)

(<o1> ^name process-column)

(<a1> ^operation subtraction

^current-column <c1>)

(<c1> -^new-digit1 <n1>

^digit1 { <d2> < <d1> }

^digit2 <d1>

^next-column <n2>)

(<n2> ^digit1 { <d3> < <o3> }

^new-digit1 <n3>

^next-column <n4>)

(<n4> ^digit1 { <d4> >= <o2> }

^new-digit1 <n5>)

(<a2> ^subtraction-facts <s2>

^subtraction-facts <s3>

^subtraction-facts <s4>)

(<a3> ^add10-facts <a4>

^add10-facts <a5>)

(<a4> ^digit1 <d2>

^digit-10 { <d5> >= <d1> })

(<a5> ^digit1 <d3>

^digit-10 { <d6> >= <o3> })

(<s2> ^digit1 <d6> ^digit2 <o3>

^result <n3>)

(<s3> ^digit1 <d4> ^digit2 <o2>

^result <n5>)

(<s4> ^digit1 <d5> ^digit2 <d1>

^result <r1>)

-->

(<c1> ^result <r1>)}

Figure 4.1: A Soar 9.4.0 chunk (left) vs. an explanation-based chunk (right) in the arithmetic
demo agent

4.2 Explanation-based Chunking

Explanation-based chunking improves on previous versions of chunking by learning rules that
are qualitatively more general and expressive. In fact, any element of a learned rule can now
be variablized, and learned rules now have the full expressive power of hand-written rules.

Figure 4.1 shows an example of an explanation-based chunk and how it differs from a chunk
learned from the original algorithm. It is interesting to note that in Soar 9.4, the arithmetic
agent learns 1263 rules like the one on the left-side of the figure. In Soar 9.6, the same agent

4.2. EXPLANATION-BASED CHUNKING 93

only learns 8 rules like the one on the right because they are so much more general.

To achieve this generality, chunking needs information about why rules matched in a sub-
state and how those rules interacted. This allows it to determine what is generalizable and
what limits there are on those generalizations. Unfortunately, the information necessary to
determine this information was not readily available in prior versions of Soar which only
recorded a trace of all WMEs that were tested in the substate. This trace, which we call the
working memory trace possesses limited explanatory information, which limited chunking
to learning very specific rules in which only Soar identifiers were variablized and all other
elements tested the exact values found in the working memory trace.

To remedy this limitation and produce more general chunks, EBC instead analyzes two
traces simultaneously: the working memory trace and a corresponding trace of the hand-
written rules that matched in the substate. This new network of rule matches is called the
explanation trace:

Figure 4.2: A close-up of a trace showing differences between a working memory trace (left) and
an explanation trace (right). The working memory trace only contains the literal values of the
WMEs that matched. The explanation trace, on the other hand, contains variables and various
constraints on the values those variables can hold.

Note that this trace is generated dynamically as rules match. Whenever a rule matches
during agent execution, Soar creates an internal record of the rule that fired, which is called
a rule instantiation. (Each box in the explanation traces of this chapter represents an
instantiation that was created during task execution within a particular substate.) The
instantiation contains both instance information about what matched (the working memory
elements) and explanatory information about why they matched (the rules and actions in
the original rules that contains variables, constraint tests, RHS actions, etc.).

Note that WMEs that were automatically created by the architecture have special instan-
tiations that explain why they were created. For example, an architectural instantiation is
created for each ^item attribute automatically created in operator tie impasse substates; the
explanation causes the ^item augmentation to be dependent on the operator in the super-
state that led to it, which means that chunks learned which tested that ^item augmentation
will cause the chunk to also be dependent on the operator in the superstate.

Similarly, architectural instantiations are created for structures recalled by semantic and

94 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

episodic memory in the substate.

All of the instantiations that were created in a substate form the instantiation graph of that
substate. As chunking backtraces through the instantiation graph, it determines the subset
of instantiations that contributed to a result. This set of instantiations and the connections
between them composes the explanation trace for a learning episode. (So, the explanation
trace is a subgraph of the instantiation graph.)

Figure 4.3: A visualization of the explanation trace of a chunk learned by the arithmetic agent.
Each box represents a rule that fired in the substate. Arrows show dependencies between rules that
create working memory elements and conditions that test those working memory elements.

EBC uses the explanation trace to determine (1) how variables were used during a problem-
solving episode and (2) what constraints on those variables had to be met in order for the
substate rules to match. EBC then uses the results of this analysis to create more expressive
and general rules, which can contain the full gamut of tests that hand-written rules can and
can have any element variablized.

4.3 Overview of the EBC Algorithm

Basic concepts:

4.3. OVERVIEW OF THE EBC ALGORITHM 95

• Every condition and action in the explanation trace has three elements :

– For conditions, the three elements refer to the symbol in the positive equality
test for the identifier, attribute and value of the condition. For example, the last
condition of rule 2 in Figure 4.4 has <s> as the identifier element, number as the
attribute element, and <y> as the value element.

– For actions, the three elements refer to the identifier, attribute and value of the
WME being created.

• An element is either a variable, like <s> or a literal constant, like 23, 3.3 or someString
.

4.3.1 Identity

Before we can discuss the algorithm, we must first define one of its central concepts: identity.

• An identity is the set of all variables in a trace that refer to the same
underlying object.

– So we can say that two variables are said to share an identity if they both refer
to the same underlying object.

• The NULL identity is a special identity that indicates an element which
cannot be generalized and must contain a specific value.

– All elements in the original rule that reference specific constant values are trivially
assigned the NULL identity.

– A variable’s identity can also be mapped to the NULL identity. When this hap-
pens, we say the identity has been literalized.

EBC traverses an explanation trace of the problem-solving that occurred in the substate
to determine which variables in different rule instances refer to the same underlying object.
There are two ways that an explanation trace can show a shared identity:

1. Variables that have the same name and are in the same rule firing will share an identity

This is the trivial case. The basic semantics of rules implies that the same variable in
a rule references the same underlying object.

2. If a RHS action of one rule creates a WME and a LHS condition of another rules tests
that same WME, then all variables in the condition and actions will possess the same
identity as their counterpart’s corresponding element.

The interaction between the two rules indicates a shared identity between their corre-
sponding variables.

96 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

Figure 4.4: An explanation trace of two simple rules that matched in a substate

To get a better picture of what a shared identity is, consider the two simple rules and the
explanation trace of how they matched in a substate as shown in Figure 4.4. The connection
between rule 2 and rule 1 will unify the identities of <s>, <x> and <y> in rule 1 with the
identities of <s>, <x> and <y2> in rule 2. So, the <x> in rule 2 shares the same identity as
the <x> in rule 1. Similarly, the <y2> in rule 2 shares the same identity as <y> in rule 1. In
contrast, the <y> in rule 2 does NOT share the same identity as the <y> in rule 1.

It doesn’t matter that the <y> in rule 1 uses the same variable name as the <y> in rule 2.
It also doesn’t matter that both conditions with <y> happen to match the same working
memory element, (S1 ^number 3). In terms of sharing an identity, the only thing that
matters is how the rules interact, namely whether there’s a connection between elements in
the condition of one rule and elements in the actions of another rule.

All literal values, for example all of the attribute in Figure 4.4 (superstate, number,
intermediate1, etc.) are considered members of the NULL identity.

Variable identities can also be mapped to the NULL identity, which means that any elements
in the final rule that share that identity will not be variablized. When this happens, we say
that the identity has been literalized. There are two ways that a rule interaction can effect
an identity literalization:

1. If a RHS action of one rule creates a WME element using a constant, literal value in
an element and a LHS condition tests that element, then the identity of the condition’s
variables is literalized and mapped to the NULL identity.

Because the variable in the condition matched a rule that will always create the same
constant, literal value, the condition’s variable must have that same value. Otherwise,
it would not have matched.

4.3. OVERVIEW OF THE EBC ALGORITHM 97

2. If a RHS action of one rule creates a WME element using a variable and a LHS condition
tests that that element is a specific value, then the identity of the action’s variables is
literalized and mapped to the NULL identity.

Because the condition requires that the rule that created the matched WME to have
a specific constant, literal value, the action’s variable must have that same value.
Otherwise, it would not have created something that matched the condition.

Identities are the basis of nearly every mechanism in explanation-based chunking. EBC’s
identity analysis algorithm, which is a fairly complicated process, determines all shared
identities in an explanation trace. Figure 4.5 shows an explanation trace after identity
analysis has been performed. Elements that share an identity in the figure are colored the
same.

Figure 4.5: An explanation trace after identity analysis

While it’s not readable in this figure, note that each identity is assigned a numeric ID. Both
the explainer and the visualizer annotate elements of an explanation with the identity ID
in square brackets. These numbers are simply syntactic sugar to ease debugging and make

98 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

Figure 4.6: Note that the two rows on the bottom indicate when each component occurs during
Soar’s processing.

traces easier to understand. Underneath the hood, every test in a condition has a pointer
to more complicated identity data structure that will be discussed in more detail in Section
4.4.1 on the identity graph.

4.3.2 The Five Main Components of Explanation-Based Chunking

1. Identity analysis
This component determines which variables in an explanation trace share the same
identity. It also determines which identities are ineligible for variablization because
they were tested against literal values in some rules.

Note that this component has two distinct mechanisms that occur at very different
times. The first mechanism, identity propagation, occurs constantly while problem-
solving in the substate. The second mechanism, identity graph manipulation, occurs
during the learning episode.

2. Relevant operator selection knowledge tracking]
This component also occurs before the learning episode. Whenever an operator is se-
lected, it analyzes what rule firings contributed necessary operator selection preferences
and caches them in all rule instances that tests that operator.

3. Constraint tracking
This component keeps track of every value or relational constraint (e.g. <> <x>, >=
3.14, << disjunction of constants >>) placed on the various variables that share
an identity. It is used by the rule formation component to make sure that the learned
rule only fires when all constraints required are met.

4.4. WHAT EBC DOES PRIOR TO THE LEARNING EPISODE 99

4. Operationality analysis
This component determines which conditions in an explanation trace tested working
memory elements in a superstate. The rule formation component will use these condi-
tions as a basis for the left-hand side of the chunk. While it does have a few key new
differences, this is the one step that is similar to previous versions of chunking.

5. Rule Formation
The above four components performed the analysis that EBC needs to form a general
but correct rule. This final component uses the results of that analysis to actually
build the new rule. This is a complex component that has seven different stages. If a
valid rule is created, Soar immediately adds the rule to production memory.

The following sections will describe each component in more detail.

4.4 What EBC Does Prior to the Learning Episode

While most of the work that explanation-based chunking performs occurs during the learning
episode, i.e. after a rule in a substate fires and Soar detects that a result will be created,
some critical aspects of the analysis it performs also occur prior to the learning episode,
during problem-solving in the substate. The two points when that happens is when a rule
fires in a substate and when an operator is selected in a substate.

4.4.1 Identity Assignment and Propagation

Each instantiation describes the working memory elements that matched each condition and
the working memory elements and preferences that are created by each action. With the
introduction of EBC, all instantiations now also store the underlying explanation behind
each condition and action as defined by the original rule: which elements in conditions
are variables and which ones are literal constants, which variables are the same variables,
what constraints must be met on the values of each variable and any relationships between
variables.

EBC uses this underlying logic to determine the identities of objects used during the problem-
solving. Identities are not simply IDs. Each identity is a declarative object that describes a
set of variables across multiple rule firings and the various properties they hold.

When an instantiation is created, EBC assigns all elements of every condition and action
to an identity, creating new identities as necessary. Identities are created and propagated
using the following rules:

1. If the same variable appears in multiple places in the same rule, it must be assigned
the same identity.

2. The NULL Identity is assigned to any element with a literal value in the original rule.

100 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

3. A new identity is created and assigned for:

(a) All right-hand side action elements that produce a new Soar identifier in the
substate

These are also known as unbound RHS variables.

(b) All variable elements of conditions that matched superstate WMEs

It is important to note that if two conditions both match the same superstate
WME, each condition is considered independent. This means that each condition
is assigned new identities for each of its elements and will produce its own condi-
tion in the final learned rule. This is a key way that EBC differs from previous
versions of chunking.

4. An existing identity is propagated for:

(a) Any condition element that matched a substate WME with existing identities

Each element is assigned the identity found in the corresponding element of the
action of the rule that created that WME. This propagates identities forward
through the explanation trace, which allows us to represent that the variable in
the condition refers to the same object as the variable in the action of the other
rule.

(b) Any element that matches special working memory elements called singletons
are assigned the same identity.

Singletons are working memory elements that are guaranteed to only have a single
possible value in a state. The most important singleton is the local ^superstate
singleton, which is an architecturally created WME that links the substate to the
superstate, for example (S2 ^superstate S1). Since we know that it’s impossi-
ble for there to be two superstate features in a state, all conditions that test that
singleton WME will be assigned the same identities.

While there are a variety of built-in singletons for architecturally-created WMEs,
users can also specify their own domain-specific singletons to eliminate unneces-
sary generality when learning. See section 4.7.3.2 for more information about user
singletons. The full list of architecturally-created singletons can be found in the
chunk command’s help entry in section 9.4.1.

Note that rule 1 may conflict with other rules. For example, if a variable appears in two
different conditions, then two different identities may propagate into each one of them. In
such cases, rule 1 is always enforced and propagation is ignored. During the second phase of
identity analysis, which occurs during the actual learning episode, EBC will re-examine all
of the condition-action pairs as it performs a backward traversal of the explanation trace and
fix the missing propagations. It does this by creating and manipulating an identity graph
that can correctly incorporate all identity relationships.

4.4. WHAT EBC DOES PRIOR TO THE LEARNING EPISODE 101

4.4.2 Relevant Operator Selection Knowledge Tracking

As described in the beginning of this chapter, chunking summarizes the processing required
to produce the results of subgoals. Traditionally, the philosophy behind how an agent should
be designed was that the path of operator selections and applications from an initial state
in a substate to a result would always have all necessary tests in the operator proposal
conditions and any goal test, so only those items would need to be summarized. The idea
was that in a properly designed agent, a substate’s operator evaluation preferences lead to
a more efficient search of the space but do not influence the correctness of the result. As a
result, the knowledge used by rules that produce such evaluation preferences should not be
included in any chunks produced from that substate.

In practice, however, it may make sense to design an agent so that search control does affect
the correctness of search. Here are just two examples:

1. Some of the tests for correctness of a result are included in productions that prefer
operators that will produce correct results. The system will work correctly only when
those productions are loaded.

2. An operator is given a worst preference, indicating that it should be used only when all
other options have been exhausted. Because of the semantics of worst, this operator
will be selected after all other operators; however, if this operator then produces a
result that is dependent on the operator occurring after all others, this fact will not be
captured in the conditions of the chunk.

In both of these cases, part of the test for producing a result is implicit in search control
productions. This move allows the explicit state test to be simpler because any state to which
the test is applied is guaranteed to satisfy some of the requirements for success. However,
chunks created in such a problem space will not be correct because important parts of the
superstate that were tested by operator evaluation rules do not appear as conditions. The
chunks would not accurately summarize the processing in that problem state. The tracking
of Relevant Operator Selection Knowledge (ROSK) is a way to address this issue.

Relevant operator selection knowledge is the set of necessary operator evaluation preferences
that led to the selection of an operator in a subgoal. As previously described, whenever Soar
learns a rule, it recursively backtraces through rule instances to determine which conditions
to include in the final chunk or justification. With the ROSK, not only does Soar backtrace
through each rule instance that created a matched working memory element, but it also
backtraces through every rule instance that created preferences in the ROSK for any operator
that gave those matched WMEs o-support. By backtracing through that additional set of
preferences at each step of the backtrace, an agent will create more specific chunks that
incorporate the goal-attainment knowledge encoded in the operator evaluation rules.

Specifically, this component does two things:

1. When an operator is selected, it analyzes the operator preferences that led to the
decision, and caches any operator selection knowledge that played a necessary role in
the selection.

102 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

All necessity preferences, i.e. prohibit and require preferences, are always included
in the ROSK since they inherently encode the correctness of whether an operator
is applicable in a problem space. In contrast, some desirability preferences (rejects,
betters, worses, bests, worsts and indifferents) are included in the ROSK depending
on the role they play in the selection of the operator.

How Soar determines which of those preferences to include in the ROSK is determined
by the preference semantics it uses to choose an operator. During the decision phase,
operator preferences are evaluated in a sequence of seven steps or filters, in an effort
to select a single operator, as described in Section 2.4.2. Each step, or filter, handles
a specific type of preference. As the preference semantics are applied at each step
to incrementally filter the candidate operators to a potential selected operator, EBC
incrementally adds operator preferences to the ROSK based on the preferences that
were instrumental in applying each filter. A more detailed explanation of the logic
used at each step can be found in Section 4.6.15.

2. When an o-supported rule matches, EBC caches the operator’s ROSK in the instanti-
ation of that rule.

Since that selection knowledge was necessary to select the operator needed for the
rule to match, chunking must backtrace through that knowledge. The operationality
analysis component uses the cached ROSK to do this and incorporate the necessary
operator selection reasoning knowledge into the learned rule. For some types of agent
designs, including operator selection knowledge is needed to ensure correctness.

4.5 What EBC Does During the Learning Episode

All of the previously discussed steps occurred during problem-solving in the substate as rules
matched and operators were selected. It is worth noting that the analysis performed prior to
the learning episode is persistent and can be shared across learning episodes. In other words,
EBC can repeatedly re-use that analysis if it learns multiple chunks in the same substate.

Every time a rule fires in a substate, Soar checks to see if any of the working memory elements
created by the rule qualify as results. This is when the actual learning episode begins.

4.5.1 Calculating the Complete Set of Results

A chunk’s actions are built from the results of a subgoal. A result is any working memory
element created in the substate that is linked to a superstate. A working memory element is
linked if its identifier is either the value of a superstate WME, or the value of an augmentation
for an object that is linked to a superstate.

The results produced by a single production firing are the basis for creating the actions
of a chunk. A new result can lead to other results by linking a superstate to a WME in
the substate. This WME may in turn link other WMEs in the substate to the superstate,
making them results. Therefore, the creation of a single WME that is linked to a superstate

4.5. WHAT EBC DOES DURING THE LEARNING EPISODE 103

can lead to the creation of a large number of results. All of the newly created results become
the basis of the chunk’s actions.

4.5.2 Backtracing and the Three Types of Analysis Performed

When learning a new rule, EBC performs a dependency analysis of the productions that
fired in a substate – a process called backtracing. Backtracing works as follows. For each
instantiated production that creates a subgoal result, backtracing examines the explanation
trace to determine which working memory elements matched each condition. If the working
memory element is local to the substate, then backtracing recursively examines the instan-
tiation that created that condition’s matched working memory element. Thus, backtracing
traces backwards through all rules that fired and created working memory elements that
were used to produce a result.

If an instantiation being backtraced through tested a selected operator, EBC will backtrace
through each instantiation that created a preference in that operator’s relevant operator
selection knowledge set. This behavior is off by default and can be enabled with chunk

add-osk on (See Section 9.4.1.5.)

Multiple components of EBC perform their work during backtracing: operationality analysis,
identity analysis and constraint tracking. The following sections will discuss what aspects
of the agent’s problem-solving are analyzed during backtracing.

4.5.2.1 Operationality Analysis

The traditional core function of chunking’s backtracing is to determine which conditions in
the working memory trace tested working memory elements accessible to the superstate.
These conditions will form the left-hand side of the rule.

The determination of which conditions to include is analogous to the concept of operationality
in explanation-based techniques. In classic EBL literature, operationality is typically defined
as nodes in the explanation trace that are “efficiently calculatable”. In terms of Soar’s
problem-state computational model, operationality can be defined as any condition that
tests knowledge linked to a superstate.

As EBC is backtracing through rules that fired in a substate, it collects all of these operational
conditions. Once the entire explanation trace is traversed, the operationality analysis will
have determined exactly what superstate knowledge was tested during the process of creating
a result, which it then uses as the basis for the left-hand side of the newly learned rule.

Note: Soar 9.6.0’s explanation-based approach has led to one key change to Soar’s opera-
tionality analysis. In previous versions of chunking, chunking would never add two conditions
to a chunk that matched the same superstate working memory element. This made sense
because chunking was based on a generalization of the working memory trace. More than
one condition that tested the same WME would be redundant. Explanation-based chunk-
ing, though, learns based on the reasoning within the original hand-written rules. Since the

104 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

reasoning behind each of the two conditions may be different even if they matched the same
WME, EBC must always add both conditions. (Note that there are some exceptions. See
Section 4.7.3.2 on superstate singletons and user singletons.)

Negated conditions are included in a trace in the following way: when a production fires, its
negated conditions are fully instantiated with its variables’ appropriate values. This instan-
tiation is based on the working memory elements that matched the production’s positive
conditions. If the variable is not used in any positive conditions, such as in a conjunctive
negation, a dummy variable is used that will later become a variable in a chunk. If the
identifier used to instantiate a negated condition’s identifier field is linked to the super-state,
then the instantiated negated condition is added to the trace as a negated condition. In all
other cases, the negated condition is ignored because the system cannot determine why a
working memory element was not produced in the subgoal and thus allowed the production
to fire.

4.5.2.2 Identity Analysis

The first phase of identity analysis, forward identity propagation, occurred as rules fired and
instantiations were recorded. Unfortunately, forward propagation alone will not produce
correct identities. We previously gave one reason why this is the case – conditions may have
conflicting identities propagated forward – but there are other, more complicated reasons as
well that are beyond the scope of this document. What is important to know is that a second
phase of identity analysis will be performed during backtracing that will refine and correct the
limitations of the initial forward propagation of identity. This second phase achieves these
corrections by building an identity graph, which represent the identities involved during
problem-solving, and manipulating it as it backtraces through the explanation trace.

The Identity Graph

The identity graph initially contains a node for each identity used in the explanation trace.
Each node can have multiple edges that point to children identities and a single directed
join edge that initially points back to itself. As the agent backtraces through the explana-
tion trace, EBC will manipulate the identity graph based on the condition-action pairs it
encounters.

1. Joining identities
If a condition matches an action with a conflicting identity, EBC performs a join
operation between the two identities. This chooses one identity as the joined identity
and points the join edges of the other identity and any previously joined identities to
the new joined identity.

Note that any time EBC uses an element’s identity, it is actually using the joined
identity.

2. Literalizing identities
If a condition/action with a variable element matches an action/condition with a literal

4.5. WHAT EBC DOES DURING THE LEARNING EPISODE 105

element, EBC marks the identity as literalized. This means that any conditions in the
final chunk that have elements with that identity will be considered to have the NULL
identity, just like constants, and will not be variablized. Instead, the matched value
will be used for that element.

4.5.2.3 Constraint Tracking

Our definition of operationality is very clear and allows us to almost trivially determine
which conditions we should include in a learned rule, but it does have one shortcoming:
non-operational conditions, which are ones that don’t test working memory elements in
the superstate, can transitively place constraints on the values of variables in operational
conditions that will appear in a chunk. If our learning algorithm does not include these
constraints, the learned rule can apply to situations where the previous substate reasoning
could not have occurred, which means that the learned rule is over-general.

To handle this limitation, EBC keeps track of all constraints found in
non-operational conditions that it encounters while backtracing in the following
manner:

• It stores constraints on the value a single identity, for example >= 0, < 23.

• It stores relational constraints between two identities, for example > <min>, < <max>

or <> <other>.

• EBC stores all of these constraints based on the underlying identities, not the variables
used. For example, if a variable <foo> had the constraint <> <other>, EBC would
record that the variables that share the identity of <foo> cannot have the same value
as variables that share the identity of <other>.

4.5.3 Rule Formation

Figure 4.7:

There are seven distinct, sequential stages to rule formation.
The following sections will give a brief overview of each one.

4.5.3.1 Condition and Action Creation

This stage creates the basis for the left-hand and right-hand
side of the rule. To create the initial conditions of the chunk,
it copies all conditions in the explanation trace that were
flagged as operational during backtracing. These initial con-
ditions contain literal values for each element. To form the
actions of the chunk, it creates copies of the actions that
produced each of the result and all children of those results
that came along for the ride.

106 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

4.5.3.2 Enforcement of Constraints

This stage adds all constraints on non-operational conditions that were collected during
backtracing. As previously described, each constraint is indexed in terms of the identity it
constrains. So, if the identity being constrained exists in one of the conditions of the learned
rule, EBC will enforce the constraint by adding a new test to that condition.

One situation in which attaching a constraint can be tricky occurs when the constrained
identity has been literalized but the constraint itself refers to an identity that has not been
literalized, for example { > <x> 3 }. While that constraint references a condition element
that can only match a value of 3, the relationship between 3 and the identity of <x> must still
hold (assuming <x> appears in a different element somewhere else in the rule.) Since these
constraints still need to be enforced to ensure a correct rule, EBC will invert the constraint
and attach it to a variable in another condition. In this example, it would add a < 3 to some
other condition with an element that had <x>’s identity.

4.5.3.3 Identity-Based Variablization

To achieve any useful generality in chunks, identifiers of actual objects must be replaced
by variables when the chunk is created; otherwise chunks will only ever fire when the exact
same objects are matched. At this point in the algorithm, all of the real work needed to
determine the most general but correct variablization has already been performed by the
identity analysis component.

So, this step simply needs to replace all elements with non-NULL identities with variables,
making sure that elements with the same joined identity are assigned the same variable.
This step also makes sure to skip and elements with identities that have been flagged as
literalized.

4.5.3.4 Merging Redundant Conditions

Any two conditions in the learned rule that share the same identities in all three elements can
be combined. In such cases, it is logically impossible for those two conditions to match two
different WMEs and cause the same rules to match in the substate. (If the two conditions
were to match two different WMEs, at least one of the other rules in the explanation trace
that had unified the two conditions would not have matched.) As a result, EBC can safely
merge those two conditions without losing generality.

4.5.3.5 Polishing Conditions

EBC polishes the conditions of the learned rule by pruning unnecessary constraints on lit-
eralized elements and replacing multiple disjunction constraints with a single simplified dis-
junction.

4.5. WHAT EBC DOES DURING THE LEARNING EPISODE 107

1. Merging disjunctions: If an element in a condition has two disjunction tests, the
constraints will be merged into a single disjunction that contains only the shared val-
ues. { << a b c >> << b c d >> <x>} becomes { <<b c >> <x> }, because it is
impossible for <x> to be either a or b. This will also eliminate any duplicate disjunc-
tions.

2. Throwing out unnecessary constraints: If an element in a condition has been
literalized but also has a literal constraint on its value, then the constraint is unneces-
sary and will be thrown out. For example, <s> ^value { < 33 23 } becomes <s>

^value 23.

4.5.3.6 Validating Rule and Repairing Unconnected Conditions

At this point, the rule is essentially formed. Chunking must now make sure that the learned
rule is fully operational and can be legally added to production memory. A fully operational
rule does not have any conditions or actions that are not linked to a goal state specified in
the rule.

If an unconnected action or condition is found, EBC will attempt to repair the rule by adding
new conditions that provide a link from a state that is already tested somewhere else in the
rule to the unconnected condition or action.

To repair the rule, EBC performs a search through working memory to find the shortest
path of working memory elements that lead from a state identifier in the rule to a WME
with the identifier in the unconnected condition or action. A new condition is then added
for every WME in that found path, which is then variablized.

Note that there may be multiple paths from a state to the unconnected identifier. EBC does
a breadth-first search, so it will find one with the shortest distance.

4.5.3.7 Re-ordering Conditions

Since the efficiency of the Rete matcher depends heavily upon the order of a production’s
conditions, the chunking mechanism attempts to sort the chunk’s conditions into the most
favorable order. At each stage, the condition-ordering algorithm tries to determine which
eligible condition, if placed next, will lead to the fewest number of partial instantiations when
the chunk is matched. A condition that matches an object with a multi-valued attribute will
lead to multiple partial instantiations, so it is generally more efficient to place these conditions
later in the ordering. This is the same process that internally reorders the conditions in user-
defined productions, as mentioned briefly in Section 2.3.1.

108 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

4.6 Subtleties of EBC

4.6.1 Relationship Between Chunks and Justifications

Chunks are closely related to another type of rule called a justification. Justifications are
also created when a substate creates a result for a superstate, the difference being that
justifications are only built when learning is off. These justifications are needed to decide
whether the working memory elements in the result should get i-support or o-support in the
superstate. To do that, Soar needs to determine whether any rules involved in the creation
of the result tested the selected operator in the superstate, which is exactly the same type
of analysis that chunking does.

As a result, Soar uses a limited version of the chunking algorithm to do that. It analyzes
the substate problem-solving and learns a new, temporary rule, a “justification”, which is
added to production memory. If this temporary rule tests an operator in the superstate, it
gives the result o-support. (Note that when learning is on, a justification is not needed since
the chunk will provide the correct support.)

Justifications use all the components described in the following sections and are even affected
by the current chunk settings.1 You can even print justifications out like other rules. The
only differences between chunks and justifications are:

1. Every condition and action in a justification contain the literal values that matched.
Justifications contain no variables.2

2. Justifications don’t contain any of the value constraints that a chunk would have.

3. Justifications get removed from production memory as soon as their conditions no
longer match.

4.6.2 Chunk Inhibition

If a newly learned chunk was immediately added to production memory, it would immediately
match with the same working memory elements that participated in its creation. This can
be problematic if the production’s actions create new working memory elements. Consider
the case where a substate proposes a new operator, which causes a chunk to be learned that
also proposes a new operator. The chunk would immediately fire and create a preference for
another new operator, which duplicates the operator preference that was the original result
of the subgoal.

To prevent this, Soar uses inhibition. This means that each production that is built during
chunking is considered to have already fired with an instantiation based on the exact set of

1 Even though they don’t contain variables, justifications can be over-general because they don’t incor-
porate enough knowledge, for example, operator selection knowledge.

2 Justifications can have variables in the negated conditions and negated conjunctions of conditions. They
just don’t have any variables in its positive conditions.

4.6. SUBTLETIES OF EBC 109

working memory elements used to create it.

Note that inhibition does not prevent a newly learned chunk from immediately matching
other working memory elements that are present and creating a new instantiation.

4.6.3 Chunks Based on Chunks

When a problem has been decomposed into more than one substate, a single result can
produce multiple chunks. This process is called bottom-up chunking. The first chunk is
produced in the substate where the problem-solving that produced the result occurred. The
next chunk is based on the implicit match of the first chunk in one of the higher level problem-
spaces. If that match is lower than the state that the result is being returned to, Soar will
backtrace through the chunk match and learn a second chunk (relative to the substate that
the chunk matched in). This process continues until it learns a chunk that only creates
working memory elements in the same state that it matched in.

4.6.4 Mixing Chunks and Justifications

If an agent is using the only or except setting, then justifications will be built in states
where learning is disabled and chunks will be built in states where learning is enabled. In
these situations, justifications also serve another purpose: they provide an explanation of
the results for future learning episodes in states that do have learning on. EBC does this
by retaining all of the extra information that chunks have but justifications do not, namely
those extra tests and how things would have been variablized. This allows EBC to learn
chunks from justifications as readily as it can from hand-written rules and other chunks.

When mixing justifications and chunks, users may want to set the explainer to record the
learning episodes behind justifications. This allows one to examine the reasoning behind a
justification just like you would a chunk, which may be important if that justification later
participates in the formation a chunk. See Section 9.6.3 for more information about the
explainer’s settings.

4.6.5 Generality and Correctness of Learned Rules

Chunking is intended to produce the most general rule that is also correct.

Generality is a measure of the space of similar situations that a rule can apply to. A more
general rule can be applied to a larger space of similar situations. A rule is considered over-
general if it can apply to situations in which the original problem-solving would have never
occurred.

Correctness is a requirement that the learned rule produces the exact same results that the
original problem-solving would have produced. In other words, if we inhibited a correct
chunk so that it did not fire, the agent should subgoal, execute the same substate reasoning

110 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

that it previously performed when learning the chunk, and produce the same results that
the learned chunk produces.

Note that an over-general rule is an incorrect rule, but not all incorrect rules are over-general.

4.6.6 Over-specialization and Over-generalization

Explanation-based chunking was pursued to address the main limitation of traditional chunk-
ing: over-specialized rules that were very specific and could not be applied to many other situ-
ations. Specifically, EBC’s identity-based variablization and constraint tracking/enforcement
has eliminated the core source of this issue.

The nature of EBC’s algorithm does add two new situations in which rules may become over-
specialized. Section 4.6.16 discusses how variables used in certain RHS functions need to be
literalized to maintain correctness, which can cause overspecialization. Section 4.6.7 discusses
how testing or augmenting a previous result creates non-operational rules that require repair,
a process which may sometimes over-specialize a rule. Note that this situation can easily be
avoided and, even when it does occur, may not add much unnecessary specificity to learned
rules.

While over-specialization may no longer be a common problem, it is still possible to get
over-general rules. Several of the sources of correctness issues listed in the next section can
produce over-general rules in certain situations.

4.6.7 Previous Results and Rule Repair

An agent may learn a slightly over-specialized rule when EBC repairs a rule that has un-
connected conditions, which are conditions that have an identifier that is not linked to one
of the states referenced in the rule. Such rules are illegal and cannot be added to Soar’s
production memory.

Rules that require repair are caused by substate problem-solving that tests or augments a
previous result. A previous result is a working memory element that was originally created
locally in the substate but then later became a result when a rule fired and connected it
to the superstate. (At which point a chunk must have been learned.). If another substate
rules later matches or augments such a previous result WME using a path relative to the
local substate, then EBC will have problems. It will know that the WME is in the superstate
– so conditions that test the WME are considered operational and augmentations on that
identifier are considered results – but it won’t know where in the superstate that working
memory is located is and how it should be referenced in the learned rule, because the problem
solving referenced the result relative to the local substate.

As described in Section 4.5.3.6, EBC repairs the rule by adding new grounding conditions
that provide a link from a state, which is tested somewhere else in the rule, to the unconnected
condition or action. It does this by searching through working memory to find the shortest
path from a state to the identifier behind the unconnected element. It then variablizes those

4.6. SUBTLETIES OF EBC 111

conditions appropriately.

Since the conditions are based purely on what happened to be in working memory at that
point and nothing in the explanation dictated that particular path found during the search,
the learned rule may be over-specialized. The chunk will only match future situations where
the previous result can be found on that same path. Fortunately, new chunks can be learned
to ameliorate this. If a similar situation is encountered in the future, but with a different path
to the unconnected element, the chunk won’t fire, because the added grounding conditions
won’t match, which should cause the agent to subgoal and learn a similar chunk with a
different set of grounding conditions.

Note that if an agent designer expects that the path to the previous result found by the
search will always exist, a repaired rule should match just as generally as an unrepaired rule.

But if this is not the case, an agent designer can avoid this situation by modifying the rules
that test or augment the substructure of a previous result. If those rules are modified so
that they match the previous results by referencing them relative to the superstate than the
the local substate, EBC will be able create a valid rule without any repair.

To detect when this is happening, use the chunk stats command. (See section 9.4.1.2 It will
tell you if any of an agent’s learned rules that required repair. If you instruct the explainer
to record the chunk, you can also see whether a specific chunk was repaired by looking at
the chunk’s individual stats

4.6.8 Missing Operator Selection Knowledge

If an agent uses rules that create operator preferences to choose amongst multiple operators
in the substate, it is possible that the reasoning behind those rules needs to be incorporated
in any rule learned. This topic is discussed in greater detail in Section 4.4.2.

EBC will incorporate relevant operator selection knowledge if you enable the chunk setting
add-osk, which is off by default. (See Section 9.4.1.5.)

4.6.9 Generalizing Over Operators Selected Probabilistically

If the problem-solving in a substate involves operators that were selected probabilistically,
chunking will not be able to summarize the agent’s reasoning into a correct rule. For a rule
to be correct, it must always produce the same result that the substate would have produced
if the learned rule was not in production memory. Since a different operator could have been
selected which could have resulted in different problem-solving, the substate could easily
produce different results than any chunk learned in that substate.

Future versions of chunking will provide an option to prevent rules from forming when a
probabilistically-selected operator was chosen during problem-solving. Until then, agent
engineers can disable learning in states that involve such reasoning.

112 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

4.6.10 Collapsed Negative Reasoning

Over-general chunks can be created when conditions in the explanation trace test for the
absence of a working memory elements in the substate. Since there is no clear way for
chunking to generate a set of conditions that describe when a given working memory element
would not exist in a substate, chunking can’t represent that aspect of the problem-solving.

Chunking can include negated tests if they test for the absence of working memory elements
in the superstate, though. So, the agent engineer can avoid using negated conditions for local
substate data by either (1) designing the problem-solving so that the data that is being tested
in the negation is already in the superstate or (2) making the data a result by attaching it
to the superstate. This increases the number of chunks learned, but a negated condition of
knowledge in the superstate can be incorporated correctly into learned rules.

Note that there are agent design patterns where local negations are perfectly safe to ignore,
so Soar allows local negations by default. In some agents, they are common enough that
turning the filter on prevents any rules from being learned.

If you suspect that a rule may be over-general because of locally negated condition, you
can verify whether such a condition was encountered during backtracing by using the chunk

stats command and explain stats command. See Sections 9.4.1.2 and 9.6.3.8 for more
information.

If such chunks are problematic, turning off chunking’s correctness filter
allow-local-negations will force Soar to reject chunks whose problem-solving involved a
local negation.

4.6.11 Problem-Solving That Doesn’t Test The Superstate

Over-general chunks can be created if a result of a subgoal is dependent on the creation
of an impasse within the substate. For example, processing in a subgoal may consist of
exhaustively applying all the operators in the problem space. If so, then a convenient way to
recognize that all operators have applied and processing is complete is to wait for a state no-
change impasse to occur. When the impasse occurs, a production can test for the resulting
substate and create a result for the original subgoal. This form of state test builds over-
general chunks because no pre-existing structure is relevant to the result that terminates the
subgoal. The result is dependent only on the existence of the substate within a substate.

In these cases, EBC will learn a chunk with no conditions, which it will reject. But the
superstate result is still created by the substate rule that matched. If a new rule is learned
that uses that result, it will be over-general since the rule does not summarize the reasoning
that led to the result, namely that all operators were exhaustively applied.

The current solution to this problem is a bit of a hack. Soar allows an agent to signal to
the architecture that a test for a substate is being made by testing for the ^quiescence t

augmentation of the subgoal. If this special test is found in the explanation trace, EBC will
not build a chunk. The history of this test is maintained, so that if the result of the substate

4.6. SUBTLETIES OF EBC 113

is then used to produce further results for a superstate, no higher chunks will be built.

4.6.12 Disjunctive Context Conflation

An incorrect rule can be learned when multiple rules fire in a substate that test different
structures in the superstate but create the same WME in the substate. For example, there
may be a rule that can match the superstate in several different ways, each time elaborating
the local state with a WME indicating that at least one of these qualifying superstate WMEs
existed. In such a situation, the rule would fire multiple times, but the result of the rule
firings will be collapsed into creating a single WME in the substate.

If this WME is then tested to create a result on the superstate, the chunk that is subsequently
created can produce different behavior than the substate would have. In the original subgoal
processing, multiple matches produced one substate WME, but that one substate WME only
created a single result in the superstate. The chunk on the other hand will match multiple
times for each of the items that previously created the substate WME. And then, each one
of those matches will create its own distinct result in the superstate. Since this is different
behavior than the original substate, this rule would be considered incorrect.

If it were possible, EBC should learn a disjunctive conjunctive condition, with each dis-
junction being the superstate conditions tested by each substate rule that had previously
created the substate WME that was repeatedly asserted. This is why this potential source
of incorrect rules is called disjunctive context conflation.

If this type of reasoning is needed, agents can move the conflating WME to the superstate.
The rule learned would then produce only one result regardless of the number of rules that
repeatedly created that WME.

4.6.13 Generalizing knowledge retrieved from
semantic or episodic memory

Generalizing problem-solving based on knowledge recalled from an external memory system
can be problematic for three main reasons.

1. Knowledge can change after the learning episode

Semantic knowledge can be modified by the agent. Different semantic knowledge can
effect different problem-solving, in which case a rule based on the original problem-
solving would be incorrect.

2. Justification for a memory recall is opaque to agent

EBC does not have access to the reasoning behind why a piece of knowledge was
recalled from a memory system. For example, consider the case of a semantic memory
that is recalled because it has the highest level of activation at a particular time. In a
future situation, the same semantic memory may not be the most active, in which case

114 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

something else would be recalled and different problem-solving could occur. Because
of that possibility, the original rule is not guaranteed to produce the same result and
hence has the potential to be incorrect. (Note that this can also occur with episodic
memory queries.)

3. Knowledge from semantic or episodic memory recalled directly into the
substate is considered local

To understand why this is a problem, remember that a chunk’s conditions are based on
the conditions in the explanation trace that tested knowledge linked to a superstate.
(See section 4.5.2.1 for more information.) If semantic or episodic memory is recalled
directly into the substate, then any conditions that test that recalled knowledge is
considered local to the substate and will not be included as a condition in the chunk.
So, even though the substate reasoning required some piece of semantic knowledge to
exist, the chunk will not require it. And, since the learned rule is not incorporating
some of the reasoning and constraints that involved the recalled knowledge, the rule
may be over-general.

To avoid this situation, an agent can retrieve the knowledge in a higher-level state
rather than the substate in which the rule is learned.

4.6.14 Learning from Instruction

Note that some agent designs, for example an agent that learns by instruction, can take
advantage of the fact that knowledge recalled from semantic or episodic memory directly
into the substate is considered local. For such agents, a rule that is directly dependent on
the instructions being in working memory would be useless. The agent would need to get the
instruction every time it wanted to perform the task again, defeating the purpose of learning
by instruction.

One technique that can be used to produce a more general rule which is not directly depen-
dent on the instruction being in working memory is to first store the instructions in semantic
or episodic memory. When the agent is in a substate that it wants to learn a rule based on
the instructions, it recalls the instructions from semantic or episodic memory directly into
the substate. Because that knowledge is not linked to the superstate, any rules learned in
that substate will not be directly dependent on the existence of the instructions.

Since conditions that test the recalled knowledge are not incorporated into the learned rule, it
is very easy to learn over-general chunks. To avoid this, any substate rules which test recalled
knowledge must also test superstate structures that correspond to the recalled knowledge.
Doing so removes the need for the instructions to exist while avoiding over-generality by
ensuring that structures in the superstate corresponding to those instructions are still being
tested. Those conditions that test superstate WMEs will be generalized and included in the
chunk, but the undesired portion of the reason that they matched will not be, namely the
fact that the superstate knowledge corresponded to recalled instructions.

4.6. SUBTLETIES OF EBC 115

4.6.15 Determining Which OSK Preferences are Relevant

The following outline describes the logic that happens at each step. For a more detailed
description of the various filters (but not the ROSK) see Section 2.4.2 on page 21. Note that
depending on the set of preferences being processed, impasses may occur at some of these
stages, in which case, no operator is selected and the ROSK is emptied. Moreover, if the
candidate set is reduced to zero or one, the decision process will exit with a finalized ROSK.
For simplicity’s sake, this explanation assumes that there are no impasses and the decision
process continues.

Require Filter If an operator is selected based on a require preference, that preference is
added to the ROSK. The logic behind this step is straightforward, the require preference
directly resulted in the selection of the operator.

Prohibit/Reject Filters If there exists at least one prohibit or reject preference, all pro-
hibit and reject preferences for the eliminated candidates are added to the ROSK. The
logic behind this stage is that the conditions that led to the exclusion of the prohibited
and rejected candidates is what allowed the final operator to be selected from among
that particular set of surviving candidates.

Better/Worse Filter For every candidate that is not worse than some other candidate,
add all better/worse preferences involving the candidate.

Best Filter Add any best preferences for remaining candidates to the ROSK.

Worst Filter If any remaining candidate has a worst preference which leads to that candi-
date being removed from consideration, that worst preference is added to the ROSK.
Again, the logic is that the conditions that led to that candidate not being selected
allowed the final operator to be chosen.

Indifferent Filter This is the final stage, so the operator is now selected based on the
agent’s exploration policy. How indifferent preferences are added to the ROSK depends
on whether any numeric indifferent preferences exist.

1. If there exists at least one numeric indifferent preference, then every numeric
preference for the winning candidate is added to the ROSK. There can be multi-
ple such preferences. Moreover, all binary indifferent preferences be- tween that
winning candidate and candidates without a numeric preference are added.

2. If all indifferent preferences are non-numeric, then any unary indifferent prefer-
ences for the winning candidate are added to the ROSK. Moreover, all binary
indifferent preferences between that winning candidate and other candidates are
added.

The logic behind adding binary indifferent preferences between the selected operator
and the other final candidates is that those binary indifferent preferences prevented a
tie impasse and allowed the final candidate to be chosen by the exploration policy from
among those mutually indifferent preferences.

116 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

Note that there may be cases where two or more rules create the same type of preference for
a particular candidate. In those cases, only the first preference encountered is added to the
ROSK. Adding all of them can produce over-specific chunks. It may still be possible to learn
similar chunks with those other preferences if the agent subgoals again in a similar context.

Note also that operator selection knowledge is not tracked and incorporated into chunks by
default. The setting must be turned on via the chunk command’s add-osk setting. See
Section 9.4.1 on page 232 for more information.

The ROSK also affects the conditions of justifications, so the add-desirability-prefs

setting does have an effect on the agent even if learning is turned off.

4.6.16 Generalizing Knowledge From Math
and Other Right-Hand Side Functions

Explanation-based chunking introduces the ability to learn more expressive rules whose ac-
tions perform arbitrary right-hand side functions with variablized arguments.

It is important to note that this ability is limited. EBC can only learn rules with generalized
RHS functions in its actions when the rule that created the result contained a RHS function.
In many cases, RHS functions will be used in the intermediate rule firings in the explanation
trace. Not only will these intermediate RHS function not appear in the chunk, but any
chunk learned based on their output will become more specific. This is one of the sources of
over-specialization referenced in section 4.6.6 on over-specialization.

RHS function calls in intermediate rule firings are a challenge for EBC to deal with because
the problem-solving may have placed constraints on the intermediate results that cannot be
represented in a single Soar rule.

For example, consider the case of one rule that used a RHS function to add two numbers.
Now consider another rule that matched the output of the RHS function, but only if it was
less than 5. If the second rule matched, it would return the total as a result. How could we
encode the reasoning of those two rules into one rule? Since Soar’s production syntax does
not allow using RHS function as constraints in conditions, there is no way to insure that the
two numbers add up to something less than 5 in a single rule. This is why RHS functions in
intermediate rule firings can cause over-specialization.

Because the chunk’s conditions can’t represent constraints on the output of intermediate RHS
functions, EBC must literalize both the identities of the variables that appear as arguments
to the intermediate RHS function, as well as the identities in any conditions that test the
output of the RHS function. That fixes the value of the RHS function and guarantees that
any constraints in conditions that test the output of that RHS function will be met. While
this will make the learned rule more specific, it will also ensure that the rule is correct.

4.6. SUBTLETIES OF EBC 117

4.6.17 Situations in which a Chunk is Not Learned

Soar learns a chunk every time a subgoal produces a result, unless one of the following
conditions is true:

1. Chunking is off

This corresponds to the command chunk never. See Section 9.4.1 on page 232 for
details of chunk and how to turn chunking on or off.

2. Chunking was only enabled for some states, and the subgoal in question is
not one of them

When chunking is enabled via the only or except command, the agent must specify
which states learning either occurs in or doesn’t occur in, respectively. For the except

setting, Soar will learn rules in all states in which a dont-learn RHS production
action was not executed. Similarly, for the only setting, Soar will learn rules in all
states where a force-learn RHS production action was executed. See Section 3.3.6.7
on page 81 for more information.

This capability is provided for debugging and practical system development, but it is
not part of the theory of Soar.

3. The chunk learned is a duplicate of another production or chunk already in
production memory

In some rare cases, a duplicate production will not be detected because the order of
the conditions or actions is not the same as an existing production.

4. The problem-solving in the substate violated one of the enabled correctness
guarantee filters

During the development of explanation-based chunking, we have developed a list of
possible causes of incorrect chunks. EBC’s correctness guarantee filters detect when
those situations occur and prevents a chunk from being learned.

For example, the allow-local-negations filter will prevent a rule from being formed
if the problem-solving that led to the result was dependent on a condition that tested
whether a subgoal WME doesn’t exist. Since there is no practical way to determine
why a piece of knowledge doesn’t exist, testing a local negation can result in an over-
general and incorrect chunk. See Section 4.7.3.1 on page 119 for more information.

Note that correctness filters have not yet been implemented for all the identified po-
tential sources of correctness issues.

5. The chunking option bottom-only is on and a chunk was already built in the
bottom subgoal that generated the results

With bottom-only chunking, chunks are learned only in states in which no subgoal has
yet generated a chunk. In this mode, chunks are learned only for the “bottom” of the
subgoal hierarchy and not the intermediate levels. With experience, the subgoals at the
bottom will be replaced by the chunks, allowing higher level subgoals to be chunked .
See Section 9.4.1 on page 232 for details of chunk used with the bottom-only setting.

118 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

6. The problem-solving that led to the result contained a condition that tested
the architecturally-created <state> ^quiescence t augmentation

This mechanism is motivated by the chunking from exhaustion problem, where the
results of a subgoal are dependent on the exhaustion of alternatives (see Section 4.6.11
on page 112). If this substate augmentation is encountered when determining the
conditions of a chunk, then no chunk will be built for the currently considered action.
This is recursive, so that if an un-chunked result is relevant to a second result, no chunk
will be built for the second result. This does not prevent the creation of a chunk that
would include ^quiescence t as a condition.

7. The problem-solving in the substate did not test any knowledge in the
superstate

In these cases, the chunk learned does not have any conditions and is not a legal
production. Note that this creates an unusual persistence issue for any results that
came out of the substate. Since a justification or chunk was not learned, there is no
rule in the superstate that can provide either i-support or o-support for the result
that came out of the substate. Consequently, those result WMEs will be completely
dependent on the rules that fired within the substate. So, when the substate is removed,
those results will also be removed.

4.7 Usage

4.7.1 Overview of the chunk command

===

Chunk Commands and Settings

===

? | help Print this help listing

timers [on | OFF] Timing statistics (no args to print stats)

stats Print stats on learning that has occurred

------------------- Settings ----------------------

ALWAYS | never | only | except When Soar will learn new rules

bottom-only [on | OFF] Learn only from bottom substate

naming-style [numbered | RULE] Simple names or rule-based name

max-chunks 50 Max chunks that can be learned (per phase)

max-dupes 3 Max duplicate chunks (per rule, per phase)

------------------- Debugging ---------------------

interrupt [on | OFF] Stop Soar after learning from any rule

explain-interrupt [on | OFF] Stop Soar after learning explained rule

warning-interrupt [on | OFF] Stop Soar after detecting learning issue

------------------- Fine Tune ---------------------

singleton Print all WME singletons

singleton <type> <attribute> <type> Add a WME singleton pattern

singleton -r <type> <attribute> <type> Remove a WME singleton pattern

----------------- EBC Mechanisms ------------------

add-ltm-links [on | OFF] Recreate LTM links in original results

add-osk [on | OFF] Incorporate operator selection knowledge

merge [ON | off] Merge redundant conditions

lhs-repair [ON | off] Add grounding conds for unconnected LHS

rhs-repair [ON | off] Add grounding conds for unconnected RHS

user-singletons [ON | off] Use domain-specific singletons

---------- Correctness Guarantee Filters ---------- Allow rules to form that...

allow-local-negations [ON | off] ...used local negative reasoning

allow-opaque* [ON | off] ...used knowledge from a LTM recall

4.7. USAGE 119

allow-missing-osk* [ON | off] ...tested operators selected using OSK

allow-uncertain-operators* [ON | off] ...tested probabilistic operators

* disabled

See Section 9.4.1 for more detailed information about the chunk command’s settings.

4.7.2 Enabling Procedural Learning

By default, explanation-based chunking is off.

• To turn on chunking: chunk always

• To turn off chunking: chunk never

In real world agents, there may be certain problem spaces in which you don’t want your
agent to learn rules. Chunking has a mechanism to allow agents to dynamically specify the
states in which rules are learned.

• To turn off chunking in all states except ones manually flagged on:

– Use chunk only setting.

– Design an agent rule that executes the RHS action force-learn, which only
matches in states in which you want to learn rules.

• To turn on chunking in all states except ones manually flagged off:

– Use chunk except setting.

– Design an agent rule that executes the RHS action dont-learn, which only
matches in states in which you don’t want to learn rules.

Depending on your agent design, you may want to consider enabling the add-osk option.
As of Soar 9.6.0, EBC does not incorporate operator selection knowledge into learned rules
by default, since there is a performance cost and not all agents designs require its inclusion.
You may want to enable this option if your agent has rules that test knowledge in the
superstate to create operator preferences in the substate. See section 4.4.2 on page 101 for
more information about learning and operator selection knowledge.

See Section 9.4.1 on page 232 for more information about using the chunk command to
enable and disable procedural learning.

4.7.3 Fine-tuning What Your Agent Learns

4.7.3.1 Prohibiting known sources of correctness issues

It is theoretically possible to detect nearly all of the sources of correctness issues and prevent
rules from forming when those situations are detected. In Soar 9.6.0, though, only one filter

120 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

is available, allow-local-negations. Future versions of Soar will include more correctness
filters.

Note that it is still possible to detect that your agent may have encountered a known source
of a correctness issue by looking at the output of the chunk stats command. It has specific
statistics for some of the sources, while others can be gleaned indirectly. For example, if the
stats show that some rules required repair, you know that your agent testing or augmenting
a previous result in a substate.

4.7.3.2 Using singletons to simplify a rule’s conditions

Unlike previous versions of chunking, EBC adds all conditions that tested superstate knowl-
edge to a chunk, regardless of whether another condition already tested that working memory
element. This means that EBC can sometimes produce learned rules with seemingly dupli-
cate conditions. While these conditions are logically correct, they may be redundant because
the nature of the domain may make it impossible for the two conditions to match different
working memory elements. For example, in the blocks-world domain, the fact that there can
be only one gripper in the world means that having multiple conditions testing for a gripper
would be redundant.

Soar allows agents to specify such known domain characteristics, which EBC will then use
to create better rules that don’t have such unnecessary conditions. We call any working
memory element that is guaranteed to only have a single possible value at any given time, a
singleton. If EBC encounters two different conditions in the backtrace that both test the same
superstate WME that matches a user singleton pattern, it will merge the two conditions. As
described in Section 4b, there are several architectural singleton’s that EBC already knows
about. To specify patterns for domain-specific singletons, the chunk singleton command
can be used.

See Section 9.4.1 for more information about the chunk singleton command.

4.7.4 Examining What Was Learned

4.7.4.1 Printing and Traces

Printing Rules:

• To print all chunks learned:
print --chunks or print -c

• To print all justifications learned (and still matching):
print --justifications or print -j

• To print a rule or justification:
print <rule-name>

4.7. USAGE 121

For more information on print, see section 9.3.1 on page 216.

Trace Messages:

• To print when new rules are learned (just the name):
trace --learning 1 or trace -l 1

• To print when new rules are learned (the full rule):
trace --learning 2 or trace -l 2

• To print a trace of the conditions as they are collected during backtracing:
trace --backtracing or trace -b

• To print warnings about chunking issues detected while learning:
trace --chunk-warnings or trace -C

• To print when learned chunks match and fire:
trace --backtracing or trace -b

For more information on trace, see section 9.6.1 on page 259.

Note that the most detailed information about why a particular rule was learned can be
acquired using the explain mechanism as described in section 9.6.3 on page 270. That is
highly recommended over printing the backtracing trace messages.

4.7.4.2 Chunking Statistics

Chunking automatically compiles various statistics about the procedural rule learning that
an agent performs. To access these stats, use the command chunk stats or stats -l

===

Explanation-Based Chunking Statistics

===

Substates analyzed 0

Rules learned 0

Justifications learned 0

Work Performed

Number of rules fired 0

Number of rule firings analyzed during backtracing 0

Number of OSK rule firings analyzed during backtracing 0

Number of rule firings re-visited during backtracing 0

Conditions merged 0

Disjunction tests merged 0

- Redundant values 0

122 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

- Impossible values eliminated 0

Operational constraints 0

Non-operational constraints detected 0

Non-operational constraints enforced 0

Identity Analysis

Identities created 0

Distinct identities in learned rules 0

Identity propagations 0

Identity propagations blocked 0

Identity propagations from local singleton 0

Identities joined 0

- To unify two identities propagated into same variable 0

- To unify two conditions that tested a superstate singleton 0

- To connect an child result (result in rule had children WMEs) 0

Identities literalized 0

- Condition with variable matched a literal RHS element 0

- Condition with variable matched a RHS function 0

- Condition with literal value matched a RHS variable 0

- Variable used in a RHS function 0

Potential Generality Issues Detected

Rules repaired that had unconnected conditions or actions 0

Extra conditions added during repair 0

Potential Correctness Issues Detected

Chunk used negated reasoning about substate 0

Chunk tested knowledge retrieved from long-term memory 0

Justification used negated reasoning about substate 0

Justification tested knowledge retrieved from long-term memory 0

Learning Skipped or Unsuccessful

Ignored duplicate of existing rule 0

Skipped because problem-solving tested ^quiescence true 0

Skipped because no superstate knowledge tested 0

Skipped because MAX-CHUNKS exceeded in a decision cycle 0

Skipped because MAX-DUPES exceeded for rule this decision cycle 0

Note that similar statistics for a specific learned rule can be acquired using the explain
mechanism as described in section 9.6.3 on page 270.

4.8. EXPLAINING LEARNED PROCEDURAL KNOWLEDGE 123

4.7.4.3 Interrupting Execution To Examine Learning

• To stop Soar after each successful learning episode:
chunk interrupt on

• To stop Soar after detecting any learning issue:
chunk warning-interrupt on

• To stop Soar after learning a rule that the explainer recorded:
chunk explain-interrupt on

For more information about how to record when a specific rule is leared, see section
9.6.3 on page 270 that describes the explain mechanism.

4.8 Explaining Learned Procedural Knowledge

While explanation-based chunking makes it easier for people to now incorporate learning
into their agents, the complexity of the analysis it performs makes it far more difficult to
understand how the learned rules were formed. The explainer is a new module that has been
developed to help ameliorate this problem. The explainer allows you to interactively explore
how rules were learned.

When requested, the explainer will make a very detailed record of everything that happened
during a learning episode. Once a user specifies a recorded chunk to ”discuss”, they can
browse all of the rule firings that contributed to the learned rule, one at a time. The
explainer will present each of these rules with detailed information about the identity of the
variables, whether it tested knowledge relevant to the the superstate, and how it is connected
to other rule firings in the substate. Rule firings are assigned IDs so that user can quickly
choose a new rule to examine.

The explainer can also present several different screens that show more verbose analyses of
how the chunk was created. Specifically, the user can ask for a description of (1) the chunk’s
initial formation, (2) the identities of variables and how they map to identity sets, (3) the
constraints that the problem-solving placed on values that a particular identity can have,
and (4) specific statistics about that chunk, such as whether correctness issues were detected
or whether it required repair to make it fully operational.

Finally, the explainer will also create the data necessary to visualize all of the processing
described in an image using the new ’visualize’ command. These visualization are the easiest
way to quickly understand how a rule was formed.

Note that, despite recording so much information, a lot of effort has been put into minimizing
the cost of the explainer. When debugging, we often let it record all chunks and justifications
formed because it is efficient enough to do so.

Use the explain command without any arguments to display a summary of which rule firings

124 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

the explainer is watching. It also shows which chunk or justification the user has specified
is the current focus of its output, i.e. the chunk being discussed.

Tip: This is a good way to get a chunk id so that you don’t have to type or paste in a chunk
name.

===

Explainer Summary

===

Watch all chunk formations Yes

Explain justifications Nof

Number of specific rules watched 0

Chunks available for discussion: chunkx2*apply2 (c 14)

chunk*apply*o (c 13)

chunkx2*apply2 (c 12)

chunk*apply*d (c 11)

chunkx2*apply2 (c 6)

chunk*apply* (c 15)

chunkx2*apply (c 8)

chunk*apply*c (c 5)

chunkx2*apply (c 10)

chunk*apply (c 1)

* Note: Printed the first 10 chunks. ’explain list’ to see other 6 chunks.

Current chunk being discussed: chunk*apply*down-gripper(c 3)

explain chunk [<chunk id> | <chunk name>]

This command starts the explanation process by specifying which chunk’s eplanation trace
you want to explore.

Tip: Use the alias c to quickly start discussing a chunk, for example:
soar % c 3

Now explaining chunk*apply*move-gripper-above*pass*top-state*OpNoChange*t6-1.

- Note that future explain commands are now relative

to the problem-solving that led to that chunk.

Explanation Trace Using variable identity IDs Shortest Path to Result Instantiation

sp {chunk*apply*move-gripper-above*pass*top-state*OpNoChange*t6-1

1: (<s1> ^top-state <s2>) ([140] ^top-state [162])

-{

2: (<s1> ^operator <o*1>) ([140] ^operator [141])

3: (<o*1> ^name evaluate-operator) ([141] ^name evaluate-operator)

}

4: (<s2> ^gripper <g1>) ([162] ^gripper [156]) i 30 -> i 31

5: (<g1> ^position up) ([156] ^position up) i 30 -> i 31

6: (<g1> ^holding nothing) ([156] ^holding nothing) i 30 -> i 31

7: (<g1> ^above <t1>) ([156] ^above [157]) i 30 -> i 31

8: (<s2> ^io <i2>) ([162] ^io [163]) i 31

9: (<i2> ^output-link <i1>) ([163] ^output-link [164]) i 31

10: (<i1> ^gripper <g2>) ([164] ^gripper [165]) i 31

11: (<s2> ^clear { <> <t1> <b1> }) ([162] ^clear { <>[161] [161] }) i 30 -> i 31

12: (<s1> ^operator <o1>) ([140] ^operator [149])

13: (<o1> ^moving-block <b1>) ([149] ^moving-block [161])

14: (<o1> ^name pick-up) ([149] ^name pick-up)

-->

1: (<g2> ^command move-gripper-above +) ([165] ^command move-gripper-above +)

2: (<g2> ^destination <c1> +) ([165] ^destination [161] +)

}

4.8. EXPLAINING LEARNED PROCEDURAL KNOWLEDGE 125

explain formation

Once you specify a rule to explain, this will be one of the first commands you issue. explain
formation provides an explanation of the initial rule that fired which created a result. This is
what is called the ‘base instantiation’ and is what led to the chunk being learned. Other rules
may also be base instantiations if they previously created children of the base instantiation’s
results. They also will be listed in the initial formation output.
soar % explain formation

--

The formation of chunk ’chunk*apply*move-gripper-above*pass*top-state*OpNoChange*t6-1’ (c 1)

--

Initial base instantiation (i 31) that fired when apply*move-gripper-above*pass*top-state matched at level 3 at time 6:

Explanation trace of instantiation # 31 (match of rule apply*move-gripper-above*pass*top-state at level 3)

(produced chunk result)

Identities instead of variables Operational Creator

1: (<s> ^operator <op>) ([159] ^operator [160]) No i 30 (pick-up*propose*move-gripper-above)

2: (<op> ^name move-gripper-above) ([160] ^name move-gripper-above) No i 30 (pick-up*propose*move-gripper-above)

3: (<op> ^destination <des>) ([160] ^destination [161]) No i 30 (pick-up*propose*move-gripper-above)

4: (<s> ^top-state <t*1>) ([159] ^top-state [162]) No i 27 (elaborate*state*top-state)

5: (<t*1> ^io <i*1>) ([162] ^io [163]) Yes Higher-level Problem Space

6: (<i*1> ^output-link <o*1>) ([163] ^output-link [164]) Yes Higher-level Problem Space

7: (<o*1> ^gripper <gripper>) ([164] ^gripper [165]) Yes Higher-level Problem Space

-->

1: (<gripper> ^command move-gripper-above +) ([165] ^command move-gripper-above +)

2: (<gripper> ^destination <des> +) ([165] ^destination [161] +)

This chunk summarizes the problem-solving involved in the following 5

rule firings:

i 27 (elaborate*state*top-state)

i 28 (elaborate*state*operator*name)

i 29 (pick-up*elaborate*desired)

i 30 (pick-up*propose*move-gripper-above)

i 31 (apply*move-gripper-above*pass*top-state)

explain instantiation <instantiation id>

This command prints a specific instantiation in the explanation trace. This lets you browse
the instantiation graph one rule at a time. This is probably one of the most common things
you will do while using the explainer.

Tip: Use the alias i <instantiation id> to quickly view an instantiation, for example:
soar % i 30

Explanation trace of instantiation # 30 (match of rule pick-up*propose*move-gripper-above at level 3)

- Shortest path to a result: i 30 -> i 31

Identities instead of variables Operational Creator

1: (<s> ^name pick-up) ([152] ^name pick-up) No i 28 (elaborate*state*operator*name)

2: (<s> ^desired <d*1>) ([152] ^desired [153]) No i 29 (pick-up*elaborate*desired)

3: (<d*1> ^moving-block <mblock>) ([153] ^moving-block [154]) No i 29 (pick-up*elaborate*desired)

4: (<s> ^top-state <ts>) ([152] ^top-state [155]) No i 27 (elaborate*state*top-state)

5: (<ts> ^clear <mblock>) ([155] ^clear [154]) Yes Higher-level Problem Space

6: (<ts> ^gripper <g>) ([155] ^gripper [156]) Yes Higher-level Problem Space

7: (<g> ^position up) ([156] ^position up) Yes Higher-level Problem Space

8: (<g> ^holding nothing) ([156] ^holding nothing) Yes Higher-level Problem Space

9: (<g> ^above { <> <mblock> <a*1> }) ([156] ^above { <>[154] [157] }) Yes Higher-level Problem Space

-->

1: (<s> ^operator <op1> +) ([152] ^operator [158] +)

2: (<op1> ^name move-gripper-above +) ([158] ^name move-gripper-above +)

3: (<op1> ^destination <mblock> +) ([158] ^destination [154] +)

explain [explanation-trace | wm-trace]

In most cases, users spend most of their time browsing the explanation trace. This is where

126 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

chunking learns most of the subtle relationships that you are likely to be debugging. But
users will also need to examine the working memory trace to see the specific values matched.

To switch between traces, you can use the explain e and the explain w commands.

Tip: Use the aliases et and wt to quickly switch between traces.

soar % explain w

Working memory trace of instantiation # 30 (match of rule pick-up*propose*move-gripper-above at level 3)

1: (S9 ^name pick-up) No i 28 (elaborate*state*operator*name)

2: (S9 ^desired D6) No i 29 (pick-up*elaborate*desired)

3: (D6 ^moving-block B3) No i 29 (pick-up*elaborate*desired)

4: (S9 ^top-state S1) No i 27 (elaborate*state*top-state)

5: (S1 ^clear B3) Yes Higher-level Problem Space

6: (S1 ^gripper G2) Yes Higher-level Problem Space

7: (G2 ^position up) Yes Higher-level Problem Space

8: (G2 ^holding nothing) Yes Higher-level Problem Space

9: (G2 ^above { <> B3 T1 }) Yes Higher-level Problem Space

-->

1: (S9 ^operator O9) +

2: (O9 ^name move-gripper-above) +

3: (O9 ^destination B3) +

explain constraints

This feature lists all constraints found in non-operational constraints of the explanation
trace. If these constraints were not met, the problem-solving would not have occurred.

This feature is not yet implemented. You can use explain stats to see if any transitive
constraints were added to a particular chunk.

explain identity

explain identity will show the mappings from variable identities to identity sets. If avail-
able, the variable in a chunk that an identity set maps to will also be displayed.

By default, only identity sets that appear in the chunk will be displayed in the identity
analysis. To see the identity set mappings for other sets, change the only-chunk-identities
setting to off.

soar % explain identity

===

- Variablization Identity to Identity Set Mappings -

===

-== NULL Identity Set ==-

The following variable identities map to the null identity set and will

not be generalized: 282 301 138 291 355 336 227 309 328 318 128 218 345

-== How variable identities map to identity sets ==-

Variablization IDs Identity CVar Mapping Type

Instantiation 36:

125 -> 482 | IdSet 12 | <s> | New identity set

126 -> 493 | IdSet 11 | <o> | New identity set

Instantiation 38:

Instantiation 41:

4.8. EXPLAINING LEARNED PROCEDURAL KNOWLEDGE 127

146 -> 482 | IdSet 12 | <s> | New identity set

147 -> 493 | IdSet 11 | <o> | New identity set

Instantiation 42:

151 -> 180 | IdSet 1 | <ss> | New identity set

149 -> 482 | IdSet 12 | <s> | New identity set

150 -> 493 | IdSet 11 | <o> | New identity set

307 -> 180 | IdSet 1 | <ss> | Added to identity set

187 -> 180 | IdSet 1 | <ss> | Added to identity set

334 -> 180 | IdSet 1 | <ss> | Added to identity set

173 -> 180 | IdSet 1 | <ss> | Added to identity set

280 -> 180 | IdSet 1 | <ss> | Added to identity set

Instantiation 53:

219 -> 489 | IdSet 15 | | New identity set

Instantiation 61:

Instantiation 65:

319 -> 492 | IdSet 20 | <t> | New identity set

explain stats

Explain’s stat command prints statistics about the specific chunk being discussed. This is
a good way to see whether any generality or correctness issues were detected while learning
that rule.

===

Statistics for ’chunk*apply*move-gripper-above*pass*top-state*OpNoChange*t6-1’ (c 1):

===

Number of conditions 14

Number of actions 2

Base instantiation i 31 (apply*move-gripper-above*pass*top-state)

===

Generality and Correctness

===

Tested negation in local substate No

LHS required repair No

RHS required repair No

Was unrepairable chunk No

===

Work Performed

===

Instantiations backtraced through 5

Instantiations skipped 6

Constraints collected 1

Constraints attached 0

Duplicates chunks later created 0

Conditions merged 2

After-Action Reports The explainer has an option to create text files that contain statis-
tics about the rules learned by an agent during a particular run. When enabled, the explainer
will write out a file with the statistics when either Soar exits or a soar init is executed.
This option is still considered experimental and in beta.

128 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

Figure 4.8: A colored visualization of an explanation trace

4.9 Visualizing the Explanation

The visualize command can generate two graphical representations of the analysis that
chunking performed to learn a rule. While the explainer provides more date, these images
are the easiest and most effective ways to quickly understand how a chunk was formed,
especially for particularly complex chunks. The visualizer can create two types of chunking-
related images:

1. An image that shows the entire instantiation graph at once and how it contributed to
the learned rule.

Use the command visualize ebc analysis to create a very informative graph that
shows all rules that fired in a substate with arrows that indicate dependencies between
actions in one rule and conditions in others. In addition to all of the dependencies
between the rules that fired, this visualization also shows which conditions in the
instantiations tested knowledge in the superstate and hence became the basis for a
condition in the final learned rule. Finally, the individual elements in the explanation

4.9. VISUALIZING THE EXPLANATION 129

are color-coded to show which variables share the same identity.

2. An image that shows the graph of how variable identities were combined.

Use the visualize identity graph to create a graph that shows how identities were
used to determine the variablization of a learned rule. This shows all identities found
in the chunk and how the identity analysis joined them based on the problem-solving
that occurred. This can be useful in determining why two elements were assigned the
same variable.

Note that Soar will automatically attempt to launch a viewer to see the image generated. If
you have an editor that can open graphviz files, you can have Soar launch that automatically
as well. (Such editors allow you to move things around and lay out the components of the
image exactly as you want them.) Your operating system chooses which program to launch
based on the file type.

For the visualizer to work, you must have Graphviz and DOT installed, which are
free third-party tools, and both must be available on your path. To date, the visualizer has
only been tested on Mac and Linux. It is possible that certain systems may not allow Soar
to launch an external program.

130 CHAPTER 4. PROCEDURAL KNOWLEDGE LEARNING

Chapter 5

Reinforcement Learning

Soar has a reinforcement learning (RL) mechanism that tunes operator selection knowledge
based on a given reward function. This chapter describes the RL mechanism and how it
is integrated with production memory, the decision cycle, and the state stack. We assume
that the reader is familiar with basic reinforcement learning concepts and notation. If not,
we recommend first reading Reinforcement Learning: An Introduction (1998) by Richard S.
Sutton and Andrew G. Barto. The detailed behavior of the RL mechanism is determined
by numerous parameters that can be controlled and configured via the rl command. Please
refer to the documentation for that command in section 9.4.2 on page 237.

5.1 RL Rules

Soar’s RL mechanism learns Q-values for state-operator1 pairs. Q-values are stored as
numeric-indifferent preferences created by specially formulated productions called RL rules.
RL rules are identified by syntax. A production is a RL rule if and only if its left hand
side tests for a proposed operator, its right hand side creates a single numeric-indifferent
preference, and it is not a template rule (see Section 5.4.2 for template rules). These con-
straints ease the technical requirements of identifying/updating RL rules and makes it easy
for the agent programmer to add/maintain RL capabilities within an agent. We define an
RL operator as an operator with numeric-indifferent preferences created by RL rules.

The following is an RL rule:

sp {rl*3*12*left

(state <s> ^name task-name

^x 3

^y 12

^operator <o> +)

1 In this context, the term “state” refers to the state of the task or environment, not a state identifier.
For the rest of this chapter, bold capital letter names such as S1 will refer to identifiers and italic lowercase
names such as s1 will refer to task states.

131

132 CHAPTER 5. REINFORCEMENT LEARNING

(<o> ^name move

^direction left)

-->

(<s> ^operator <o> = 1.5)

}

Note that the LHS of the rule can test for anything as long as it contains a test for a proposed
operator. The RHS is constrained to exactly one action: creating a numeric-indifferent
preference for the proposed operator.

The following are not RL rules:

sp {multiple*preferences

(state <s> ^operator <o> +)

-->

(<s> ^operator <o> = 5, >)

}

sp {variable*binding

(state <s> ^operator <o> +

^value <v>)

-->

(<s> ^operator <o> = <v>)

}

sp {invalid*actions

(state <s> ^operator <o> +)

-->

(<s> ^operator <o> = 5)

(write (crlf) |This is not an RL rule.|)

}

The first rule proposes multiple preferences for the proposed operator and thus does not
comply with the rule format. The second rule does not comply because it does not provide
a constant for the numeric-indifferent preference value. The third rule does not comply
because it includes a RHS function action in addition to the numeric-indifferent preference
action.

In the typical RL use case, the user intends for the agent to learn the best operator in
each possible state of the environment. The most straightforward way to achieve this is to
give the agent a set of RL rules, each matching exactly one possible state-operator pair.
This approach is equivalent to a table-based RL algorithm, where the Q-value of each state-
operator pair corresponds to the numeric-indifferent preference created by exactly one RL
rule.

In the more general case, multiple RL rules can match a single state-operator pair, and a
single RL rule can match multiple state-operator pairs. That is, in Soar, a state-operator
pair corresponds to an operator in a specific working memory context, and multiple rules can

5.2. REWARD REPRESENTATION 133

modify the preferences for a single operator, and a single rule can be instantiated multiple
ways to modify preferences for multiple operators. For RL in Soar, all numeric-indifferent
preferences for an operator are summed when calculating the operator’s Q-value2. In this
context, RL rules can be interpreted more generally as binary features in a linear approxi-
mator of each state-operator pair’s Q-value, and their numeric-indifferent preference values
their weights. In other words,

Q(s, a) = w1φ2(s, a) + w2φ2(s, a) + . . .+ wnφn(s, a)

where all RL rules in production memory are numbered 1 . . . n, Q(s, a) is the Q-value of
the state-operator pair (s, a), wi is the numeric-indifferent preference value of RL rule i,
φi(s, a) = 0 if RL rule i does not match (s, a), and φi(s, a) = 1 if it does. This interpretation
allows RL rules to simulate a number of popular function approximation schemes used in
RL such as tile coding and sparse coding.

5.2 Reward Representation

RL updates are driven by reward signals. In Soar, these reward signals are given to the RL
mechanism through a working memory link called the reward-link. Each state in Soar’s
state stack is automatically populated with a reward-link structure upon creation. Soar
will check each structure for a numeric reward signal for the last operator executed in the
associated state at the beginning of every decision phase. Reward is also collected when the
agent is halted or a state is retracted.

In order to be recognized, the reward signal must follow this pattern:

(<r1> ^reward <r2>)

(<r2> ^value [val])

where <r1> is the reward-link identifier, <r2> is some intermediate identifier, and [val] is
any constant numeric value. Any structure that does not match this pattern is ignored. If
there are multiple valid reward signals, their values are summed into a single reward signal.
As an example, consider the following state:

(S1 ^reward-link R1)

(R1 ^reward R2)

(R2 ^value 1.0)

(R1 ^reward R3)

(R3 ^value -0.2)

In this state, there are two reward signals with values 1.0 and -0.2. They will be summed
together for a total reward of 0.8 and this will be the value given to the RL update algorithm.

There are two reasons for requiring the intermediate identifier. The first is so that multiple
reward signals with the same value can exist simultaneously. Since working memory is a

2 This is assuming the value of numeric-indifferent-mode is set to sum. In general, the RL
mechanism only works correctly when this is the case, and we assume this case in the rest of the chapter.
See page 196 for more information about this parameter.

134 CHAPTER 5. REINFORCEMENT LEARNING

set, multiple WMEs with identical values in all three positions (identifier, attribute, value)
cannot exist simultaneously. Without an intermediate identifier, specifying two rewards with
the same value would require a WME structure such as

(S1 ^reward-link R1)

(R1 ^reward 1.0)

(R1 ^reward 1.0)

which is invalid. With the intermediate identifier, the rewards would be specified as

(S1 ^reward-link R1)

(R1 ^reward R2)

(R2 ^value 1.0)

(R1 ^reward R3)

(R3 ^value 1.0)

which is valid. The second reason for requiring an intermediate identifier in the reward
signal is so that the rewards can be augmented with additional information, such as their
source or how long they have existed. Although this information will be ignored by the RL
mechanism, it can be useful to the agent or programmer. For example:

(S1 ^reward-link R1)

(R1 ^reward R2)

(R2 ^value 1.0)

(R2 ^source environment)

(R1 ^reward R3)

(R3 ^value -0.2)

(R3 ^source intrinsic)

(R3 ^duration 5)

The (R2 ^source environment), (R3 ^source intrinsic), and (R3 ^duration 5)

WMEs are arbitrary and ignored by RL, but were added by the agent to keep track of where
the rewards came from and for how long.

Note that the reward-link is not part of the io structure and is not modified directly by the
environment. Reward information from the environment should be copied, via rules, from
the input-link to the reward-link. Also note that when collecting rewards, Soar simply
scans the reward-link and sums the values of all valid reward WMEs. The WMEs are not
modified and no bookkeeping is done to keep track of previously seen WMEs. This means
that reward WMEs that exist for multiple decision cycles will be collected multiple times if
not removed or retracted.

5.3 Updating RL Rule Values

Soar’s RL mechanism is integrated naturally with the decision cycle and performs online
updates of RL rules. Whenever an RL operator is selected, the values of the corresponding
RL rules will be updated. The update can be on-policy (Sarsa) or off-policy (Q-Learning),

5.3. UPDATING RL RULE VALUES 135

as controlled by the learning-policy parameter of the rl command. (See page 237.)
Let δt be the amount of change for the Q-value of an RL operator in a single update. For
Sarsa, we have

δt = α [rt+1 + γQ(st+1, at+1)−Q(st, at)]

where

• Q(st, at) is the Q-value of the state and chosen operator in decision cycle t.

• Q(st+1, at+1) is the Q-value of the state and chosen RL operator in the next decision
cycle.

• rt+1 is the total reward collected in the next decision cycle.

• α and γ are the settings of the learning-rate and discount-rate parameters
of the rl command, respectively.

Note that since δt depends on Q(st+1, at+1), the update for the operator selected in decision
cycle t is not applied until the next RL operator is chosen. For Q-Learning, we have

δt = α

[
rt+1 + γ max

a∈At+1

Q(st+1, a)−Q(st, at)

]
where At+1 is the set of RL operators proposed in the next decision cycle.

Finally, δt is divided by the number of RL rules comprising the Q-value for the operator and
the numeric-indifferent values for each RL rule is updated by that amount.

An example walkthrough of a Sarsa update with α = 0.3 and γ = 0.9 (the default settings
in Soar) follows.

1. In decision cycle t, an operator O1 is proposed, and RL rules rl-1 and rl-2 create
the following numeric-indifferent preferences for it:

rl-1: (S1 ^operator O1 = 2.3)

rl-2: (S1 ^operator O1 = -1)

The Q-value for O1 is Q(st,O1) = 2.3− 1 = 1.3.

2. O1 is selected and executed, so Q(st, at) = Q(st,O1) = 1.3.

3. In decision cycle t+1, a total reward of 1.0 is collected on the reward-link, an operator
O2 is proposed, and another RL rule rl-3 creates the following numeric-indifferent
preference for it:

rl-3: (S1 ^operator O2 = 0.5)

So Q(st+1,O2) = 0.5.

136 CHAPTER 5. REINFORCEMENT LEARNING

4. O2 is selected, so Q(st+1, at+1) = Q(st+1,O2) = 0.5 Therefore,

δt = α [rt+1 + γQ(st+1, at+1)−Q(st, at)] = 0.3× [1.0 + 0.9× 0.5− 1.3] = 0.045

Since rl-1 and rl-2 both contributed to the Q-value of O1, δt is evenly divided
amongst them, resulting in updated values of

rl-1: (<s> ^operator <o> = 2.3225)

rl-2: (<s> ^operator <o> = -0.9775)

5. rl-3 will be updated when the next RL operator is selected.

5.3.1 Gaps in Rule Coverage

The previous description had assumed that RL operators were selected in both decision
cycles t and t+ 1. If the operator selected in t+ 1 is not an RL operator, then Q(st+1, at+1)
would not be defined, and an update for the RL operator selected at time t will be undefined.
We will call a sequence of one or more decision cycles in which RL operators are not selected
between two decision cycles in which RL operators are selected a gap. Conceptually, it is
desirable to use the temporal difference information from the RL operator after the gap to
update the Q-value of the RL operator before the gap. There are no intermediate storage
locations for these updates. Requiring that RL rules support operators at every decision
can be difficult for agent programmers, particularly for operators that do not represent steps
in a task, but instead perform generic maintenance functions, such as cleaning processed
output-link structures.

To address this issue, Soar’s RL mechanism supports automatic propagation of updates over
gaps. For a gap of length n, the Sarsa update is

δt = α

[
t+n∑
i=t

γi−tri + γn+1Q(st+n+1, at+n+1)−Q(st, at)

]

and the Q-Learning update is

δt = α

[
t+n∑
i=t

γi−tri + γn+1 max
a∈At+n+1

Q(st+n+1, a)−Q(st, at)

]

Note that rewards will still be collected during the gap, but they are discounted based on
the number of decisions they are removed from the initial RL operator.

Gap propagation can be disabled by setting the temporal-extension parameter of the
rl command to off. When gap propagation is disabled, the RL rules preceding a gap are
updated using Q(st+1, at+1) = 0. The rl setting of the watch command (see Section 9.6.1
on page 259) is useful in identifying gaps.

5.3. UPDATING RL RULE VALUES 137

r
2

r
3

r
4

O1 O1 O1 O1 O5

O2 O3 O4

S1

S2

Figure 5.1: Example Soar substate operator trace.

5.3.2 RL and Substates

When an agent has multiple states in its state stack, the RL mechanism will treat each
substate independently. As mentioned previously, each state has its own reward-link.
When an RL operator is selected in a state S, the RL updates for that operator are only
affected by the rewards collected on the reward-link for S and the Q-values of subsequent
RL operators selected in S.

The only exception to this independence is when a selected RL operator forces an operator-
no-change impasse. When this occurs, the number of decision cycles the RL operator at the
superstate remains selected is dependent upon the processing in the impasse state. Consider
the operator trace in Figure 5.1.

• At decision cycle 1, RL operator O1 is selected in S1 and causes an operator-no-change
impass for three decision cycles.

• In the substate S2, operators O2, O3, and O4 are selected and applied sequentially.

• Meanwhile in S1, rewards r2, r3, and r4 are put on the reward-link sequentially.

• Finally, the impasse is resolved by O4, the proposal for O1 is retracted, and RL
operator O5 is selected in S1.

In this scenario, only the RL update for Q(s1,O1) will be different from the ordinary case.
Its value depends on the setting of the hrl-discount parameter of the rl command.
When this parameter is set to the default value on, the rewards on S1 and the Q-value of
O5 are discounted by the number of decision cycles they are removed from the selection of
O1. In this case the update for Q(s1,O1) is

δ1 = α
[
r2 + γr3 + γ2r4 + γ3Q(s5,O5)−Q(s1,O1)

]
which is equivalent to having a three decision gap separating O1 and O5.

When hrl-discount is set to off, the number of cycles O1 has been impassed will be
ignored. Thus the update would be

δ1 = α [r2 + r3 + r4 + γQ(s5,O5)−Q(s1,O1)]

For impasses other than operator no-change, RL acts as if the impasse hadn’t occurred. If
O1 is the last RL operator selected before the impasse, r2 the reward received in the decision

138 CHAPTER 5. REINFORCEMENT LEARNING

cycle immediately following, and On, the first operator selected after the impasse, then O1
is updated with

δ1 = α [r2 + γQ(sn,On)−Q(s1,O1)]

If an RL operator is selected in a substate immediately prior to the state’s retraction, the
RL rules will be updated based only on the reward signals present and not on the Q-values
of future operators. This point is not covered in traditional RL theory. The retraction of a
substate corresponds to a suspension of the RL task in that state rather than its termination,
so the last update assumes the lack of information about future rewards rather than the
discontinuation of future rewards. To handle this case, the numeric-indifferent preference
value of each RL rule is stored as two separate values, the expected current reward (ECR) and
expected future reward (EFR). The ECR is an estimate of the expected immediate reward
signal for executing the corresponding RL operator. The EFR is an estimate of the time
discounted Q-value of the next RL operator. Normal updates correspond to traditional RL
theory (showing the Sarsa case for simplicity):

δECR = α [rt − ECR(st, at)]

δEFR = α [γQ(st+1, at+1)− EFR(st, at)]

δt = δECR + δEFR

= α [rt + γQ(st+1, at+1)− (ECR(st, at) + EFR(st, at))]

= α [rt + γQ(st+1, at+1)−Q(st, at)]

During substate retraction, only the ECR is updated based on the reward signals present at
the time of retraction, and the EFR is unchanged.

Soar’s automatic subgoaling and RL mechanisms can be combined to naturally implement
hierarchical reinforcement learning algorithms such as MAXQ and options.

5.3.3 Eligibility Traces

The RL mechanism supports eligibility traces, which can improve the speed of learning by
updating RL rules across multiple sequential steps.
The eligibility-trace-decay-rate and eligibility-trace-tolerance pa-
rameters control this mechanism. By setting eligibility-trace-decay-rate to 0 (de-
fault), eligibility traces are in effect disabled. When eligibility traces are enabled, the par-
ticular algorithm used is dependent upon the learning policy. For Sarsa, the eligibility trace
implementation is Sarsa(λ). For Q-Learning, the eligibility trace implementation is Watkin’s
Q(λ).

5.3.3.1 Exploration

The decide indifferent-selection command (page 196) determines how operators are
selected based on their numeric-indifferent preferences. Although all the indifferent selection
settings are valid regardless of how the numeric-indifferent preferences were arrived at, the

5.4. AUTOMATIC GENERATION OF RL RULES 139

epsilon-greedy and boltzmann settings are specifically designed for use with RL and cor-
respond to the two most common exploration strategies. In an effort to maintain backwards
compatibility, the default exploration policy is softmax. As a result, one should change to
epsilon-greedy or boltzmann when the reinforcement learning mechanism is enabled.

5.3.4 GQ(λ)

Sarsa(λ) and Watkin’s Q(λ) help agents to solve the temporal credit assignment problem
more quickly. However, if you wish to implement something akin to CMACs to general-
ize from experience, convergence is not guaranteed by these algorithms. GQ(λ) is a gra-
dient descent algorithm designed to ensure convergence when learning off-policy. Soar’s
learning-policy can be set to on-policy-gq-lambda or off-policy-gq-lambda
to increase the likelihood of convergence when learning under these conditions. If you should
choose to use one of these algorithms, we recommend setting the rl step-size-parameter
to something small, such as 0.01 in order to ensure that the secondary set of weights used
by GQ(λ) change slowly enough for efficient convergence.

5.4 Automatic Generation of RL Rules

The number of RL rules required for an agent to accurately approximate operator Q-values
is usually unfeasibly large to write by hand, even for small domains. Therefore, several
methods exist to automate this.

5.4.1 The gp Command

The gp command can be used to generate productions based on simple patterns. This is
useful if the states and operators of the environment can be distinguished by a fixed number
of dimensions with finite domains. An example is a grid world where the states are described
by integer row/column coordinates, and the available operators are to move north, south,
east, or west. In this case, a single gp command will generate all necessary RL rules:

gp {gen*rl*rules

(state <s> ^name gridworld

^operator <o> +

^row [1 2 3 4]

^col [1 2 3 4])

(<o> ^name move

^direction [north south east west])

-->

(<s> ^operator <o> = 0.0)

}

For more information see the documentation for this command on page 203.

140 CHAPTER 5. REINFORCEMENT LEARNING

5.4.2 Rule Templates

Rule templates allow Soar to dynamically generate new RL rules based on a predefined
pattern as the agent encounters novel states. This is useful when either the domains of
environment dimensions are not known ahead of time, or when the enumerable state space
of the environment is too large to capture in its entirety using gp, but the agent will only
encounter a small fraction of that space during its execution. For example, consider the grid
world example with 1000 rows and columns. Attempting to generate RL rules for each grid
cell and action a priori will result in 1000×1000×4 = 4×106 productions. However, if most
of those cells are unreachable due to walls, then the agent will never fire or update most
of those productions. Templates give the programmer the convenience of the gp command
without filling production memory with unnecessary rules.

Rule templates have variables that are filled in to generate RL rules as the agent encounters
novel combinations of variable values. A rule template is valid if and only if it is marked
with the :template flag and, in all other respects, adheres to the format of an RL rule.
However, whereas an RL rule may only use constants as the numeric-indifference preference
value, a rule template may use a variable. Consider the following rule template:

sp {sample*rule*template

:template

(state <s> ^operator <o> +

^value <v>)

-->

(<s> ^operator <o> = <v>)

}

During agent execution, this rule template will match working memory and create new
productions by substituting all variables in the rule template that matched against constant
values with the values themselves. Suppose that the LHS of the rule template matched
against the state

(S1 ^value 3.2)

(S1 ^operator O1 +)

Then the following production will be added to production memory:

sp {rl*sample*rule*template*1

(state <s> ^operator <o> +

^value 3.2)

-->

(<s> ^operator <o> = 3.2)

}

The variable <v> is replaced by 3.2 on both the LHS and the RHS, but <s> and <o> are
not replaced because they matches against identifiers (S1 and O1). As with other RL rules,
the value of 3.2 on the RHS of this rule may be updated later by reinforcement learning,
whereas the value of 3.2 on the LHS will remain unchanged. If <v> had matched against
a non-numeric constant, it will be replaced by that constant on the LHS, but the RHS

5.4. AUTOMATIC GENERATION OF RL RULES 141

numeric-indifference preference value will be set to zero to make the new rule valid.

The new production’s name adheres to the following pattern: rl*template-name*id, where
template-name is the name of the originating rule template and id is monotonically increas-
ing integer that guarantees the uniqueness of the name.

If an identical production already exists in production memory, then the newly generated
production is discarded. It should be noted that the current process of identifying unique
template match instances can become quite expensive in long agent runs. Therefore, it
is recommended to generate all necessary RL rules using the gp command or via custom
scripting when possible.

5.4.3 Chunking

Since RL rules are regular productions, they can be learned by chunking just like any other
production. This method is more general than using the gp command or rule templates, and
is useful if the environment state consists of arbitrarily complex relational structures that
cannot be enumerated.

142 CHAPTER 5. REINFORCEMENT LEARNING

Chapter 6

Semantic Memory

Soar’s semantic memory is a repository for long-term declarative knowledge, supplement-
ing what is contained in short-term working memory (and production memory). Episodic
memory, which contains memories of the agent’s experiences, is described in Chapter 7. The
knowledge encoded in episodic memory is organized temporally, and specific information is
embedded within the context of when it was experienced, whereas knowledge in semantic
memory is independent of any specific context, representing more general facts about the
world.

This chapter is organized as follows: semantic memory structures in working memory (6.1);
representation of knowledge in semantic memory (6.2); storing semantic knowledge (6.3);
retrieving semantic knowledge (6.4); and a discussion of performance (6.5). The detailed
behavior of semantic memory is determined by numerous parameters that can be controlled
and configured via the smem command. Please refer to the documentation for that command
in Section 9.5.1 on page 242.

6.1 Working Memory Structure

Upon creation of a new state in working memory (see Section 2.7.1 on page 28; Section 3.4 on
page 84), the architecture creates the following augmentations to facilitate agent interaction
with semantic memory:

(<s> ^smem <smem>)

(<smem> ^command <smem-c>)

(<smem> ^result <smem-r>)

As rules augment the command structure in order to access/change semantic knowledge (6.3,
6.4), semantic memory augments the result structure in response. Production actions
should not remove augmentations of the result structure directly, as semantic memory will
maintain these WMEs.

143

144 CHAPTER 6. SEMANTIC MEMORY

@68

6

digit1

7

digit2

3

sum

1

carry-borrow

Figure 6.1: Example long-term identifier with four augmentations.

6.2 Knowledge Representation

The representation of knowledge in semantic memory is similar to that in working memory
(see Section 2.2 on page 14) – both include graph structures that are composed of symbolic
elements consisting of an identifier, an attribute, and a value. It is important to note,
however, key differences:

• Currently semantic memory only supports attributes that are symbolic constants
(string, integer, or decimal), but not attributes that are identifiers

• Whereas working memory is a single, connected, directed graph, semantic memory can
be disconnected, consisting of multiple directed, connected sub-graphs

From Soar 9.6 onward, Long-term identifiers (LTIs) are defined as identifiers that
exist in semantic memory only. Each LTI is permanently associated with a specific number
that labels it (e.g. @5 or @7). Instances of an LTI can be loaded into working memory as
regular short-term identifiers (STIs) linked with that specific LTI. For clarity, when printed,
a short-term identifier associated with an LTI is followed with the label of that LTI. For
example, if the working memory ID L7 is associated with the LTI named @29, printing that
STI would appear as L7 (@29).

When presented in a figure, long-term identifiers will be indicated by a double-circle. For
instance, Figure 6.1 depicts the long-term identifier @68, with four augmentations, repre-
senting the addition fact of 6 + 7 = 13 (or, rather, 3, carry 1, in context of multi-column
arithmetic).

6.2.1 Integrating Long-Term Identifiers with Soar

Integrating long-term identifiers in Soar presents a number of theoretical and implementa-
tion challenges. This section discusses the state of integration with each of Soar’s memo-
ries/learning mechanisms.

6.3. STORING SEMANTIC KNOWLEDGE 145

6.2.1.1 Working Memory

Long-term identifiers themselves never exist in working memory. Rather, instances of long
term memories are loaded into working memory as STIs through queries or retrievals, and
manipulated just like any other WMEs. Changes to any STI augmentations do not directly
have any effect upon linked LTIs in semantic memory. Changes to LTIs themselves only
occur though store commands on the command link or through command-line directives
such as smem --add (see below).

Each time an agent loads an instance of a certain LTI from semantic memory into working
memory using queries or retrievals, the instance created will always be a new unique STI.
This means that if same long-term memory is retrieved multiple times in succession, each
retrieval will result in a different STI instance, each linked to the same LTI. A benefit of this
is that a retrieved long-term memory can be modified without compromising the ability to
recall what the actual stored memory is.1

6.2.1.2 Procedural Memory

Soar productions can use various conditions to test whether an STI is associated with an
LTI or whether two STIs are linked to the same LTI (see Section 3.3.5.3 on page 53). LTI
names (e.g. @6) may not appear in the action side of productions.

6.2.1.3 Episodic Memory

Episodic memory (see Section 7 on page 155) faithfully captures LTI-linked STIs, including
the episode of transition. Retrieved episodes contain STIs as they existed during the episode,
regardless of any changes to linked LTIs that transpired since the episode occurred.

6.3 Storing Semantic Knowledge

6.3.1 Store command

An agent stores a long-term identifier in semantic memory by creating a ˆstore command:
this is a WME whose identifier is the command link of a state’s smem structure, the attribute
is store, and the value is a short-term identifier.

<s> ^smem.command.store <identifier>

Semantic memory will encode and store all WMEs whose identifier is the value of the store
command. Storing deeper levels of working memory is achieved through multiple store

1 Before Soar 9.6, LTIs were themselves retrieved into working memory. This meant all augmentations
to such IDs, whether from the original retrieval or added after retrieval, would always be merged under the
same ID, unless deep-copy was used to make a duplicate short-term memory.

146 CHAPTER 6. SEMANTIC MEMORY

commands.

Multiple store commands can be issued in parallel. Storage commands are processed on
every state at the end of every phase of every decision cycle. Storage is guaranteed to
succeed and a status WME will be created, where the identifier is the ˆresult link of the
smem structure of that state, the attribute is success, and the value is the value of the store
command above.

<s> ^smem.result.success <identifier>

If the identifier used in the store command is not linked to any existing LTIs, a new LTI
will be created in smem and the stored STI will be linked to it. If the identifier used in
the store command is already linked to an LTI, the store will overwrite that long-term
memory. For example, if an existing LTI @5 had augmentations ^A do ^B re ^C mi, and a
store command stored short-term identifier L35 which was linked to @5 but had only the
augmentation ^D fa, the LTI @5 would be changed to only have ^D fa.

6.3.2 Store-new command

The ˆstore-new command structure is just like the ^store command, except that smem
will always store the given memory as an entirely new structure, regardless of whether the
given STI was linked to an existing LTI or not. Any STIs that don’t already have links will
get linked to the newly created LTIs. But if a stored STI was already linked to some LTI,
Soar will not re-link it to the newly created LTI.

If this behavior is not desired, the agent can add a ˆlink-to-new-LTM yes augmentation
to override this behavior. One use for this setting is to allow chunking to backtrace through
a stored memory in a manner that will be consistent with a later state of memory when the
newly stored LTI is retrieved again.

6.3.3 User-Initiated Storage

Semantic memory provides agent designers the ability to store semantic knowledge via the
add switch of the smem command (see Section 9.5.1 on page 242). The format of the
command is nearly identical to the working memory manipulation components of the RHS
of a production (i.e. no RHS-functions; see Section 3.3.6 on page 67). For instance:

smem --add {

(<arithmetic> ^add10-facts <a01> <a02> <a03>)

(<a01> ^digit1 1 ^digit-10 11)

(<a02> ^digit1 2 ^digit-10 12)

(<a03> ^digit1 3 ^digit-10 13)

}

Unlike agent storage, declarative storage is automatically recursive. Thus, this command
instance will add a new long-term identifier (represented by the temporary ’arithmetic’ vari-

6.4. RETRIEVING SEMANTIC KNOWLEDGE 147

able) with three augmentations. The value of each augmentation will each become an LTI
with two constant attribute/value pairs. Manual storage can be arbitrarily complex and use
standard dot-notation. The add command also supports hardcoded LTI ids such as @1 in
place of variables.

6.3.4 Storage Location

Semantic memory uses SQLite to facilitate efficient and standardized storage and querying of
knowledge. The semantic store can be maintained in memory or on disk (per the database

and path parameters; see Section 9.5.1). If the store is located on disk, users can use any
standard SQLite programs/components to access/query its contents. However, using a disk-
based semantic store is very costly (performance is discussed in greater detail in Section 6.5
on page 153), and running in memory is recommended for most runs.

Note that changes to storage parameters, for example database, path and append will
not have an effect until the database is used after an initialization. This happens either
shortly after launch (on first use) or after a database initialization command is issued. To
switch databases or database storage types while running, set your new parameters and then
perform an –init command.

The path parameter specifies the file system path the database is stored in. When path is
set to a valid file system path and database mode is set to file, then the SQLite database is
written to that path.

The append parameter will determine whether all existing facts stored in a database on
disk will be erased when semantic memory loads. Note that this affects soar init also. In
other words, if the append setting is off, all semantic facts stored to disk will be lost when
a soar init is performed. For semantic memory, append mode is on by default.

Note: As of version 9.3.3, Soar used a new schema for the semantic memory database.
This means databases from 9.3.2 and below can no longer be loaded. A conversion utility is
available in Soar 9.4 to convert from the old schema to the new one.

The lazy-commit parameter is a performance optimization. If set to on (default), disk
databases will not reflect semantic memory changes until the Soar kernel shuts down. This
improves performance by avoiding disk writes. The optimization parameter (see Section
6.5 on page 153) will have an affect on whether databases on disk can be opened while the
Soar kernel is running.

6.4 Retrieving Semantic Knowledge

An agent retrieves knowledge from semantic memory by creating an appropriate command
(we detail the types of commands below) on the command link of a state’s smem structure.
At the end of the output of each decision, semantic memory processes each state’s smem

^command structure. Results, meta-data, and errors are added to the result structure of

148 CHAPTER 6. SEMANTIC MEMORY

that state’s smem structure.

Only one type of retrieval command (which may include optional modifiers) can be issued
per state in a single decision cycle. Malformed commands (including attempts at multiple
retrieval types) will result in an error:

<s> ^smem.result.bad-cmd <smem-c>

Where the <smem-c> variable refers to the command structure of the state.

After a command has been processed, semantic memory will ignore it until some aspect of
the command structure changes (via addition/removal of WMEs). When this occurs, the
result structure is cleared and the new command (if one exists) is processed.

6.4.1 Non-Cue-Based Retrievals

A non-cue-based retrieval is a request by the agent to reflect in working memory the current
augmentations of an LTI in semantic memory. The command WME has a retrieve
attribute and an LTI-linked identifier value:

<s> ^smem.command.retrieve <lti>

If the value of the command is not an LTI-linked identifier, an error will result:

<s> ^smem.result.failure <lti>

Otherwise, two new WMEs will be placed on the result structure:

<s> ^smem.result.success <lti>

<s> ^smem.result.retrieved <lti>

All augmentations of the long-term identifier in semantic memory will be created as new
WMEs in working memory.

6.4.2 Cue-Based Retrievals

A cue-based retrieval performs a search for a long-term identifier in semantic memory whose
augmentations exactly match an agent-supplied cue, as well as optional cue modifiers.

A cue is composed of WMEs that describe the augmentations of a long-term identifier. A
cue WME with a constant value denotes an exact match of both attribute and value. A
cue WME with an LTI-linked identifier as its value denotes an exact match of attribute and
linked LTI. A cue WME with a short-term identifier as its value denotes an exact match of
attribute, but with any value (constant or identifier).

A cue-based retrieval command has a query attribute and an identifier value, the cue:

<s> ^smem.command.query <cue>

For instance, consider the following rule that creates a cue-based retrieval command:

6.4. RETRIEVING SEMANTIC KNOWLEDGE 149

sp {smem*sample*query

(state <s> ^smem.command <scmd>

^lti <lti>

^input-link.foo <bar>)

-->

(<scmd> ^query <q>)

(<q> ^name <any-name>

^foo <bar>

^associate <lti>

^age 25)

}

In this example, assume that the <lti> variable will match a short-term identifier which is
linked to a long-term identifier and that the <bar> variable will match a constant. Thus,
the query requests retrieval of a long-term memory with augmentations that satisfy ALL of
the following requirements:

• Attribute name with ANY value

• Attribute foo with value equal to that of variable <bar> at the time this rule fires

• Attribute associate with value that is the same long-term identifier as that linked to
by the <lti> STI at the time this rule fires

• Attribute age with integer value 25

If no long-term identifier satisfies ALL of these requirements, an error is returned:

<s> ^smem.result.failure <cue>

Otherwise, two WMEs are added:

<s> ^smem.result.success <cue>

<s> ^smem.result.retrieved <retrieved-lti>

The result <retrieved-lti> will be a new short-term identifier linked to the result LTI.

As with non-cue-based retrievals, all of the augmentations of the long-term identifier in
semantic memory are added as new WMEs to working memory. If these augmentations
include other LTIs in smem, they too are instantiated into new short-term identifiers in
working memory.

It is possible that multiple long-term identifiers match the cue equally well. In this case, se-
mantic memory will retrieve the long-term identifier that was most recently stored/retrieved.
(More accurately, it will retrieve the LTI with the greatest activation value. See below.)

The cue-based retrieval process can be further tempered using optional modifiers:

• The prohibit command requires that the retrieved long-term identifier is not equal
to that linked with the supplied long-term identifier:

<s> ^smem.command.prohibit <bad-lti>

150 CHAPTER 6. SEMANTIC MEMORY

Multiple prohibit command WMEs may be issued as modifiers to a single cue-based
retrieval. This method can be used to iterate over all matching long-term identifiers.

• The neg-query command requires that the retrieved long-term identifier does NOT
contain a set of attributes/attribute-value pairs:

<s> ^smem.command.neg-query <cue>

The syntax of this command is identical to that of regular/positive query command.

• The math-query command requires that the retrieved long term identifier contains
an attribute value pair that meets a specified mathematical condition. This condition
can either be a conditional query or a superlative query.

Conditional queries are of the format:

<s> ^smem.command.math-query.<cue-attribute>.<condition-name> <value>

Superlative queries do not use a value argument and are of the format:

<s> ^smem.command.math-query.<cue-attribute>.<condition-name>

Values used in math queries must be integer or float type values. Currently supported
condition names are:

less A value less than the given argument

greater A value greater than the given argument

less-or-equal A value less than or equal to the given argument

greater-or-equal A value greater than or equal to the given argument

max The maximum value for the attribute

min The minimum value for the attribute

6.4.2.1 Activation

When an agent issues a cue-based retrieval and multiple LTIs match the cue, the LTI which
semantic memory provides to working memory as the result is the LTI which not only
matches the cue, but also has the highest activation value. Semantic memory has several
activation methods available for this purpose.

The simplest activation methods are recency and frequency activation. Recency activa-
tion attaches a time-stamp to each LTI and records the time of last retrieval. Using recency
activation, the LTI which matches the cue and was also most-recently retrieved is the one
which is returned as the result for a query. Frequency activation attaches a counter to each
LTI and records the number of retrievals for that LTI. Using frequency activation, the LTI
which matches the cue and also was most frequently used is returned as the result of the
query. By default, Soar uses recency activation.

6.4. RETRIEVING SEMANTIC KNOWLEDGE 151

Base-level activation can be thought of as a mixture of both recency and frequency.
Soar makes use of the following equation (known as the Petrov approximation2) for calcu-
lating base-level activation:

BLA = log

[
k∑

i=1

t−di +
(n− k)(t1−dn − t1−dk)

(1− d)(tn − tk)

]

where n is the number of activation boosts, tn is the time since the first boost, tk is the time
of the kth boost, d is the decay factor, and k is the number of recent activation boosts which
are stored. (In Soar, k is hard-coded to 10.) To use base-level activation, use the following
CLI command when sourcing an agent:

smem --set activation-mode base-level

Spreading activation is new to Soar 9.6.0 and provides a secondary type of activation
beyond the previous methods. First, spreading activation requires that base-level activation
is also being used. They are considered additive. This value does not represent recency or
frequency of use, but rather context-relatedness. Spreading activation increases the activa-
tion of LTIs which are linked to by identifiers currently present in working memory.3 Such
LTIs may be thought of as spreading sources.

Spreading activation values spread according to network structure. That is, spreading sources
will add to the spreading activation values of any of their child LTIs, according to the directed
graph structure within smem (not working memory). The amount of spread is controlled by
the
spreading-continue-probability parameter. By default this value is set to 0.9.
This would mean that 90% of an LTI’s spreading activation value would be divided among
its direct children (without subtracting from its own value). This value is multiplicative with
depth. A “grandchild” LTI, connected at a distance of two from a source LTI, would receive
spreading according to 0.9× 0.9 = 0.81 of the source spreading activation value.

Spreading activation values are updated each decision cycle only as needed for specific
smem retrievals. For efficiency, two limits exist for the amount of spread calculated. The
spreading-limit parameter limits how many LTIs can receive spread from a given
spreading source LTI. By default, this value is (300). Spread is distributed in a magnitude-
first manner to all descendants of a source. (Without edge-weights, this simplifies to breadth-
first.) Once the number of LTIs that have been given spread from a given source reaches
the max value indicated by spreading-limit, no more is calculated for that source that
update cycle, and the next spreading source’s contributions are calculated. The maximum
depth of descendants that can receive spread contributions from a source is similarly given
by the spreading-depth-limit parameter. By default, this value is (10).

In order to use spreading activation, use the following command:

smem --set spreading on

2Petrov, Alexander A. “Computationally efficient approximation of the base-level learning equation in
ACT-R.” Proceedings of the seventh international conference on cognitive modeling. 2006.

3 Specifically, linked to by STIs that have augmentations.

152 CHAPTER 6. SEMANTIC MEMORY

Also, spreading activation can make use of working memory activation for adjusting edge
weights and for providing nonuniform initial magnitude of spreading for sources of spread.
This functionality is optional. To enable the updating of edge-weights, use the command:

smem --set spreading-edge-updating on

and to enable working memory activation to modulate the magnitude of spread from sources,
use the command:

smem --set spreading-wma-source on

For most use-cases, base-level activation is sufficient to provide an agent with relevant knowl-
edge in response to a query. However, to provide an agent with more context-relevant results
as opposed to results based only on historical usage, one must use spreading activation.

6.4.3 Retrieval with Depth

For either cue-based or non-cue-based retrieval, it is possible to retrieve a long-term identifier
with additional depth. Using the depth parameter allows the agent to retrieve a greater
amount of the memory structure than it would have by retrieving not only the long-term
identifier’s attributes and values, but also by recursively adding to working memory the
attributes and values of that long-term identifier’s children.

Depth is an additional command attribute, like query:

<s> ^smem.command.query <cue>

^smem.command.depth <integer>

For instance, the following rule uses depth with a cue-based retrieval:

sp {smem*sample*query

(state <s> ^smem.command <sc>

^input-link.foo <bar>)

-->

(<sc> ^query <q>

^depth 2)

(<q> ^name <any-name>

^foo <bar>

^associate <lti>

^age 25)

}

In the example above and without using depth, the long-term identifier referenced by

^associate <lti>

would not also have its attributes and values be retrieved. With a depth of 2 or more, that
long-term identifier also has its attributes and values added to working memory.

Depth can incur a large cost depending on the specified depth and the structures stored in

6.5. PERFORMANCE 153

semantic memory.

6.5 Performance

Initial empirical results with toy agents show that semantic memory queries carry up to
a 40% overhead as compared to comparable rete matching. However, the retrieval mecha-
nism implements some basic query optimization: statistics are maintained about all stored
knowledge. When a query is issued, semantic memory re-orders the cue such as to minimize
expected query time. Because only perfect matches are acceptable, and there is no sym-
bol variablization, semantic memory retrievals do not contend with the same combinatorial
search space as the rete. Preliminary empirical study shows that semantic memory maintains
sub-millisecond retrieval time for a large class of queries, even in very large stores (millions
of nodes/edges).

Once the number of long-term identifiers overcomes initial overhead (about 1000 WMEs),
initial empirical study shows that semantic storage requires far less than 1KB per stored
WME.

6.5.1 Math queries

There are some additional performance considerations when using math queries during re-
trieval. Initial testing indicates that conditional queries show the same time growth with
respect to the number of memories in comparison to non-math queries, however the actual
time for retrieval may be slightly longer. Superlative queries will often show a worse re-
sult than similar non-superlative queries, because the current implementation of semantic
memory requires them to iterate over any memory that matches all other involved cues.

6.5.2 Performance Tweaking

When using a database stored to disk, several parameters become crucial to performance.
The first is lazy-commit, which controls when database changes are written to disk.
The default setting (on) will keep all writes in memory and only commit to disk upon re-
initialization (quitting the agent or issuing the init command). The off setting will write
each change to disk and thus incurs massive I/O delay.

The next parameter is thresh. This has to do with the locality of storing/updating acti-
vation information with semantic augmentations. By default, all WME augmentations are
incrementally sorted by activation, such that cue-based retrievals need not sort large number
of candidate long-term identifiers on demand, and thus retrieval time is independent of cue
selectivity. However, each activation update (such as after a retrieval) incurs an update cost
linear in the number of augmentations. If the number of augmentations for a long-term
identifier is large, this cost can dominate. Thus, the thresh parameter sets the upper bound
of augmentations, after which activation is stored with the long-term identifier. This allows

154 CHAPTER 6. SEMANTIC MEMORY

the user to establish a balance between cost of updating augmentation activation and the
number of long-term identifiers that must be pre-sorted during a cue-based retrieval. As long
as the threshold is greater than the number of augmentations of most long-term identifiers,
performance should be fine (as it will bound the effects of selectivity).

The next two parameters deal with the SQLite cache, which is a memory store used to speed
operations like queries by keeping in memory structures like levels of index B+-trees. The
first parameter, page-size, indicates the size, in bytes, of each cache page. The second
parameter, cache-size, suggests to SQLite how many pages are available for the cache.
Total cache size is the product of these two parameter settings. The cache memory is not pre-
allocated, so short/small runs will not necessarily make use of this space. Generally speaking,
a greater number of cache pages will benefit query time, as SQLite can keep necessary meta-
data in memory. However, some documented situations have shown improved performance
from decreasing cache pages to increase memory locality. This is of greater concern when
dealing with file-based databases, versus in-memory. The size of each page, however, may be
important whether databases are disk- or memory-based. This setting can have far-reaching
consequences, such as index B+-tree depth. While this setting can be dependent upon a
particular situation, a good heuristic is that short, simple runs should use small values of
the page size (1k, 2k, 4k), whereas longer, more complicated runs will benefit from larger
values (8k, 16k, 32k, 64k). The episodic memory chapter (see Section 7.4 on page 161) has
some further empirical evidence to assist in setting these parameters for very large stores.

The next parameter is optimization. The safety parameter setting will use SQLite
default settings. If data integrity is of importance, this setting is ideal. The performance

setting will make use of lesser data consistency guarantees for significantly greater perfor-
mance. First, writes are no longer synchronous with the OS (synchronous pragma), thus
semantic memory won’t wait for writes to complete before continuing execution. Second,
transaction journaling is turned off (journal mode pragma), thus groups of modifications to
the semantic store are not atomic (and thus interruptions due to application/os/hardware
failure could lead to inconsistent database state). Finally, upon initialization, semantic mem-
ory maintains a continuous exclusive lock to the database (locking mode pragma), thus other
applications/agents cannot make simultaneous read/write calls to the database (thereby re-
ducing the need for potentially expensive system calls to secure/release file locks).

Finally, maintaining accurate operation timers can be relatively expensive in Soar. Thus,
these should be enabled with caution and understanding of their limitations. First, they
will affect performance, depending on the level (set via the timers parameter). A level
of three, for instance, times every modification to long-term identifier recency statistics.
Furthermore, because these iterations are relatively cheap (typically a single step in the
linked-list of a b+-tree), timer values are typically unreliable (depending upon the system,
resolution is 1 microsecond or more).

Chapter 7

Episodic Memory

Episodic memory is a record of an agent’s stream of experience. The episodic storage mech-
anism will automatically record episodes as a Soar agent executes. The agent can later
deliberately retrieve episodic knowledge to extract information and regularities that may
not have been noticed during the original experience and combine them with current knowl-
edge such as to improve performance on future tasks.

This chapter is organized as follows: episodic memory structures in working memory (7.1);
episodic storage (7.2); retrieving episodes (7.3); and a discussion of performance (7.4). The
detailed behavior of episodic memory is determined by numerous parameters that can be
controlled and configured via the epmem command.

Please refer to the documentation for that command in Section 9.5.2 on page 252.

7.1 Working Memory Structure

Upon creation of a new state in working memory (see Section 2.7.1 on page 28; Section 3.4 on
page 84), the architecture creates the following augmentations to facilitate agent interaction
with episodic memory:

(<s> ^epmem <e>)

(<e> ^command <e-c>)

(<e> ^result <e-r>)

(<e> ^present-id #)

As rules augment the command structure in order to retrieve episodes (7.3), episodic memory
augments the result structure in response. Production actions should not remove augmen-
tations of the result structure directly, as episodic memory will maintain these WMEs.

The value of the present-id augmentation is an integer and will update to expose to the
agent the current episode number. This information is identical to what is available via the
time statistic (see Section 9.5.2 on page 252) and the present-id retrieval meta-data (7.3.4).

155

156 CHAPTER 7. EPISODIC MEMORY

7.2 Episodic Storage

Episodic memory records new episodes without deliberate action/consideration by the agent.
The timing and frequency of recording new episodes is controlled by the phase and trigger

parameters. The phase parameter sets the phase in the decision cycle (default: end of each
decision cycle) during which episodic memory stores episodes and processes commands. The
value of the trigger parameter indicates to the architecture the event that concludes an
episode: adding a new augmentation to the output-link (default) or each decision cycle.

For debugging purposes, the force parameter allows the user to manually request that an
episode be recorded (or not) during the current decision cycle. Behavior is as follows:

• The value of the force parameter is initialized to off every decision cycle.

• During the phase of episodic storage, episodic memory tests the value of the force

parameter; if it has a value other than of off, episodic memory follows the forced policy
irrespective of the value of the trigger parameter.

7.2.1 Episode Contents

When episodic memory stores a new episode, it captures the entire top-state of working
memory. There are currently two exceptions to this policy:

• Episodic memory only supports WMEs whose attribute is a constant. Behavior is
currently undefined when attempting to store a WME that has an attribute that is an
identifier.

• The exclusions parameter allows the user to specify a set of attributes for which
Soar will not store WMEs. The storage process currently walks the top-state of working
memory in a breadth-first manner, and any WME that is not reachable other than
via an excluded WME will not be stored. By default, episodic memory excludes the
epmem and smem structures, to prevent encoding of potentially large and/or frequently
changing memory retrievals.

7.2.2 Storage Location

Episodic memory uses SQLite to facilitate efficient and standardized storage and querying
of episodes. The episodic store can be maintained in memory or on disk (per the database

and path parameters). If the store is located on disk, users can use any standard SQLite
programs/components to access/query its contents. See the later discussion on performance
(7.4) for additional parameters dealing with databases on disk.

Note that changes to storage parameters, for example database, path and append will
not have an effect until the database is used after an initialization. This happens either
shortly after launch (on first use) or after a database initialization command is issued. To

7.3. RETRIEVING EPISODES 157

switch databases or database storage types while running, set your new parameters and then
perform an epmem --init command.

The path parameter specifies the file system path the database is stored in. When path is
set to a valid file system path and database mode is set to file, then the SQLite database is
written to that path.

The append parameter will determine whether all existing facts stored in a database on
disk will be erased when episodic memory loads. Note that this affects init-soar also. In
other words, if the append setting is off, all episodes stored will be lost when an init-soar is
performed. For episodic memory, append mode is off by default.

Note: As of version 9.3.3, Soar now uses a new schema for the episodic memory database.
This means databases from 9.3.2 and below can no longer be loaded. A conversion utility
will be available in Soar 9.4 to convert from the old schema to the new one.

7.3 Retrieving Episodes

An agent retrieves episodes by creating an appropriate command (we detail the types of
commands below) on the command link of a state’s epmem structure. At the end of the
phase of each decision, after episodic storage, episodic memory processes each state’s epmem
command structure. Results, meta-data, and errors are placed on the result structure of
that state’s epmem structure.

Only one type of retrieval command (which may include optional modifiers) can be issued
per state in a single decision cycle. Malformed commands (including attempts at multiple
retrieval types) will result in an error:

<s> ^epmem.result.status bad-cmd

After a command has been processed, episodic memory will ignore it until some aspect of
the command structure changes (via addition/removal of WMEs). When this occurs, the
result structure is cleared and the new command (if one exists) is processed.

All retrieved episodes are recreated exactly as stored, except for any operators that have an
acceptable preference, which are recreated with the attribute operator*. For example, if
the original episode was:

(<s> ^operator <o1> +)

(<o1> ^name move)

A retrieval of the episode would become:

(<s> ^operator* <o1>)

(<o1> ^name move)

158 CHAPTER 7. EPISODIC MEMORY

7.3.1 Cue-Based Retrievals

Cue-based retrieval commands are used to search for an episode in the store that best matches
an agent-supplied cue, while adhering to optional modifiers. A cue is composed of WMEs
that partially describe a top-state of working memory in the retrieved episode. All cue-based
retrieval requests must contain a single ˆquery cue and, optionally, a single ˆneg-query
cue.

<s> ^epmem.command.query <required-cue>

<s> ^epmem.command.neg-query <optional-negative-cue>

A ^query cue describes structures desired in the retrieved episode, whereas a ^neg-query

cue describes non-desired structures. For example, the following Soar production creates
a ^query cue consisting of a particular state name and a copy of a current value on the
input-link structure:

sp {epmem*sample*query

(state <s> ^epmem.command <ec>

^io.input-link.foo <bar>)

-->

(<ec> ^query <q>)

(<q> ^name my-state-name

^io.input-link.foo <bar>)

}

As detailed below, multiple prior episodes may equally match the structure and contents of
an agent’s cue. Nuxoll has produced initial evidence that in some tasks, retrieval quality
improves when using activation of cue WMEs as a form of feature weighting. Thus, episodic
memory supports integration with working memory activation (see Section 9.3.2.1 on page
220). For a theoretical discussion of the Soar implementation of working memory activation,
consider reading Comprehensive Working Memory Activation in Soar (Nuxoll, A., Laird, J.,
James, M., ICCM 2004).

The cue-based retrieval process can be thought of conceptually as a nearest-neighbor search.
First, all candidate episodes, defined as episodes containing at least one leaf WME (a cue
WME with no sub-structure) in at least one cue, are identified. Two quantities are calculated
for each candidate episode, with respect to the supplied cue(s): the cardinality of the match
(defined as the number of matching leaf WMEs) and the activation of the match (defined as
the sum of the activation values of each matching leaf WME). Note that each of these values
is negated when applied to a negative query. To compute each candidate episode’s match
score, these quantities are combined with respect to the balance parameter as follows:

(balance) ∗ (cardinality) + (1− balance) ∗ (activation)

Performing a graph match on each candidate episode, with respect to the structure of the
cue, could be very computationally expensive, so episodic memory implements a two-stage
matching process. An episode with perfect cardinality is considered a perfect surface match

7.3. RETRIEVING EPISODES 159

and, per the graph-match parameter, is subjected to further structural matching. Whereas
surface matching efficiently determines if all paths to leaf WMEs exist in a candidate episode,
graph matching indicates whether or not the cue can be structurally unified with the candi-
date episode (paying special regard to the structural constraints imposed by shared identi-
fiers). Cue-based matching will return the most recent structural match, or the most recent
candidate episode with the greatest match score.

A special note should be made with respect to how short- vs. long-term identifiers (see
Section 6.2 on page 144) are interpreted in a cue. Short-term identifiers are processed much
as they are in working memory – transient structures. Cue matching will try to find any
identifier in an episode (with respect to WME path from state) that can apply. Long-
term identifiers, however, are treated as constants. Thus, when analyzing the cue, episodic
memory will not consider long-term identifier augmentations, and will only match with the
same long-term identifier (in the same context) in an episode.

The case-based retrieval process can be further controlled using optional modifiers:

• The before command requires that the retrieved episode come relatively before a
supplied time:

<s> ^epmem.command.before time

• The after command requires that the retrieved episode come relatively after a sup-
plied time:

<s> ^epmem.command.after time

• The prohibit command requires that the time of the retrieved episode is not equal
to a supplied time:

<s> ^epmem.command.prohibit time

Multiple prohibit command WMEs may be issued as modifiers to a single CB retrieval.

If no episode satisfies the cue(s) and optional modifiers an error is returned:

<s> ^epmem.result.failure <query> <optional-neg-query>

If an episode is returned, there is additional meta-data supplied (7.3.4).

7.3.2 Absolute Non-Cue-Based Retrieval

At time of storage, each episode is attributed a unique time. This is the current value of time
statistic and is provided as the memory-id meta-data item of retrieved episodes (7.3.4). An
absolute non-cue-based retrieval is one that requests an episode by time. An agent issues an
absolute non-cue-based retrieval by creating a WME on the command structure with attribute
retrieve and value equal to the desired time:

<s> ^epmem.command.retrieve time

160 CHAPTER 7. EPISODIC MEMORY

Supplying an invalid value for the retrieve command will result in an error.

The time of the first episode in an episodic store will have value 1 and each subsequent
episode’s time will increase by 1. Thus the desired time may be the mathematical result of
operations performed on a known episode’s time.

The current episodic memory implementation does not implement any episodic store dynam-
ics, such as forgetting. Thus any integer time greater than 0 and less than the current value
of the time statistic will be valid. However, if forgetting is implemented in future versions,
no such guarantee will be made.

7.3.3 Relative Non-Cue-Based Retrieval

Episodic memory supports the ability for an agent to “play forward” episodes using relative
non-cue-based retrievals.

Episodic memory stores the time of the last successful retrieval (non-cue-based or cue-based).
Agents can indirectly make use of this information by issuing next or previous commands.
Episodic memory executes these commands by attempting to retrieve the episode immedi-
ately proceeding/preceding the last successful retrieval (respectively). To issue one of these
commands, the agent must create a new WME on the command link with the appropriate
attribute (next or previous) and value of an arbitrary identifier:

<s> ^epmem.command.next <n>

<s> ^epmem.command.previous <p>

If no such episode exists then an error is returned.

Currently, if the time of the last successfully retrieved episode is known to the agent (as could
be the case by accessing result meta-data), these commands are identical to performing an
absolute non-cue-based retrieval after adding/subtracting 1 to the last time (respectively).
However, if an episodic store dynamic like forgetting is implemented, these relative commands
are guaranteed to return the next/previous valid episode (assuming one exists).

7.3.4 Retrieval Meta-Data

The following list details the WMEs that episodic memory creates in the result link of the
epmem structure wherein a command was issued:

• retrieved <retrieval-root> If episodic memory retrieves an episode, that
memory is placed here. This WME is an identifier that is treated as the root of
the state that was used to create the episodic memory. If the retrieve command was
issued with an invalid time, the value of this WME will be no-memory.

• success <query> <optional-neg-query> If the cue-based retrieval was suc-
cessful, the WME will have the status as the attribute and the value of the identifier
of the query (and neg-query, if applicable).

7.4. PERFORMANCE 161

• match-score This WME is created whenever an episode is successfully retrieved
from a cue-based retrieval command. The WME value is a decimal indicating the raw
match score for that episode with respect to the cue(s).

• cue-size This WME is created whenever an episode is successfully retrieved from a
cue-based retrieval command. The WME value is an integer indicating the number of
leaf WMEs in the cue(s).

• normalized-match-score This WME is created whenever an episode is success-
fully retrieved from a cue-based retrieval command. The WME value is the decimal
result of dividing the raw match score by the cue size. It can hypothetically be used
as a measure of episodic memory’s relative confidence in the retrieval.

• match-cardinality This WME is created whenever an episode is successfully re-
trieved from a cue-based retrieval command. The WME value is an integer indicating
the number of leaf WMEs matched in the ^query cue minus those matched in the
^neg-query cue.

• memory-id This WME is created whenever an episode is successfully retrieved from
a cue-based retrieval command. The WME value is an integer indicating the time of
the retrieved episode.

• present-id This WME is created whenever an episode is successfully retrieved from
a cue-based retrieval command. The WME value is an integer indicating the current
time, such as to provide a sense of “now” in episodic memory terms. By comparing
this value to the memory-id value, the agent can gain a sense of the relative time that
has passed since the retrieved episode was recorded.

• graph-match This WME is created whenever an episode is successfully retrieved
from a cue-based retrieval command and the graph-match parameter was on. The
value is an integer with value 1 if graph matching was executed successfully and 0
otherwise.

• mapping <mapping-root> This WME is created whenever an episode is success-
fully retrieved from a cue-based retrieval command, the graph-match parameter was
on, and structural match was successful on the retrieved episode. This WME provides
a mapping between identifiers in the cue and in the retrieved episode. For each identi-
fier in the cue, there is a node WME as an augmentation to the mapping identifier. The
node has a cue augmentation, whose value is an identifier in the cue, and a retrieved

augmentation, whose value is an identifier in the retrieved episode. In a graph match
it is possible to have multiple identifier mappings – this map represents the “first”
unified mapping (with respect to episodic memory algorithms).

7.4 Performance

There are currently two sources of “unbounded” computation: graph matching and cue-
based queries. Graph matching is combinatorial in the worst case. Thus, if an episode

162 CHAPTER 7. EPISODIC MEMORY

presents a perfect surface match, but imperfect structural match (i.e. there is no way to
unify the cue with the candidate episode), there is the potential for exhaustive search. Each
identifier in the cue can be assigned one of any historically consistent identifiers (with respect
to the sequence of attributes that leads to the identifier from the root), termed a literal. If
the identifier is a multi-valued attribute, there will be more than one candidate literals and
this situation can lead to a very expensive search process. Currently there are no heuristics
in place to attempt to combat the expensive backtracking. Worst-case performance will
be combinatorial in the total number of literals for each cue identifier (with respect to cue
structure).

The cue-based query algorithm begins with the most recent candidate episode and will stop
search as soon as a match is found (since this episode must be the most recent). Given this
procedure, it is trivial to create a two-WME cue that forces a linear search of the episodic
store. Episodic memory combats linear scan by only searching candidate episodes, i.e. only
those that contain a change in at least one of the cue WMEs. However, a cue that has
no match and contains WMEs relevant to all episodes will force inspection of all episodes.
Thus, worst-case performance will be linear in the number of episodes.

7.4.1 Performance Tweaking

When using a database stored to disk, several parameters become crucial to performance.
The first is commit, which controls the number of episodes that occur between writes to
disk. If the total number of episodes (or a range) is known ahead of time, setting this value
to a greater number will result in greatest performance (due to decreased I/O).

The next two parameters deal with the SQLite cache, which is a memory store used to speed
operations like queries by keeping in memory structures like levels of index B+-trees. The
first parameter, page-size, indicates the size, in bytes, of each cache page. The second
parameter, cache-size, suggests to SQLite how many pages are available for the cache.
Total cache size is the product of these two parameter settings. The cache memory is not pre-
allocated, so short/small runs will not necessarily make use of this space. Generally speaking,
a greater number of cache pages will benefit query time, as SQLite can keep necessary meta-
data in memory. However, some documented situations have shown improved performance
from decreasing cache pages to increase memory locality. This is of greater concern when
dealing with file-based databases, versus in-memory. The size of each page, however, may be
important whether databases are disk- or memory-based. This setting can have far-reaching
consequences, such as index B+-tree depth. While this setting can be dependent upon a
particular situation, a good heuristic is that short, simple runs should use small values of the
page size (1k, 2k, 4k), whereas longer, more complicated runs will benefit from larger values
(8k, 16k, 32k, 64k). One known situation of concern is that as indexed tables accumulate
many rows (∼millions), insertion time of new rows can suffer an infrequent, but linearly
increasing burst of computation. In episodic memory, this situation will typically arise with
many episodes and/or many working memory changes. Increasing the page size will reduce
the intensity of the spikes at the cost of increasing disk I/O and average/total time for
episode storage. Thus, the settings of page size for long, complicated runs establishes the

7.4. PERFORMANCE 163

y	
 =	
 0.4982x2	
 -­‐	
 8.9027x	
 +	
 36.31	

R²	
 =	
 0.93408	

y	
 =	
 0.0119x2	
 -­‐	
 0.0487x	
 +	
 0.1633	

R²	
 =	
 0.99013	

0.1	

0.15	

0.2	

0.25	

0.3	

0	

5	

10	

15	

20	

25	

1k	
 2k	
 4k	
 8k	
 16k	
 32k	

Av
er
ag
e	

(m

se
c)
	

M
ax
im

um
	
 (m

se
c)
	

Page	
 Size	

EpMem	
 Storage	
 Time	
 (10M	
 Decisions)	

Maximum	
 Average	

Figure 7.1: Example episodic memory cache setting data.

desired balance of reactivity (i.e. max computation) and average speed. To ground this
discussion, the Figure 7.1 depicts maximum and average episodic storage time (the value of
the epmem storage timer, converted to milliseconds) with different page sizes after 10 million
decisions (1 episode/decision) of a very basic agent (i.e. very few working memory changes
per episode) running on a 2.8GHz Core i7 with Mac OS X 10.6.5. While only a single use
case, the cross-point of these data forms the basis for the decision to default the parameter
at 8192 bytes.

The next parameter is optimization, which can be set to either safety or performance.
The safety parameter setting will use SQLite default settings. If data integrity is of impor-
tance, this setting is ideal. The performance setting will make use of lesser data consistency
guarantees for significantly greater performance. First, writes are no longer synchronous
with the OS (synchronous pragma), thus episodic memory won’t wait for writes to complete
before continuing execution. Second, transaction journaling is turned off (journal mode
pragma), thus groups of modifications to the episodic store are not atomic (and thus inter-
ruptions due to application/os/hardware failure could lead to inconsistent database state).
Finally, upon initialization, episodic memory maintains a continuous exclusive lock to the
database (locking mode pragma), thus other applications/agents cannot make simultaneous
read/write calls to the database (thereby reducing the need for potentially expensive system
calls to secure/release file locks).

Finally, maintaining accurate operation timers can be relatively expensive in Soar. Thus,
these should be enabled with caution and understanding of their limitations. First, they
will affect performance, depending on the level (set via the timers parameter). A level of
three, for instance, times every step in the cue-based retrieval candidate episode search.
Furthermore, because these iterations are relatively cheap (typically a single step in the
linked-list of a b+-tree), timer values are typically unreliable (depending upon the system,
resolution is 1 microsecond or more).

164 CHAPTER 7. EPISODIC MEMORY

Chapter 8

Spatial Visual System

The Spatial Visual System (SVS) allows Soar to effectively represent and reason about con-
tinuous, three dimensional environments. SVS maintains an internal representation of the
environment as a collection of discrete objects with simple geometric shapes, called the scene
graph. The Soar agent can query for spatial relationships between the objects in the scene
graph through a working memory interface similar to that of episodic and semantic memory.
Figure 8.1 illustrates the typical use case for SVS by contrasting it with an agent that does
not utilize it. The agent that does not use SVS (a. in the figure) relies on the environment to
provide a symblic representation of the continuous state. On the other hand, the agent that

Figure 8.1: (a) Typical environment setup without using SVS. (b) Same environment using SVS.

165

166 CHAPTER 8. SPATIAL VISUAL SYSTEM

uses SVS (b) accepts a continuous representation of the environment state directly, and then
performs queries on the scene graph to extract a symbolic representation internally. This
allows the agent to build more flexible symbolic representations without requiring modifi-
cations to the environment code. Furthermore, it allows the agent to manipulate internal
copies of the scene graph and then extract spatial relationships from the modified states,
which is useful for look-ahead search and action modeling. This type of imagery operation
naturally captures and propogates the relationships implicit in spatial environments, and
doesn’t suffer from the frame problem that relational representations have.

8.1 The scene graph

The primary data structure of SVS is the scene graph. The scene graph is a tree in which the
nodes represent objects in the scene and the edges represent “part-of” relationships between
objects. An example scene graph consisting of a car and a pole is shown in Figure 8.2. The
scene graph’s leaves are geometry nodes and its interior nodes are group nodes. Geometry
nodes represent atomic objects that have intrinsic shape, such as the wheels and chassis in
the example. Currently, the shapes supported by SVS are points, lines, convex polyhedrons,
and spheres. Group nodes represent objects that are the aggregates of their child nodes, such
as the car object in the example. The shape of a group node is the union of the shapes of its
children. Structuring complex objects in this way allows Soar to reason about them naturally
at different levels of abstraction. The agent can query SVS for relationships between the car
as a whole with other objects (e.g. does it intersect the pole?), or the relationships between
its parts (e.g. are the wheels pointing left or right with respect to the chassis?). The scene
graph always contains at least a root node: the world node.

Each node other than the world node has a transform with respect to its parent. A transform
consists of three components:

position (x, y, z) Specifies the x, y, and z offsets of the node’s origin with respect to its
parent’s origin.

rotation (x, y, z) Specifies the rotation of the node relative to its origin in Euler angles.
This means that the node is rotated the specified number of radians along each axis
in the order x − y − z. For more information, see http://en.wikipedia.org/wiki/

Euler_angles.

scaling (x, y, z) Specifies the factors by which the node is scaled along each axis.

The component transforms are applied in the order scaling, then rotation, then position.
Each node’s transform is applied with respect to its parent’s coordinate system, so the
transforms accumulate down the tree. A node’s transform with respect to the world node,
or its world transform, is the aggregate of all its ancestor transforms. For example, if the
car has a position transform of (1, 0, 0) and a wheel on the car has a position transform of
(0, 1, 0), then the world position transform of the wheel is (1, 1, 0).

SVS represents the scene graph structure in working memory under the ^spatial-scene

link. The working memory representation of the car and pole scene graph is

http://en.wikipedia.org/wiki/Euler_angles
http://en.wikipedia.org/wiki/Euler_angles

8.1. THE SCENE GRAPH 167

Figure 8.2: (a) A 3D scene. (b) The scene graph representation.

(S1 ^svs S3)

(S3 ^command C3 ^spatial-scene S4)

(S4 ^child C10 ^child C4 ^id world)

(C10 ^id pole)

(C4 ^child C9 ^child C8 ^child C7 ^child C6 ^child C5 ^id car)

(C9 ^id chassis)

(C8 ^id wheel3)

(C7 ^id wheel2)

(C6 ^id wheel1)

(C5 ^id wheel0)

Each state in working memory has its own scene graph. When a new state is created, it
will receive an independent copy of its parent’s scene graph. This is useful for performing
look-ahead search, as it allows the agent to destructively modify the scene graph in a search
state using mental imagery operations.

168 CHAPTER 8. SPATIAL VISUAL SYSTEM

8.1.1 svs viewer

A viewer has been provided to show the scene graph visually. Run the program svs viewer

-s PORT from the soar/out folder to launch the viewer listening on the given port. Once the
viewer is running, from within soar use the command svs connect viewer PORT to connect
to the viewer and begin drawing the scene graph. Any changes to the scene graph will be
reflected in the viewer. The viewer by default draws the topstate scene graph, to draw that
on a substate first stop drawing the topstate with svs S1.scene.draw off and then svs

S7.scene.draw on.

8.2 Scene Graph Edit Language

The Scene Graph Edit Language (SGEL) is a simple, plain text, line oriented lan-
guage that is used by SVS to modify the contents of the scene graph. Typically, the scene
graph is used to represent the state of the external environment, and the programmer sends
SGEL commands reflecting changes in the environment to SVS via the Agent::SendSVSInput
function in the SML API. These commands are buffered by the agent and processed at the
beginning of each input phase. Therefore, it is common to send scene changes through
SendSVSInput before the input phase. If you send SGEL commands at the end of the input
phase, the results won’t be processed until the following decision cycle.

Each SGEL command begins with a single word command type and ends with a newline.
The four command types are

add ID PARENT ID [GEOMETRY] [TRANSFORM]

Add a node to the scene graph with the given ID, as a child of PARENT ID, and with
type TYPE (usually object).The GEOMETRY and TRANSFORM arguments are optional and
described below.

change ID [GEOMETRY] [TRANSFORM]

Change the transform and/or geometry of the node with the given ID.

delete ID

Delete the node with the given ID.

tag [add|change|delete] ID TAG NAME TAG VALUE

Adds, changes, or deletes a tag from an object. A tag consists of a TAG NAME and
TAG VALUE pair and is added to the node with the given ID. Both TAG NAME and
TAG VALUE must be strings. Tags can differentiate nodes (e.g. as a type field) and
can be used in conjunction with the tag select filter to choose a subset of the nodes.

The TRANSFORM argument has the form [p X Y Z] [r X Y Z] [s X Y Z], corresponding to
the position, rotation, and scaling components of the transform, respectively. All the compo-
nents are optional; any combination of them can be excluded, and the included components
can appear in any order.

The GEOMETRY argument has two forms:

8.3. COMMANDS 169

b RADIUS

Make the node a geometry node with sphere shape with radius RADIUS.

v X1 Y1 Z1 X2 Y2 Z2 ...

Make the node a geometry node with a convex polyhedron shape with the specified
vertices. Any number of vertices can be listed.

8.2.1 Examples

Creating a sphere called ball4 with radius 5 at location (4, 4, 0).
add ball4 world b 5 p 4 4 0

Creating a triangle in the xy plane, then rotate it vertically, double its size, and move it to
(1, 1, 1).
add tri9 world v -1 -1 0 1 -1 0 0 0.5 0 p 1 1 1 r 1.507 0 0 s 2 2 2

Creating a snowman shape of 3 spheres stacked on each other and located at (2, 2, 0).
add snowman world p 2 2 0

add bottomball snowman b 3 p 0 0 3

add middleball snowman b 2 p 0 0 8

add topball snowman b 1 p 0 0 11

Set the rotation transform on box11 to 180 degrees around the z axis.
change box11 r 0 0 3.14159

Changing the color tag on box7 to green.
tag change box7 color green

8.3 Commands

The Soar agent initiates commands in SVS via the ˆcommand link, similar to semantic
and episodic memory. These commands allow the agent to modify the scene graph and
extract filters. Commands are processed during the output phase and the results are added
to working memory during the input phase. SVS supports the following commands:

add node Creates a new node and adds it to the scene graph

copy node Creates a copy of an existing node

delete node Removes a node from the scene graph and deletes it

set transform Changes the position, rotation, and/or scale of a node

set tag Adds or changes a tag on a node

delete tag Deletes a tag from a node

170 CHAPTER 8. SPATIAL VISUAL SYSTEM

extract Compute the truth value of spatial relationships in the current scene graph.

extract once Same as extract, except it is only computed once and doesn’t update when
the scene changes.

8.3.1 add node

This commands adds a new node to the scene graph.

ˆid [string] The id of the node to create

ˆparent [string] The id of the node to attach the new node to (default is world)

ˆgeometry << group point ball box >> The geometry the node should have

ˆposition.{ˆx ˆy ˆz} Position of the node (optional)

ˆrotation.{ˆx ˆy ˆz} Rotation of the node (optional)

ˆscale.{ˆx ˆy ˆz} Scale of the node (optional)

The following example creates a node called box5 and adds it to the world. The node has a
box shape of side length 0.1 and is placed at position (1, 1, 0).

(S1 ^svs S3)

(S3 ^command C3 ^spatial-scene S4)

(C3 ^add_node A1)

(A1 ^id box5 ^parent world ^geometry box ^position P1 ^scale S6)

(P1 ^x 1.0 ^y 1.0 ^z 0.0)

(S6 ^x 0.1 ^y 0.1 ^z 0.1)

8.3.2 copy node

This command creates a copy of an existing node and adds it to the scene graph. This copy
is not recursive, it only copies the node itself, not its children. The position, rotation, and
scale transforms are also copied from the source node but they can be changed if desired.

ˆid [string] The id of the node to create

ˆsource [string] The id of the node to copy

ˆparent [string] The id of the node to attach the new node to (default is world)

ˆposition.{ˆx ˆy ˆz} Position of the node (optional)

ˆrotation.{ˆx ˆy ˆz} Rotation of the node (optional)

8.3. COMMANDS 171

ˆscale.{ˆx ˆy ˆz} Scale of the node (optional)

The following example copies a node called box5 as new node box6 and moves it to position
(2, 0, 2).

(S1 ^svs S3)

(S3 ^command C3 ^spatial-scene S4)

(C3 ^copy_node A1)

(A1 ^id box6 ^source box5 ^position P1)

(P1 ^x 2.0 ^y 0.0 ^z 2.0)

8.3.3 delete node

This command deletes a node from the scene graph. Any children will also be deleted.

ˆid [string] The id of the node to delete

The following example deletes a node called box5

(S1 ^svs S3)

(S3 ^command C3 ^spatial-scene S4)

(C3 ^delete_node D1)

(D1 ^id box5)

8.3.4 set transform

This command allows you to change the position, rotation, and/or scale of an exisiting node.
You can specify any combination of the three transforms.

ˆid [string] The id of the node to change

ˆposition.{ˆx ˆy ˆz} Position of the node (optional)

ˆrotation.{ˆx ˆy ˆz} Rotation of the node (optional)

ˆscale.{ˆx ˆy ˆz} Scale of the node (optional)

The following example moves and rotates a node called box5.

(S1 ^svs S3)

(S3 ^command C3 ^spatial-scene S4)

(C3 ^set_transform S6)

(S6 ^id box5 ^position P1 ^rotation R1)

(P1 ^x 2.0 ^y 2.0 ^z 0.0)

(R1 ^x 0.0 ^y 0.0 ^z 1.57)

172 CHAPTER 8. SPATIAL VISUAL SYSTEM

8.3.5 set tag

This command allows you to add or change a tag on a node. If a tag with the same id
already exists, the existing value will be replaced with the new value.

ˆid [string] The id of the node to set the tag on

ˆtag name [string] The name of the tag to add

ˆtag value [string] The value of the tag to add

The following example adds a shape tag to the node box5.

(S1 ^svs S3)

(S3 ^command C3 ^spatial-scene S4)

(C3 ^set_tag S6)

(S6 ^id box5 ^tag_name shape ^tag_value cube)

8.3.6 delete tag

This command allows you to delete a tag from a node.

ˆid [string] The id of the node to delete the tag from

ˆtag name [string] The name of the tag to delete

The following example deletes the shape tag from the node box5.

(S1 ^svs S3)

(S3 ^command C3 ^spatial-scene S4)

(C3 ^delete_tag D1)

(D1 ^name box5 ^tag_name shape)

8.3.7 extract and extract once

This command is commonly used to compute spatial relationships in the scene graph. More
generally, it puts the result of a filter pipeline (described in section 8.4) in working memory.
Its syntax is the same as filter pipeline syntax. During the input phase, SVS will evaluate the
filter and put a ^result attribute on the command’s identifier. Under the ^result attribute
is a multi-valued ^record attribute. Each record corresponds to an output value from the
head of the filter pipeline, along with the parameters that produced the value. With the
regular extract command, these records will be updated as the scene graph changes. With
the extract once command, the records will be created once and will not change. Note
that you should not change the structure of a filter once it is created (SVS only processes
a command once). Instead to extract something different you must create a new command.

8.4. FILTERS 173

The following is an example of an extract command which tests whether the car and pole
objects are intersecting. The ^status and ^result WMEs are added by SVS when the
command is finished.

(S1 ^svs S3)

(S3 ^command C3 ^spatial-scene S4)

(C3 ^extract E2)

(E2 ^a A1 ^b B1 ^result R7 ^status success ^type intersect)

(A1 ^id car ^status success ^type node)

(B1 ^id pole ^status success ^type node)

(R7 ^record R17)

(R17 ^params P1 ^value false)

(P1 ^a car ^b pole)

8.4 Filters

Filters are the basic unit of computation in SVS. They transform the continuous information
in the scene graph into symbolic information that can be used by the rest of Soar. Each
filter accepts a number of labeled parameters as input, and produces a single output. Filters
can be arranged into pipelines in which the outputs of some filters are fed into the inputs
of other filters. The Soar agent creates filter pipelines by building an analogous structure
in working memory as an argument to an ”extract” command. For example, the following
structure defines a set of filters that reports whether the car intersects the pole:

(S1 ^svs S3)

(S3 ^command C3 ^spatial-scene S4)

(C3 ^extract E2)

(E2 ^a A1 ^b B1 ^type intersect)

(A1 ^id car ^type node)

(B1 ^id pole ^type node)

The ˆtype attribute specifies the type of filter to instantiate, and the other attributes
specify parameters. This command will create three filters: an intersect filter and two
node filters. A node filter takes an id parameter and returns the scene graph node with
that ID as its result. Here, the outputs of the car and pole node filters are fed into the
^a and ^b parameters of the intersect filter. SVS will update each filter’s output once
every decision cycle, at the end of the input phase. The output of the intersect filter
is a boolean value indicating whether the two objects are intersecting. This is placed into
working memory as the result of the extract command:

(S1 ^svs S3)

(S3 ^command C3 ^spatial-scene S4)

(C3 ^extract E2)

(E2 ^a A1 ^b B1 ^result R7 ^status success ^type intersect)

(A1 ^id car ^status success ^type node)

(B1 ^id pole ^status success ^type node)

174 CHAPTER 8. SPATIAL VISUAL SYSTEM

(R7 ^record R17)

(R17 ^params P1 ^value false)

(P1 ^a car ^b pole)

Notice that a ^status success is placed on each identifier corresponding to a filter. A
^result WME is placed on the extract command with a single record with value false.

8.4.1 Result lists

Spatial queries often involve a large number of objects. For example, the agent may want
to compute whether an object intersects any others in the scene graph. It would be incon-
venient to build the extract command to process this query if the agent had to specify each
object involved explicitly. Too many WMEs would be required, which would slow down
the production matcher as well as SVS because it must spend more time interpreting the
command structure. To handle these cases, all filter parameters and results can be lists of
values. For example, the query for whether one object intersects all others can be expressed
as

(S1 ^svs S3)

(S3 ^command C3)

(C3 ^extract E2)

(E2 ^a A1 ^b B1 ^result R7 ^status success ^type intersect)

(A1 ^id car ^status success ^type node)

(B1 ^status success ^type all_nodes)

(R7 ^record R9 ^record R8)

(R9 ^params P2 ^value false)

(P2 ^a car ^b pole)

(R8 ^params P1 ^value true)

(P1 ^a car ^b car)

The all nodes filter outputs a list of all nodes in the scene graph, and the intersect filter
outputs a list of boolean values indicating whether the car intersects each node, represented
by the multi-valued attribute record. Notice that each record contains both the result of
the query as well as the parameters that produced that result. Not only is this approach
more convenient than creating a separate command for each pair of nodes, but it also allows
the intersect filter to answer the query more efficiently using special algorithms that can
quickly rule out non-intersecting objects.

8.4.2 Filter List

The following is a list of all filters that are included in SVS. You can also get this list by using
the cli command svs filters and get information about a specific filter using the command
svs filters.FILTER NAME. Many filters have a select version. The select version returns
a subset of the input nodes which pass a test. For example, the intersect filter returns
boolean values for each input (a, b) pair, while the intersect select filter returns the

8.4. FILTERS 175

nodes in set b which intersect the input node a. This is useful for passing the results of one
filter into another (e.g. take the nodes that intersect node a and find the largest of them).

node
Given an ˆid, outputs the node with that id.

all nodes
Outputs all the nodes in the scene

combine nodes
Given multiple node inputs as ˆa, concates them into a single output set.

remove node
Removes node ˆid from the input set ˆa and outputs the rest.

node position
Outputs the position of each node in input ˆa.

node rotation
Outputs the rotation of each node in input ˆa.

node scale
Outputs the scale of each node in input ˆa.

node bbox
Outputs the bounding box of each node in input ˆa.

distance and distance select
Outputs the distance between input nodes ˆa and ˆb. Distance can be specified
by ˆdistance type << centroid hull >>, where centroid is the euclidean
distance between the centers, and the hull is the minimum distance between the node
surfaces. distance select chooses nodes in set b in which the distance to node a falls
within the range ˆmin and ˆmax.

closest and farthest
Outputs the node in set ˆb closest to or farthest from ˆa (also uses distance type).

axis distance and axis distance select
Outputs the distance from input node ˆa to ˆb along a particular axis (ˆaxis << x
y z >>). This distance is based on bounding boxes. A value of 0 indicates the nodes
overlap on the given axis, otherwise the result is a signed value indicating whether
node b is greater or less than node a on the given axis. The axis distance select

filter also uses ˆmin and ˆmax to select nodes in set b.

volume and volume select
Outputs the bounding box volume of each node in set ˆa. For volume select, it
outputs a subset of the nodes whose volumes fall within the range ˆmin and ˆmax.

largest and smallest
Outputs the node in set ˆa with the largest or smallest volume.

176 CHAPTER 8. SPATIAL VISUAL SYSTEM

larger and larger select
Outputs whether input node ˆa is larger than each input node ˆb, or selects all nodes
in b for which a is larger.

smaller and smaller select
Outputs whether input node ˆa is smaller than each input node ˆb, or selects all nodes
in b for which a is smaller.

contain and contain select
Outputs whether the bounding box of each input node ˆa contains the bounding box
of each input node ˆb, or selects those nodes in b which are contained by node a.

intersect and intersect select
Outputs whether each input node ˆa intersects each input node ˆb, or selects those
nodes in b which intersect node a. Intersection is specified by ˆintersect type <<
hull box >>; either the convex hull of the node or the axis-aligned bounding box.

tag select
Outputs all the nodes in input set ˆa which have the tag specified by ˆtag name and
ˆtag value.

8.4.3 Examples

Select all the objects with a volume between 1 and 2.

(S1 ^svs S3)

(S3 ^command C3)

(C3 ^extract E1)

(E1 ^type volume_select ^a A1 ^min 1 ^max 2)

(A1 ^type all_nodes)

Find the distance between the centroid of ball3 and all other objects.

(S1 ^svs S3)

(S3 ^command C3)

(C3 ^extract E1)

(E1 ^type distance ^a A1 ^b B1 ^distance_type centroid)

(A1 ^type node ^id ball3)

(B1 ^type all_nodes)

Test where ball2 intersects any red objects.

(S1 ^svs S3)

(S3 ^command C3)

(C3 ^extract E1)

(E1 ^type intersect ^a A1 ^b B1 ^intersect_type hull)

(A1 ^type node ^id ball2)

(B1 ^type tag_select ^a A2 ^tag_name color ^tag_value red)

8.5. WRITING NEW FILTERS 177

(A2 ^type all_nodes)

Find all the objects on the table. This is done by selecting nodes where the distance between
them and the table along the z axis is a small positive number.

(S1 ^svs S3)

(S3 ^command C3)

(C3 ^extract E1)

(E1 ^type axis_distance_select ^a A1 ^b B1 ^axis z ^min .0001 ^max .1)

(A1 ^type node ^id table)

(B1 ^type all_nodes)

Find the smallest object that intersects the table (excluding itself).

(S1 ^svs S3)

(S3 ^command C3)

(C3 ^extract E1)

(E1 ^type smallest ^a A1)

(A1 ^type intersect_select ^a A2 ^b B2 ^intersect_type hull)

(A2 ^type node ^id table)

(B1 ^type remove_node ^id table ^a A3)

(A3 ^type all_nodes)

8.5 Writing new filters

SVS contains a small set of generally useful filters, but many users will need additional
specialized filters for their application. Writing new filters for SVS is conceptually simple.

1. Write a C++ class that inherits from the appropriate filter subclass.

2. Register the new class in a global table of all filters (filter table.cpp).

3. Recompile the kernel.

8.5.1 Filter subclasses

The fact that filter inputs and outputs are lists rather than single values introduces some
complexity to how filters are implemented. Depending on the functionality of the filter, the
multiple inputs into multiple parameters must be combined in different ways, and sets of
inputs will map in different ways onto the output values. Furthermore, the outputs of filters
are cached so that the filter does not repeat computations on sets of inputs that do not
change. To shield the user from this complexity, a set of generally useful filter paradigms
were implemented as subclasses of the basic filter class. When writing custom filters, try
to inherit from one of these classes instead of from filter directly.

178 CHAPTER 8. SPATIAL VISUAL SYSTEM

8.5.1.1 Map filter

This is the most straightforward and useful class of filters. A filter of this class takes the
Cartesian product of all input values in all parameters, and performs the same computation
on each combination, generating one output. In other words, this class implements a one-
to-one mapping from input combinations to output values.

To write a new filter of this class, inherit from the map filter class, and define the compute

function. Below is an example template:

class new_map_filter : public map_filter<double> // templated with output type

{

public:

new_map_filter(Symbol *root, soar_interface *si, filter_input *input, scene *scn)

: map_filter<double>(root, si, input) // call superclass constructor

{}

/* Compute

Do the proper computation based on the input filter_params

and set the out parameter to the result

Return true if successful, false if an error occured */

bool compute(const filter_params* p, double& out){

sgnode* a;

if(!get_filter_param(this, p, "a", a)){

set_status("Need input node a");

return false;

}

out = // Your computation here

}

};

8.5.1.2 Select filter

This is very similar to a map filter, except for each input combination from the Cartesian
product the output is optional. This is useful for selecting and returning a subset of the
outputs.

To write a new filter of this class, inherit from the select filter class, and define the
compute function. Below is an example template:

class new_select_filter : public select_filter<double> // templated with output type

{

public:

new_select_filter(Symbol *root, soar_interface *si, filter_input *input, scene *scn)

: select_filter<double>(root, si, input) // call superclass constructor

{}

/* Compute

Do the proper computation based on the input filter_params

and set the out parameter to the result (if desired)

Also set the select bit to true if you want to the result to be output.

Return true if successful, false if an error occured */

8.5. WRITING NEW FILTERS 179

bool compute(const filter_params* p, double& out, bool& select){

sgnode* a;

if(!get_filter_param(this, p, "a", a)){

set_status("Need input node a");

return false;

}

out = // Your computation here

select = // test for when to output the result of the computation

}

};

8.5.1.3 Rank filter

A filter where a ranking is computed for each combination from the Cartesian product
of the input and only the combination which results in the highest (or lowest) value is
output. The default behavior is to select the highest, to select the lowest you can call
set select highest(false) on the filter.

To write a new filter of this class, inherit from the rank filter class, and define the rank

function. Below is an example template:

class new_rank_filter : public rank_filter

{

public:

new_rank_filter(Symbol *root, soar_interface *si, filter_input *input, scene *scn)

: rank_filter(root, si, input) // call superclass constructor

{}

/* Compute

Do the proper computation based on the input filter_params

And set r to the ranking result.

Return true if successful, false if an error occured */

bool compute(const filter_params* p, double& r){

sgnode* a;

if(!get_filter_param(this, p, "a", a)){

set_status("Need input node a");

return false;

}

r = // Ranking computation

}

};

8.5.2 Generic Node Filters

There are also a set of generic filters specialized for computations involving nodes. With
these you only need to specify a predicate function involving nodes. (Also see
filters/base node filters.h).

There are three types of these filters:

180 CHAPTER 8. SPATIAL VISUAL SYSTEM

8.5.2.1 Node Test Filters

These filters involve a binary test between two nodes (e.g. intersection or larger). You must
specify a test function of the following form:

bool node_test(sgnode* a, sgnode* b, const filter_params* p)

For an example of how the following base filters are used, see filters/intersect.cpp.

node test filter
For each input pair (a, b) this outputs the boolean result of node test(a, b).

node test select filter
For each input pair (a, b) this outputs node b if node test(a, b) == true.
(Can choose to select b if the test is false by calling set select true(false)).

8.5.2.2 Node Comparison Filters

These filters involve a numerical comparison between two nodes (e.g. distance). You must
specify a comparison function of the following form:

double node_comparison(sgnode* a, sgnode* b, const filter_params* p)

For an example of how the following base filters are used, see filters/distance.cpp.

node comparison filter
For each input pair (a, b), outputs the numerical result of node comparison(a, b).

node comparison select filter
For each input pair (a, b), outputs node b if min <= node comparison(a, b) <= max.
Min and max can be set through calling set min(double) and set max(double), or
as specified by the user through the filter params.

node comparison rank filter
This outputs the input pair (a, b) for which node comparison(a, b) produces the
highest value. To instead have the lowest value output call set select highest(true).

8.5.2.3 Node Evaluation Filters

These filters involve a numerical evaluation of a single node (e.g. volume). You must specify
an evaluation function of the following form:

double node_evaluation(sgnode* a, const filter_params* p)

For an example of how the following base filters are used, see filters/volume.cpp.

node evaluation filter
For each input node a, this outputs the numerical result of node evaluation(a).

8.6. COMMAND LINE INTERFACE 181

node evaluation select filter
For each input node a, this outputs the node if min <= node evaluation(a) <= max.
Min and max can be set through calling set min(double) and set max(double), or
as specified by the user through the filter params.

node evaluation rank filter
This outputs the input node a for which node evaluation(a) produces the highest
value. To instead have the lowest value output call set select highest(true).

8.6 Command line interface

The user can query and modify the runtime behavior of SVS using the svs command. The
syntax of this command differs from other Soar commands due to the complexity and object-
oriented nature of the SVS implementation. The basic idea is to allow the user to access
each object in the SVS implementation (not to be confused with objects in the scene graph)
at runtime. Therefore, the command has the form svs PATH [ARGUMENTS], where PATH

uniquely identifies an object or the method of an object. ARGUMENTS is a space separated
list of strings that each object or function interprets in its own way. For example, svs

S1.scene.world.car identifies the car object in the scene graph of the top state. As another
example, svs connect_viewer 5999 calls the method to connect to the SVS visualizer with
5999 being the TCP port to connect on. Every path has two special arguments.

• svs PATH dir prints all the children of the object at PATH.

• svs PATH help prints text about how to use the object, if available.

See Section 9.3.4 on page 230 for more details.

182 CHAPTER 8. SPATIAL VISUAL SYSTEM

Chapter 9

The Soar User Interface

This chapter describes the set of user interface commands for Soar. All commands and
examples are presented as if they are being entered at the Soar command prompt.

This chapter is organized into 7 sections:

1. Basic Commands for Running Soar

2. Examining Memory

3. Configuring Trace Information and Debugging

4. Configuring Soar’s Run-Time Parameters

5. File System I/O Commands

6. Soar I/O commands

7. Miscellaneous Commands

Each section begins with a summary description of the commands covered in that section,
including the role of the command and its importance to the user. Command syntax and
usage are then described fully, in alphabetical order.

The following pages were automatically generated from the git repository at

https://github.com/SoarGroup/Soar/wiki

on the date listed on the title page of this manual. Please consult the repository directly for
the most accurate and up-to-date information.

For a concise overview of the Soar interface functions, see the Function Summary and Index
on page 301. This index is intended to be a quick reference into the commands described in
this chapter.

Notation

The notation used to denote the syntax for each user-interface command follows some general
conventions:

183

https://github.com/SoarGroup/Soar/wiki

184 CHAPTER 9. THE SOAR USER INTERFACE

• The command name itself is given in a bold font.

• Optional command arguments are enclosed within square brackets, [and].

• A vertical bar, |, separates alternatives.

• Curly braces, {}, are used to group arguments when at least one argument from the
set is required.

• The commandline prompt that is printed by Soar, is normally the agent name, followed
by ’>’. In the examples in this manual, we use “soar>”.

• Comments in the examples are preceded by a ’#’, and in-line comments are preceded
by ’;#’.

For many commands, there is some flexibility in the order in which the arguments may
be given. (See the online help for each command for more information.) We have not
incorporated this flexible ordering into the syntax specified for each command because doing
so complicates the specification of the command. When the order of arguments will affect
the output produced by a command, the reader will be alerted.

Note that the command list was revamped and simplified in Soar 9.6.0. While we encourage
people to learn the new syntax, aliases and some special mechanism have been added to
maintain backwards compatibility with old Soar commands. As a result, many of the sub-
commands of the newer commands may use different styles of arguments.

9.1 Basic Commands for Running Soar

This section describes the commands used to start, run and stop a Soar program; to invoke
on-line help information; and to create and delete Soar productions. It also describes how
to configure some general settings for Soar.

The specific commands described in this section are:

soar - Commands and settings related to running Soar. Use soar ? for a
summary of sub-commands listed below.

soar init - Reinitialize Soar so a program can be rerun from scratch.

soar stop - Interrupt a running Soar program.

soar max-chunks - Limit the number of chunks created during a decision
cycle.

soar max-dc-time - Set a wall-clock time limit such that the agent will
be interrupted when a single decision cycle exceeds this limit.

soar max-elaborations - Limit the maximum number of elaboration cy-
cles in a given phase.

soar max-goal-depth - Limit the sub-state stack depth.

soar max-memory-usage - Set the number of bytes that when exceeded
by an agent, will trigger the memory usage exceeded event.

9.1. BASIC COMMANDS FOR RUNNING SOAR 185

soar max-nil-output-cycles - Limit the maximum number of decision
cycles executed without producing output.

soar max-gp - Set the upper-limit to the number of productions generated
by the gp command.

soar stop-phase - Controls the phase where agents stop when running by
decision.

soar tcl - Controls whether Soar Tcl mode is enabled.

soar timers - Toggle on or off the internal timers used to profile Soar.

soar version - Returns version number of Soar kernel.

soar waitsnc - Generate a wait state rather than a state-no-change im-
passe.

run - Begin Soar’s execution cycle.

exit - Shut down the Soar environment.

help - Provide formatted, on-line information about Soar commands.

decide - Commands and settings related to the selection of operators during
the Soar decision process

decide indifferent-selection - Controls indifferent preference arbitration.

decide numeric-indifferent-mode - Select method for combining numeric
preferences.

decide predict - Predict the next selected operator

decide select - Force the next selected operator

decide set-random-seed - Seed the random number generator.

alias - Define a new alias, or command, using existing commands and arguments.

These commands are all frequently used anytime Soar is run.

9.1.1 soar

Commands and settings related to running Soar

Synopsis

======= Soar General Commands and Settings =======

soar ? Print this help listing

soar init Re-initializes Soar

soar stop [--self] Stop Soar execution

soar version Print version number

------------------- Settings ----------------------

keep-all-top-oprefs [on | OFF] Keep prefs for o-supported WMEs in top-state

max-elaborations 100 Max elaborations per decision cycle

max-goal-depth 23 Halt at this goal stack depth

max-nil-output-cycles 15 Impasse after this many nil outputs

max-dc-time 0 Interrupt after this much time

186 CHAPTER 9. THE SOAR USER INTERFACE

max-memory-usage 100000000 Threshold for memory warning

max-gp 20000 Max rules gp can generate

stop-phase [input|proposal|decision|APPLY|output] Phase before which Soar will stop

tcl [on | OFF] Allow Tcl code in commands

timers [ON | off] Profile Soar

wait-snc [on | OFF] Wait instead of impasse

To change a setting: soar <setting> [<value>]

For a detailed explanation of these settings: help soar

9.1.1.1 Summary View

Using the soar command without any arguments will display a summary of Soar’s current
state of execution and which capabilities of Soar are enabled:

===

Soar 9.6.0 Summary

===

Enabled: Core, EBC, SMem, EpMem

Disabled: SVS, RL, WMA, SSA

Number of rules: 52

Decisions 20

Elaborations 61

State stack S1, S21 ... S29, S33

Current number of states 5

Next phase apply

9.1.1.2 soar init

The init command re-initializes Soar. It removes all elements from working memory, wiping
out the goal stack, and resets all runtime statistics. The firing counts for all productions are
reset to zero. The soar init command
allows a Soar program that has been halted to be reset and start its execution from the
beginning.

soar init does not remove any productions from production memory; to do this, use the
production excise command. Note, however, that all justifications will be removed because
they will no longer be supported.

9.1.1.3 soar stop

soar stop [--self]

9.1. BASIC COMMANDS FOR RUNNING SOAR 187

The soar stop command stops any running Soar agents. It sets a flag in the Soar kernel
so that Soar will stop running at a “safe” point and return control to the user. The --self

option will stop only the soar agent where the command is issued. All other agents continue
running as previously specified.

This command is usually not issued at the command line prompt - a more common use of
this command would be, for instance, as a side-effect of pressing a button on a Graphical
User Interface (GUI).

Note that if a graphical interface doesn’t periodically do an “update”/flush the pending I/O,
then it may not be possible to interrupt a Soar agent from the command line.

9.1.1.4 soar version

This command prints the version of Soar to the screen.

9.1.1.5 Settings

Invoke a sub-command with no arguments to query the current setting.
Partial commands are accepted.

Option Valid Values Default

keep-all-top-oprefs on or off off
max-dc-time >= 0 0
max-elaborations > 0 100
max-goal-depth > 0 23
max-gp > 0 20000
max-memory-usage > 0 100000000
max-nil-output-cycles > 0 15
stop-phase apply
tcl on or off off
timers on or off on
wait-snc >= 1 1

soar keep-all-top-oprefs Enabling keep-all-top-oprefs turns off an optimization that
reduces memory usage by discarding any internal preferences for WMEs that already have
top-level o-support. Turning this setting off allows those preferences to be examined during
debugging.

soar max-dc-time max-dc-time sets a maximum amount of time a decision cycle is per-
mitted. After output phase, the elapsed decision cycle time is checked to see if it is greater

188 CHAPTER 9. THE SOAR USER INTERFACE

than the old maximum, and the maximum dc time stat is updated
(see stats). At this time, this threshold is also checked. If met or exceeded, Soar stops at
the end of the current output phase with an interrupted state.

soar max-elaborations max-elaborations sets and prints the maximum number of elab-
oration cycles allowed in a single decision cycle.

If n is given, it must be a positive integer and is used to reset the number of allowed
elaboration cycles. The default value is 100. max-elaborations with no arguments prints the
current value.

The elaboration phase will end after max-elaboration cycles have completed, even if there
are more productions eligible to fire or retract; and Soar will proceed to the next phase after
a warning message is printed to notify the user. This limits the total number of cycles of
parallel production firing but does not limit the total number of productions that can fire
during elaboration.

This limit is included in Soar to prevent getting stuck in infinite loops (such as a production
that repeatedly fires in one elaboration cycle and retracts in the next); if you see the warning
message, it may be a signal that you have a bug your code. However some Soar programs
are designed to require a large number of elaboration cycles, so rather than a bug, you may
need to increase the value of max-elaborations.

max-elaborations is checked during both the Propose Phase and the Apply Phase. If Soar
runs more than the max-elaborations limit in either of these phases, Soar proceeds to the
next phase (either Decision or Output) even if quiescence has not been reached.

soar max-goal-depth The max-goal-depth command is used to limit the maximum
depth of sub-states that an agent can subgoal to. The initial value of this variable is 100;
allowable settings are any integer greater than 0. This limit is also included in Soar to
prevent getting stuck in an infinite recursive loop, which may come about due to deliberate
actions or via an agent bug, such as dropping inadvertently to state-no-change impasses.

soar max-gp max-gp is used to limit the number of productions produced by a gp com-
mand. It is easy to write a gp rule that has a combinatorial explosion and hangs for a long
time while those productions are added to memory. The max-gp setting bounds this.

soar max-memory-usage The max-memory-usage setting is used to trigger the memory
usage exceeded event. The initial value of this is 100MB (100,000,000); allowable settings
are any integer greater than 0.

NOTE: The code supporting this event is not enabled by default because the test can be
computationally expensive and is needed only for specific embedded applications. Users may
enable the test and event generation by uncommenting code in mem.cpp.

9.1. BASIC COMMANDS FOR RUNNING SOAR 189

soar max-nil-output-cycles max-nil-output-cycles sets and prints the maximum num-
ber of nil output cycles (output cycles that put nothing on the output link) allowed when
running using run-til-output (run --output). If n is not given, this command prints the
current number of nil-output-cycles allowed. If n is given, it must be a positive integer and
is used to reset the maximum number of allowed nil output cycles.

max-nil-output-cycles controls the maximum number of output cycles that generate no
output allowed when a run --out command is issued. After this limit has been reached,
Soar stops. The default initial setting of n is 15.

soar stop-phase stop-phase allows the user to control which phase Soar stops in. When
running by decision cycle it can be helpful to have agents stop at a particular point in its
execution cycle. The precise definition is that “running for n decisions and stopping before
phase ph means to run until the decision cycle counter has increased by n and then stop
when the next phase is ph”. The phase sequence (as of this writing) is: input, proposal,
decision, apply,
output. Stopping after one phase is exactly equivalent to stopping before the next phase.

soar tcl Enabling the tcl setting augments Soar’s prompt with Tcl scripting capabilities.
In other words, it provides the ability to run Tcl code from any Soar command line by
passing all Soar commands first through a Tcl interpreter for processing. (Each agent has
its own Tcl interpreter.)

This command provides Tcl capabilities to both local and remote clients, including the java-
based debugger. It processes Tcl commands in both the Soar command line and any files
sourced. Productions can make Tcl calls by writing (exec tcl | <Tcl code> |) clauses
on the RHS of rules. Soar symbols and variables can be included in RHS item.

Important Notes:

• If you source a file that turns tcl on, you cannot use any Tcl code until the source
command returns.

If you’d like to have Tcl turned on automatically when Soar launches, add the soar tcl on

command to your settings.soar file in the main Soar directory. This activates Tcl mode on
initial launch, allowing you to immediately source files that use Tcl code.

• soar tcl off is currently not supported due to memory issues.

• Only one RHS Tcl call will produce output.

Soar rhs commands write (and even something like echo) will always work. But for Tcl
commands that produce output, for example, a ‘puts’ command or a custom Tcl proc that
produces output as a side effect, only the last one will display output. Note that all rhs
Tcl calls do get executed, so they will do what they are supposed to do, including perhaps

190 CHAPTER 9. THE SOAR USER INTERFACE

writing output to a file. The print output just doesn’t get redirected to the right place,
despite being produced. As a workaround, a user can make sure that there is only one Tcl
call which needs to produce output and that it comes after any other Tcl RHS actions.

• Does not support Tk code. Tk is a widget toolkit that many Tcl programs use to
provide a GUI, for example, the old Soar TSI debugger.

• Tcl code that tries to do low-level Soar SML calls may or may not work.Creating and
deleting a kernel will certainly not work. But other things like creating an agent may
work fine. This caveat is inherent to the design of Tcl as a plug-in without a main
event loop.

• Third-party Tcl code that requires a Tcl event loop may or may not work, for example,
the Tcl after command.

soar timers This setting is used to control the timers that collect internal profiling in-
formation while Soar is running. With no arguments, this command prints out the current
timer status. Timers are ENABLED by default. The default compilation flags for soar en-
able the basic timers and disable the detailed timers. The timers command can only enable
or disable timers that have already been enabled with compiler directives. See the stats
command for more info on the Soar timing system.

soar wait-snc wait-snc controls an architectural wait state. On some systems, especially
those that model expert knowledge, a state-no-change may represent a wait state rather
than an impasse. The waitsnc command allows the user to switch to a mode where a state-
no-change that would normally generate an impasse (and subgoaling), instead generates a
wait state. At a wait state, the decision cycle will repeat (and the decision cycle count is
incremented) but no state-no-change impasse (and therefore no substate) will be generated.

9.1.1.6 Examples

soar init

soar stop -s

soar timers off

soar stop-phase output // stop before output phase

soar max-goal-depth 100

soar max-elaborations

9.1.1.7 Default Aliases

init soar init

is soar init

9.1. BASIC COMMANDS FOR RUNNING SOAR 191

init-soar soar init

interrupt soar stop

ss soar stop

stop soar stop

stop-soar soar stop

gp-max soar max-gp

max-dc-time soar max-dc-time

max-elaborations soar max-elaborations

max-goal-depth soar max-goal-depth

max-memory-usage soar max-memory-usage

max-nil-output-cycles soar max-nil-output-cycles

set-stop-phase soar stop-phase

timers soar timers

version soar version

waitsnc soar wait-snc

9.1.1.8 See Also

production excise
run
stats

9.1.2 run

Begin Soar’s execution cycle.

Synopsis

run -[d|e|o|p][g][u|n][s] [count] [-i e|p|d|o]

9.1.2.1 Options

Option Description

-d, --decision Run Soar for count decision cycles.
-e, --elaboration Run Soar for count elaboration cycles.
-o, --output Run Soar until the nth time output is generated

by the agent. Limited by the value of
max-nil-output-cycles.

-p, --phase Run Soar by phases. A phase is either an input
phase, proposal phase, decision phase, apply
phase, or output phase.

192 CHAPTER 9. THE SOAR USER INTERFACE

Option Description

-s, --self If other agents exist within the kernel, do not run
them at this time.

-u, --update Sets a flag in the update event callback requesting
that an environment updates. This is the default
if --self is not specified.

-n, --noupdate Sets a flag in the update event callback requesting
that an environment does not update. This is the
default if --self is specified.

count A single integer which specifies the number of
cycles to run Soar.

-i, --interleave Support round robin execution across agents at a
finer grain than the run-size parameter. e =
elaboration, p = phase, d = decision, o = output

-g, --goal Run agent until a goal retracts

Deprecated Run Options :

These may be reimplemented in the future.

Option Description

--operator Run Soar until the nth time an operator is selected.
--state Run Soar until the nth time a state is selected.

9.1.2.2 Description

The run command starts the Soar execution cycle or continues any execution that was
temporarily stopped. The default behavior of run, with no arguments, is to cause Soar to
execute until it is halted or interrupted by an action of a production, or until an external
interrupt is issued by the user. The run command can also specify that Soar should run
only for a specific number of Soar cycles or phases (which may also be prematurely stopped
by a production action or the stop-soar command). This is helpful for debugging sessions,
where users may want to pay careful attention to the specific productions that are firing and
retracting.

The run command takes optional arguments: an integer, count, which specifies how many
units to run; and a units flag indicating what steps or increments to use. If count is
specified, but no units are specified, then Soar is run by decision cycles. If units are
specified, but count is unpecified, then count defaults to ‘1’. If both are unspecified, Soar
will run until either a halt is executed, an interrupt is received, or max stack depth is
reached.

If there are multiple Soar agents that exist in the same Soar process, then issuing a run
command in any agent will cause all agents to run with the same set of parameters, unless

9.1. BASIC COMMANDS FOR RUNNING SOAR 193

the flag --self is specified, in which case only that agent will execute.

If an environment is registered for the kernel’s update event, then when the event it triggered,
the environment will get information about how the run was executed. If a run was executed
with the --update option, then then event sends a flag requesting that the environment
actually update itself. If a run was executed with the –noupdate option, then the event
sends a flag requesting that the environment not update itself. The --update option is the
default when run is specified without the --self option is not specified. If the --self option
is specified, then the --noupdate option is on by default. It is up to the environment to
check for these flags and honor them.

Some use cases include:

Option Description

run --self runs one agent but not the environment
run --self --update runs one agent and the environment
run runs all agents and the environment
run --noupdate runs all agents but not the environment

9.1.2.3 Setting an interleave size

When there are multiple agents running within the same process, it may be useful to keep
agents more closely aligned in their execution cycle than the run increment (--elaboration,
--phases, --decisions, --output) specifies. For instance, it may be necessary to keep
agents in “lock step” at the phase level, even though the run command issued is for 5
decisions. Some use cases include:

Option Description

run -d 5 -i p run the agent one phase and then move to the
next agent, looping over agents until they have run
for 5 decision cycles

run -o 3 -i d run the agent one decision cycle and then move to
the next agent. When an agent generates output
for the 3rd time, it no longer runs even if other
agents continue.

The interleave parameter must always be equal to or smaller than the specified run pa-
rameter.

Note If Soar has been stopped due to a halt action, an init-soar command must be issued
before Soar can be restarted with the run command.

194 CHAPTER 9. THE SOAR USER INTERFACE

9.1.2.4 Default Aliases

d run -d 1

e run -e 1

step run -d 1

9.1.3 exit

Terminates Soar and exits the kernel.

9.1.3.1 Default Aliases

stop exit

9.1.4 help

Provide formatted usage information about Soar commands.

Synopsis

help [command_name]

9.1.4.1 Default Aliases

• ?

• man

9.1.4.2 Description

This command prints formatted help for the given command name. Issue alone to see what
topics have help available.

9.1.5 decide

Commands and settings related to the selection of operators during the Soar decision process

9.1. BASIC COMMANDS FOR RUNNING SOAR 195

Synopsis

===

- Decide Sub-Commands and Options -

===

decide [? | help]

decide numeric-indifferent-mode [--avg --sum]

decide indifferent-selection

decide indifferent-selection <policy>

<policy> = [--boltzmann | --epsilon-greedy |

--first | --last | -- softmax]

decide indifferent-selection <param> [value]

<param> = [--epsilon --temperature]

decide indifferent-selection [--reduction-policy| -p] <param> [<policy>]

decide indifferent-selection [--reduction-rate| -r] <param> <policy> [<rate>]

decide indifferent-selection [--auto-reduce] [setting]

decide indifferent-selection [--stats]

--

decide predict

decide select <operator ID>

decide set-random-seed [<seed>]

For a detailed explanation of sub-commands: help decide

9.1.5.1 Summary Screen

Using the decide command without any arguments will display key elements of Soar’s
current decision settings:

===

Decide Summary

===

Numeric indifference mode: sum

Exploration Policy: softmax

Automatic Policy Parameter Reduction: off

Epsilon: 0.100000

Epsilon Reduction Policy: exponential

Temperature: 25.000000

Temperature Reduction Policy: exponential

Use ’decide ?’ for a command overview or ’help decide’ for the manual page.

196 CHAPTER 9. THE SOAR USER INTERFACE

9.1.5.2 decide numeric-indifferent-mode

The numeric-indifferent-mode command sets how multiple numeric indifferent preference
values given to an operator are combined into a single value for use in random selection.

The default procedure is --sum which sums all numeric indifferent preference values given
to the operator, defaulting to 0 if none exist. The alternative --avg mode will average the
values, also defaulting to 0 if none exist.

9.1.5.3 decide indifferent-selection

The indifferent-selection command allows the user to set options relating to selection
between operator proposals that are mutually indifferent in preference memory.

The primary option is the exploration policy (each is covered below). When Soar starts,
softmax is the default policy.

Note: As of version 9.3.2, the architecture no longer automatically changes the policy to
epsilon-greedy the first time Soar-RL is enabled.

Some policies have parameters to temper behavior. The indifferent-selection command pro-
vides basic facilities to automatically reduce these parameters exponentially and linearly
each decision cycle by a fixed rate. In addition to setting these policies/rates, the auto-
reduce option enables the automatic reduction system (disabled by default), for which the
Soar decision cycle incurs a small performance cost.

indifferent-selection options :

Option Description

-s, --stats Summary of settings
policy Set exploration policy
parameter [exploration

policy parameters]

Get/Set exploration policy parameters (if value not
given, returns the current value)

parameter

[reduction policy](value]

Get/Set exploration policy parameter reduction
policy (if policy not given, returns the current)

parameter reduction policy

[exploration policy

parameter]

Get/Set exploration policy parameter reduction rate
for a policy (if rate not give, returns the current)

-a, --auto-reduce

[on,off](reduction-rate]

Get/Set auto-reduction setting (if setting not
provided, returns the current)

indifferent-selection exploration policies :

9.1. BASIC COMMANDS FOR RUNNING SOAR 197

Option Description

-b, --boltzmann Tempered softmax (uses temperature)
-g, --epsilon-greedy Tempered greedy (uses epsilon)
-x, --softmax Random, biased by numeric indifferent values (if a

non-positive value is encountered, resorts to a
uniform random selection)

-f, --first Deterministic, first indifferent preference is selected
-l, --last Deterministic, last indifferent preference is selected

indifferent-selection exploration policy parameters :

Parameter Name Acceptable Values Default Value

-e, --epsilon [0, 1] 0.1

-t, --temperature (0, inf) 25

indifferent-selection auto-reduction policies :

Parameter Name Acceptable Values Default Value

exponential default [0, 1] 1

linear [0, inf] 0

9.1.5.4 decide predict

The predict command determines, based upon current operator proposals, which operator
will be chosen during the next decision phase. If predict determines an operator tie will
be encountered, “tie” is returned. If predict determines no operator will be selected (state
no-change), “none” is returned. If predict determines a conflict will arise during the decision
phase, “conflict” is returned. If predict determines a constraint failure will occur, “con-
straint” is returned. Otherwise, predict will return the id of the operator to be chosen. If
operator selection will require probabilistic selection, and no alterations to the probabilities
are made between the call to predict and decision phase, predict will manipulate the random
number generator to enforce its prediction.

9.1.5.5 decide select

The select command will force the selection of an operator, whose id is supplied as an
argument, during the next decision phase. If the argument is not a proposed operator in
the next decision phase, an error is raised and operator selection proceeds as if the select
command had not been called. Otherwise, the supplied operator will be selected as the next
operator, regardless of preferences. If select is called with no id argument, the command

198 CHAPTER 9. THE SOAR USER INTERFACE

returns the operator id currently forced for selection (by a previous call to select), if one
exists.

Example Assuming operator “O2” is a valid operator, this would select it as the next
operator to be selected:

decide select O2

9.1.5.6 decide set-random-seed

Seeds the random number generator with the passed seed. Calling decide set-random-seed

(or equivalently, decide srand) without providing a seed will seed the generator based on
the contents of /dev/urandom (if available) or else based on time() and clock() values.

Example

decide set-random-seed 23

9.1.5.7 Default Aliases

inds indifferent-selection

srand set-random-seed

9.1.5.8 See Also

rl

9.1.6 alias

Define a new alias of existing commands and arguments.

Synopsis

alias

alias <name> [args]

alias -r <name>

9.1. BASIC COMMANDS FOR RUNNING SOAR 199

9.1.6.1 Adding a new alias

This command defines new aliases by creating Soar procedures with the given name. The
new procedure can then take an arbitrary number of arguments which are post-pended to
the given definition and then that entire string is executed as a command. The definition
must be a single command, multiple commands are not allowed. The alias procedure checks
to see if the name already exists, and does not destroy existing procedures or aliases by the
same name. Existing aliases can be removed by using the unalias command.

9.1.6.2 Removing an existing alias

To undefine a previously created alias, use the -r argument along with the name of the alias
to remove.

alias -r existing-alias

Note: If you are trying to create an alias for a command that also has a -r option, make
sure to enclose it in quotes. For example:

alias unalias "alias -r"

9.1.6.3 Printing Existing Aliases

With no arguments, alias returns the list of defined aliases. With only the name given, alias
returns the current definition.

9.1.6.4 Examples

The alias wmes is defined as:

alias wmes print -i

If the user executes a command such as:

wmes {(* ^superstate nil)}

. . . it is as if the user had typed this command:

print -i {(* ^superstate nil)}

To check what a specific alias is defined as, you would type

alias wmes

9.1.6.5 Default Alias Aliases

a alias

200 CHAPTER 9. THE SOAR USER INTERFACE

unalias, un alias -r

9.2 Procedural Memory Commands

This section describes the commands used to create and delete Soar productions, to see
what productions will match and fire in the next Propose or Apply phase, to watch when
specific productions fire and retract, and to configure options for selecting between mutually
indifferent operators, along with various other methods for examining the contents and
statistics of procedural memory.

The specific commands described in this section are:

sp - Create a production and add it to production memory.

gp - Define a pattern used to generate and source a set of Soar productions.

production - Commands to manipulate Soar rules and analyze their usage

production break - Set interrupt flag on specific productions.

production excise - This command removes productions from Soar’s mem-
ory.

production find - Find productions that contain a given pattern.

production firing-counts - Print the number of times productions have
fired.

production matches - Print information about the match set and partial
matches.

production memory-usage - Print memory usage for production matches.

production optimize-attribute - Declare an attribute as multi-attributes
so as to increase Rete production matching efficiency.

production watch - Trace firings and retractions of specific productions.

sp is of course used in virtually all Soar programming. Of the remaining commands,
production matches and production memory-usage are most often used. production

find is especially useful when the number of productions loaded is high. production

firing-counts is used to see if how many times certain rules fire. production watch

is related to wm watch, but applies only to specific, named productions.

9.2.1 sp

Define a Soar production.

9.2. PROCEDURAL MEMORY COMMANDS 201

Synopsis

sp {production_body}

9.2.1.1 Options

Option Description

production body A Soar production.

9.2.1.2 Description

The sp command creates a new production and loads it into production memory.
production body is a single argument parsed by the Soar kernel, so it should be enclosed in
curly braces to avoid being parsed by other scripting languages that might be in the same
process. The overall syntax of a rule is as follows:

name

["documentation-string"]

[FLAG*]

LHS

-->

RHS

The first element of a rule is its name. If given, the documentation-string must be enclosed in
double quotes. Optional flags define the type of rule and the form of support its right-hand
side assertions will receive. The specific flags are listed in a separate section below. The LHS
defines the left-hand side of the production and specifies the conditions under which the rule
can be fired. Its syntax is given in detail in a subsequent section. The –> symbol serves to
separate the LHS and RHS portions. The RHS defines the right-hand side of the production
and specifies the assertions to be made and the actions to be performed when the rule fires.
The syntax of the allowable right-hand side actions are given in a later section. (See the
Syntax of Soar Programs chapter of the manual for naming conventions and discussion of
the design and coding of productions.)

If the name of the new production is the same as an existing one, the old production will be
overwritten (excised).

Rules matching the following requirement are flagged upon being created/sourced: a rule
is a Soar-RL rule if and only if its right hand side (RHS) consists of a single numeric
preference and it is not a template rule (see FLAGs below). This format exists to ease tech-
nical requirements of identifying/updating Soar-RL rules, as well as to make it easy for the
agent programmer to add/maintain RL capabilities within an agent. (See the Reinforcement
Learning chapter of the manual for further details.)

202 CHAPTER 9. THE SOAR USER INTERFACE

9.2.1.3 Rule Flags

The optional flags are given below. Note that these switches are preceded by a colon instead
of a dash – this is a Soar parser convention.

:o-support specifies that all the RHS actions are to be given

o-support when the production fires

:i-support specifies that all the RHS actions are only to be given

i-support when the production fires

:default specifies that this production is a default production

(this matters for excise -task and trace task)

:chunk specifies that this production is a chunk

(this matters for learn trace)

:interrupt specifies that Soar should stop running when this

production matches but before it fires

(this is a useful debugging tool)

:template specifies that this production should be used to generate

new reinforcement learning rules by filling in those

variables that match constants in working memory

Multiple flags may be used, but not both of o-support and no-support.

Although you could force your productions to provide o-support or i-support by using these
commands — regardless of the structure of the conditions and actions of the production —
this is not proper coding style. The o-support and i-support flags are included to help
with debugging, but should not be used in a standard Soar program.

9.2.1.4 Examples

sp {blocks*create-problem-space

"This creates the top-level space"

(state <s1> ^superstate nil)

-->

(<s1> ^name solve-blocks-world ^problem-space <p1>)

(<p1> ^name blocks-world)

}

9.2.1.5 See Also

production

9.2. PROCEDURAL MEMORY COMMANDS 203

chunk
trace

9.2.2 gp

Generate productions according to a specified pattern.

Synopsis

gp { production_body }

9.2.2.1 Description

The gp command defines a pattern used to generate and source a set of Soar productions.
production body is a single argument that looks almost identical to a standard Soar rule
that would be used with the sp command. Indeed, any syntax that is allowed in sp is also
allowed in gp.

Patterns in gp are specified with sets of whitespace-seprated values in square brackets. Every
combination of values across all square-bracketed value lists will be generated. Values with
whitespaces can be used if wrapped in pipes. Characters can also be escaped with a backslash
(so string literals with embedded pipes and spaces outside of string literals are both possible).

gp is primarily intended as an alternative to :template rules for reinforcement learning.
:template rules generate new rules as patterns occur at run time. Unfortunately, this
incurs a high run time cost. If all possible values are known in advance, then the rules can
be generated using gp at source time, thus allowing code to run faster. gp is not appropriate
when all possible values are not known or if the total number of possible rules is very large
(and the
system is likely to encounter only a small subset at run time). It is also possible to combine
gp and :template (e.g., if some of the values are known and not others). This should reduce
the run time cost of :template.

There is nothing that actually restricts gp to being used for RL, although for non-RL rules,
a disjunction list (using << and >>) is better where it can be used. More esoteric uses may
include multiple bracketed value lists inside a disjunction list, or even variables in bracketed
value lists.

Each rule generated by gp has *integer appended to its name (where integer is some
incrementing number).

204 CHAPTER 9. THE SOAR USER INTERFACE

9.2.2.2 Examples

Template version of rule:

sp {water-jug*fill

:template

(state <s1> ^name water-jug ^operator <op> +

^jug <j1> <j2>)

(<op> ^name fill ^fill-jug.volume <fvol>)

(<j1> ^volume 3 ^contents <c1>)

(<j2> ^volume 5 ^contents <c2>)

-->

(<s1> ^operator <op> = 0)

}

gp version of rule (generates 144 rules):

gp {water-jug*fill

(state <s1> ^name water-jug ^operator <op> +

^jug <j1> <j2>)

(<op> ^name fill ^fill-jug.volume [3 5])

(<j1> ^volume 3 ^contents [0 1 2 3])

(<j2> ^volume 5 ^contents [0 1 2 3 4 5])

-->

(<s1> ^operator <op> = 0)

}

Esoteric example (generates 24 rules):

gp {strange-example

(state <s1> ^<< [att1 att2] [att3 att4] >> [val |another val| |strange val\||])

-->

(<s1> ^foo [bar <bar>])

}

testgp.soar contains many more examples.

9.2.2.3 See Also

sp

9.2.3 production

Commands to manipulate Soar rules and analyze their usage.

http://code.google.com/p/soar/source/browse/trunk/SoarSuite/Core/Tests/Agents/testgp.soar

9.2. PROCEDURAL MEMORY COMMANDS 205

Synopsis

==

- Production Sub-Commands and Options -

==

production [? | help]

--

production break [--clear --print]

production break --set <prod-name>

--

production excise <production-name>

production excise [--all --chunks --default]

[--never-fired --rl]

[--task --templates --user]

--

production find [--lhs --rhs] <pattern>

[--show-bindings]

[--chunks --nochunks]

--

production firing-counts [--all --chunks --default --rl] [n]

[--task --templates --user --fired]

production firing-counts <prod-name>

--

production matches [--names --count] <prod-name>

[--timetags --wmes]

production matches [--names --count] [--assertions]

[--timetags --wmes] [--retractions]

--

production memory-usage [options] [max]

production memory-usage <production_name>

--

production optimize-attribute [symbol [n]]

--

production watch [--disable --enable] <prod-name>

--

For a detailed explanation of sub-commands: help production

9.2.3.1 Summary Screen

Using the production command without any arguments will display a summary of how
many rules are loaded into memory:

===

- Productions -

===

206 CHAPTER 9. THE SOAR USER INTERFACE

User rules 0

Default rules 0

Chunks 0

Justifications 0

Total 0

Use ’production ?’ to learn more about the command

9.2.3.2 production break

Toggles the :interrupt flag on a rule at run-time, which stops the Soar decision cycle when
the rule fires. The break command can be used to toggle the :interrupt flag on production
rules which did not have it set in the original source file, which stops the Soar decision cycle
when the rule fires. This is intended to be used for debugging purposes.

Synopsis

production break -c|--clear <production-name>

production break -p|--print

production break -s|--set <production-name>

production break <production-name>

Options :

Parameter Argument Description

-c, --clear <production-name> Clear :interrupt flag from a
production.

-p, --print (none) Print which production rules
have had their :interrupt flags
set.

(none) (none) Print which production rules
have had their :interrupt flags
set.

-s, --set <production-name> Set :interrupt flag on a
production rule.

(none) <production-name> Set flag :interrupt on a
production rule.

9.2. PROCEDURAL MEMORY COMMANDS 207

9.2.3.3 production excise

This command removes productions from Soar’s memory. The command must be called
with either a specific production name or with a flag that indicates a particular group of
productions to be removed.

Note: As of Soar 9.6, using the flag -a or --all no longer causes a soar init.

Synopsis

production excise production_name

production excise options

Options :

Option Description

-a, --all Remove all productions from memory and
perform an init-soar command

-c, --chunks Remove all chunks (learned productions) and
justifications from memory

-d, --default Remove all default productions (:default) from
memory

-n, --never-fired Excise rules that have a firing count of 0
-r, --rl Excise Soar-RL rules
-t, --task Remove chunks, justifications, and user

productions from memory
-T, --templates Excise Soar-RL templates
-u, --user Remove all user productions (but not chunks or

default rules) from memory
production name Remove the specific production with this name.

Examples :

This command removes the production my*first*production and all chunks:

production excise my*first*production --chunks

This removes all productions:

production excise --all

9.2.3.4 production find

Find productions by condition or action patterns.

208 CHAPTER 9. THE SOAR USER INTERFACE

Synopsis

production find [-lrs[n|c]] pattern

Options :

Option Description

-c, --chunks Look only for chunks that match the pattern.
-l, --lhs Match pattern only against the conditions

(left-hand side) of productions (default).
-n, --nochunks Disregard chunks when looking for the pattern.
-r, --rhs Match pattern against the actions (right-hand

side) of productions.
-s, --show-bindings Show the bindings associated with a wildcard

pattern.
pattern Any pattern that can appear in productions.

Description The production find command is used to find productions in production
memory that include conditions or actions that match a given pattern. The pattern given
specifies one or more condition elements on the left hand side of productions (or negated
conditions), or one or more actions on the right-hand side of productions. Any pattern that
can appear in productions can be used in this command. In addition, the asterisk symbol,
*, can be used as a wildcard for an attribute or value. It is important to note that the
whole pattern, including the parenthesis, must be enclosed in curly braces for it to be parsed
properly.

The variable names used in a call to production find do not have to match the variable names
used in the productions being retrieved.

The production find command can also be restricted to apply to only certain types of
productions, or to look only at the conditions or only at the actions of productions by using
the flags.

Production Find Examples :

Find productions that test that some object gumby has an attribute alive with value t. In
addition, limit the rules to only those that test an operator named foo:

production find (<state> ^gumby <gv> ^operator.name foo)(<gv> ^alive t)

Note that in the above command, <state> does not have to match the exact variable name
used in the production.

Find productions that propose the operator foo:

production find --rhs (<x> ^operator <op> +)(<op> ^name foo)

9.2. PROCEDURAL MEMORY COMMANDS 209

Find chunks that test the attribute ˆpokey:

production find --chunks (<x> ^pokey *)

Examples using the water-jugs demo:

source demos/water-jug/water-jug.soar

production-find (<s> ^name *)(<j> ^volume *)

production-find (<s> ^name *)(<j> ^volume 3)

production-find --rhs (<j> ^* <volume>)

9.2.3.5 production firing-counts

Print the number of times productions have fired.

Synopsis

production firing-counts [type] [n]

production firing-counts production_name

Options :

If given, an option can take one of two forms – an integer or a production name:

Option Description

n List the top n productions. If n is 0, only the
productions which haven’t fired are listed

production name Print how many times a specific production has
fired

-f, --fired Prints only rules that have fired
-c, --chunks Print how many times chunks (learned rules) fired
-j, --justifications Print how many times justifications fired
-d, --default Print how many times default productions

(:default) fired
-r, --rl Print how many times Soar-RL rules fired
-T, --templates Print how many times Soar-RL templates fired
-u, --user Print how many times user productions (but not

chunks or default rules) fired

Description The production firing-counts command prints the number of times each
production has fired; production names are given from most frequently fired to least fre-
quently fired. With no arguments, it lists all productions. If an integer argument, n, is
given, only the top n productions are listed. If n is zero (0), only the productions that
haven’t fired at all are listed. If –fired is used, the opposite happens. Only rules that have

210 CHAPTER 9. THE SOAR USER INTERFACE

fired are listed. If a production name is given as an argument, the firing count for that
production is printed.

Note that firing counts are reset by a call to [soar init] (cmd soar).

Examples :

This example prints the 10 productions which have fired the most times along with their
firing counts:

production firing-counts 10

This example prints the firing counts of production my*first*production:

production firing-counts my*first*production

This example prints all rules that have fired at least once:

production firing-counts -f

9.2.3.6 production matches

The production matches command prints a list of productions that have instantiations in
the match set, i.e., those productions that will retract or fire in the next propose or apply
phase. It also will print partial match information for a single, named production.

Synopsis

production matches [options] production_name

production matches [options] -[a|r]

Options :

Option Description

production name Print partial match information for the named
production.

-n, --names, -c, --count For the match set, print only the names of the
productions that are about to fire or retract (the
default). If printing partial matches for a
production, just list the partial match counts.

-t, --timetags Also print the timetags of the wmes at the first
failing condition

-w, --wmes Also print the full wmes, not just the timetags, at
the first failing condition.

-a, --assertions List only productions about to fire.
-r, --retractions List only productions about to retract.

9.2. PROCEDURAL MEMORY COMMANDS 211

Printing the match set When printing the match set (i.e., no production name is spec-
ified), the default action prints only the names of the productions which are about to fire or
retract. If there are multiple instantiations of a production, the total number of instantia-
tions of that production is printed after the production name, unless --timetags or --wmes
are specified, in which case each instantiation is printed on a separate line.

When printing the match set, the --assertions and --retractions arguments can be
specified to restrict the output to print only the assertions or retractions.

Printing partial matches for productions In addition to printing the current match
set, the matches command can be used to print information about partial matches for a
named production. In this case, the conditions of the production are listed, each preceded
by the number of currently active matches for that condition. If a condition is negated, it
is preceded by a minus sign -. The pointer >>>> before a condition indicates that this is
the first condition that failed to match.

When printing partial matches, the default action is to print only the counts of the number
of WME’s that match, and is a handy tool for determining which condition failed to match
for a production that you thought should have fired. At levels --timetags and --wmes the
matches command displays the WME’s immediately after the first condition that failed to
match – temporarily interrupting the printing of the production conditions themselves.

Notes :

When printing partial match information, some of the matches displayed by this command
may have already fired, depending on when in the execution cycle this command is called.
To check for the matches that are about to fire, use the matches command without a named
production.

In Soar 8, the execution cycle (decision cycle) is input, propose, decide, apply output; it no
longer stops for user input after the decision phase when running by decision cycles (run -d

1). If a user wishes to print the match set immediately after the decision phase and before
the apply phase, then the user must run Soar by phases (run -p 1).

Examples :

This example prints the productions which are about to fire and the WMEs that match the
productions on their left-hand sides:

production matches --assertions --wmes

This example prints the WME timetags for a single production.

production matches -t my*first*production

212 CHAPTER 9. THE SOAR USER INTERFACE

9.2.3.7 production memory-usage

Print memory usage for partial matches.

Synopsis

production memory-usage [options] [number]

production memory-usage production_name

Options :

Option Description

-c, --chunks Print memory usage of chunks.
-d, --default Print memory usage of default productions.
-j, --justifications Print memory usage of justifications.
-u, --user Print memory usage of user-defined productions.
production name Print memory usage for a specific production.
number Number of productions to print, sorted by those

that use the most memory.
-T, --template Print memory usage of Soar-RL templates.

Description The memory-usage command prints out the internal memory usage for full
and partial matches of production instantiations, with the productions using the most mem-
ory printed first. With no arguments, the memory-usage command prints memory usage
for all productions. If a production name is specified, memory usage will be printed only
for that production. If a positive integer number is given, only number productions will be
printed: the number productions that use the most memory. Output may be restricted to
print memory usage for particular types of productions using the command options.

Memory usage is recorded according to the tokens that are allocated in the Rete network for
the given production(s). This number is a function of the number of elements in working
memory that match each production. Therefore, this command will not provide useful
information at the beginning of a Soar run (when working memory is empty) and should be
called in the middle (or at the end) of a Soar run.

The memory-usage command is used to find the productions that are using the most memory
and, therefore, may be taking the longest time to match (this is only a heuristic). By
identifying these productions, you may be able to rewrite your program so that it will run
more quickly. Note that memory usage is just a heuristic measure of the match time: A
production might not use much memory relative to others but may still be time-consuming to
match, and excising a production that uses a large number of tokens may not speed up your
program, because the Rete matcher shares common structure among different productions.

As a rule of thumb, numbers less than 100 mean that the production is using a small amount

9.2. PROCEDURAL MEMORY COMMANDS 213

of memory, numbers above 1000 mean that the production is using a large amount of memory,
and numbers above 10,000 mean that the production is using a very large amount of memory.

9.2.3.8 production optimize-attribute

Declare a symbol to be multi-attributed so that conditions in productions that test that
attribute are re-ordered so that the rule can be matched more efficiently.

Synopsis

production optimize-attribute [symbol [n]]

Options :

Option Description

symbol Any Soar attribute.
n Integer greater than 1, estimate of degree of

simultaneous values for attribute.

Description :

This command is used to improve efficiency of matching against attributes that can have
multiple values at once.

(S1 ^foo bar1)

(S1 ^foo bar2)

(S1 ^foo bar3)

If you know that a certain attribute will take on multiple values, optimize-attribute can
be used to provide hints to the production condition reorderer so that it can produce better
orderings that allow the Rete network to match faster. This command has no effect on the
actual contents of working memory and is only used to improve efficiency in problematic
situations.

optimize-attribute declares a symbol to be an attribute which can take on multiple values.
The optional n is an integer (greater than 1) indicating an upper limit on the number of
expected values that will appear for an attribute. If n is not specified, the value 10 is used for
each declared multi-attribute. More informed values will tend to result in greater efficiency.

Note that optimize-attribute declarations must be made before productions are loaded
into soar or this command will have no effect.

Example :

214 CHAPTER 9. THE SOAR USER INTERFACE

Declare the symbol “thing” to be an attribute likely to take more than 1 but no more than
4 values:

production optimize-attribute thing 4

9.2.3.9 production watch

Trace firings and retractions of specific productions.

Synopsis

production watch [-d|e] [production name]

Options :

Option Description

-d, --disable, --off Turn production watching off for the specified
production. If no production is specified, turn
production watching off for all productions.

-e, --enable, --on Turn production watching on for the specified
production. The use of this flag is optional, so this
is watch’s default behavior. If no production is
specified, all productions currently being watched
are listed.

production name The name of the production to watch.

Description The production watch command enables and disables the tracing of the
firings and retractions of individual productions. This is a companion command to watch,
which cannot specify individual productions by name.

With no arguments, production watch lists the productions currently being traced. With
one production-name argument, production watch enables tracing the production; --enable
can be explicitly stated, but it is the default action.

If --disable is specified followed by a production-name, tracing is turned off for the pro-
duction. When no production-name is specified, --enable lists all productions currently
being traced, and --disable disables tracing of all productions.

Note that production watch now only takes one production per command. Use multiple
times to watch multiple functions.

9.3. SHORT-TERM MEMORY COMMANDS 215

9.2.3.10 Default Aliases

ex production excise

excise production excise

fc production firing-counts

firing-counts production firing-counts

matches production matches

memories production memory-usage

multi-attributes production optimize-attribute

pbreak production break

production-find production find

pw production watch

pwatch production watch

9.2.3.11 See Also

soar init
sp
trace

9.3 Short-term Memory Commands

This section describes the commands for interacting with working memory and preference
memory, seeing what productions will match and fire in the next Propose or Apply phase,
and examining the goal dependency set. These commands are particularly useful when
running or debugging Soar, as they let users see what Soar is “thinking.” Also included
in this section is information about using Soar’s Spatial Visual System (SVS), which filters
perceptual input into a form usable in symbolic working memory.

The specific commands described in this section are:

print - Print items in working, semantic and production memory. Can also print
the print the WMEs in the goal dependency set for each goal.

wm Commands and settings related to working memory and working memory
activation.

wm activation - Get/Set working memory activation parameters.

wm add - Manually add an element to working memory.

wm remove - Manually remove an element from working memory.

wm watch - Print information about wmes that match a certain pattern
as they are added and removed.

preferences - Examine items in preference memory.

216 CHAPTER 9. THE SOAR USER INTERFACE

svs - Perform spatial visual system commands.

Of these commands, print is the most often used (and the most complex). print –gds is
useful for examining the goal dependency set when subgoals seem to be disappearing unex-
pectedly. preferences is used to examine which candidate operators have been proposed.

9.3.1 print

Print items in working memory or production memory.

Synopsis

print [options] [production_name]

print [options] identifier|timetag|pattern

print [--gds --stack]

9.3.1.1 Options

Production printing options :

Option Description

-a, --all print the names of all productions currently loaded

-c, --chunks print the names of all chunks currently loaded
-D, --defaults print the names of all default productions

currently loaded
-j, --justifications print the names of all justifications currently

loaded.
-r, --rl Print Soar-RL rules
-T, --template Print Soar-RL templates
-u, --user print the names of all user productions currently

loaded
production name print the production named production-name

Production print formatting :

Option Description

-f, --full When printing productions, print the whole
production. This is the default when printing a
named production.

9.3. SHORT-TERM MEMORY COMMANDS 217

Option Description

-F, --filename also prints the name of the file that contains the
production.

-i, --internal items should be printed in their internal form. For
productions, this means leaving conditions in their
reordered (rete net) form.

-n, --name When printing productions, print only the name
and not the whole production. This is the default
when printing any category of productions, as
opposed to a named production.

Working memory printing options :

Option Description

-d, --depth n This option overrides the default printing depth
(see the default-wme-depth command for more
detail).

-e, --exact Print only the wmes that match the pattern
-i, --internal items should be printed in their internal form. For

working memory, this means printing the
individual elements with their timetags and
activation, rather than the objects.

-t, --tree wmes should be printed in in a tree form (one
wme per line).

-v, --varprint Print identifiers enclosed in angle brackets.
identifier print the object identifier. identifier must be

a valid Soar symbol such as S1
pattern print the object whose working memory elements

matching the given pattern. See Description for
more information on printing objects matching a
specific pattern.

timetag print the object in working memory with the given
timetag

Subgoal stack printing options :

Option Description

-s, --stack Specifies that the Soar goal stack should be
printed. By default this includes both states and
operators.

-o, --operators When printing the stack, print only operators.
-S, --states When printing the stack, print only states.

218 CHAPTER 9. THE SOAR USER INTERFACE

9.3.1.2 Printing the Goal Dependency Set

:

print --gds

The Goal Dependency Set (GDS) is described in a subsection of the The Soar Architecture

chapter of the manual. This command is a debugging command for examining the GDS for
each goal in the stack. First it steps through all the working memory elements in the rete,
looking for any that are included in any goal dependency set, and prints each one. Then
it also lists each goal in the stack and prints the wmes in the goal dependency set for
that particular goal. This command is useful when trying to determine why subgoals are
disappearing unexpectedly: often something has changed in the goal dependency set, causing
a subgoal to be regenerated prior to producing a result.

print --gds is horribly inefficient and should not generally be used except when something
is going wrong and you need to examine the Goal Dependency Set.

9.3.1.3 Description

The print command is used to print items from production memory or working memory. It
can take several kinds of arguments. When printing items from working memory, the Soar
objects are printed unless the --internal flag is used, in which case the wmes themselves
are printed.

(identifier ^attribute value [activation] [+])

The activation value is only printed if activation is turned on. See wma.

The pattern is surrounded by parentheses. The identifier, attribute, and value must
be valid Soar symbols or the wildcard symbol * which matches all occurrences. The optional
+ symbol restricts pattern matches to acceptable preferences. If wildcards are included, an
object will be printed for each pattern match, even if this results in the same object being
printed multiple times.

9.3.1.4 Examples

Print the objects in working memory (and their timetags) which have wmes with identifier
s1 and value v2 (note: this will print the entire s1 object for each match found):

print --internal (s1 ^* v2)

Print the Soar stack which includes states and operators:

print --stack

Print the named production in its RETE form:

print -if named*production

9.3. SHORT-TERM MEMORY COMMANDS 219

Print the names of all user productions currently loaded:

print -u

Default print vs tree print:

print s1 --depth 2

(S1 ^io I1 ^reward-link R1 ^superstate nil ^type state)

(I1 ^input-link I2 ^output-link I3)

print s1 --depth 2 --tree

(S1 ^io I1)

(I1 ^input-link I2)

(I1 ^output-link I3)

(S1 ^reward-link R1)

(S1 ^superstate nil)

(S1 ^type state)

9.3.1.5 Default Aliases

p print
pc print –chunks
ps print –stack
wmes print –depth 0 –internal
varprint print –varprint –depth 100
gds print print –gds

9.3.1.6 See Also

output
trace
wm

9.3.2 wm

Commands and settings related to working memory and working memory activation. There
are four sub-commands: add, remove, activation, and watch.

Synopsis

===

- WM Sub-Commands and Options -

===

220 CHAPTER 9. THE SOAR USER INTERFACE

wm [? | help]

wm add <id> [^]<attribute> <value> [+]

wm remove <timetag>

wm activation --get <parameter>

--set <parameter> <value>

activation [on | OFF]

petrov-approx [on | OFF]

forgetting [on | OFF]

fake-forgetting [on | OFF]

forget-wme all [all, lti]

decay-rate -0.5 [0 to 1]

decay-thresh -2 [0 to infinity]

max-pow-cache 10 MB

timers off [off, one]

--history <timetag>

--stats Print forget stats

--timers [<timer>] Print timing results

<timer> = wma_forgetting or wma_history

wm watch --add-filter --type <t> pattern

--remove-filter --type <t> pattern

--list-filter [--type <t>]

--reset-filter [--type <t>]

<t> = adds, removes or both

For a detailed explanation of sub-commands: help wm

9.3.2.1 wm activation

The wm activation command changes the behavior of and displays information about work-
ing memory activation.

To get the activation of individual WMEs, use print -i.
To get the reference history of an individual WME, use
wm activation -h|--history<timetag>. For example:

print --internal s1

(4000016: S1 ^ct 1000000 [3.6])

(4: S1 ^epmem E1 [1])

(11: S1 ^io I1 [1])

(20: S1 ^max 1000000 [3.4])

(18: S1 ^name ct [3.4])

(4000018: S1 ^operator O1000001 [1] +)

(4000019: S1 ^operator O1000001 [1])

9.3. SHORT-TERM MEMORY COMMANDS 221

(3: S1 ^reward-link R1 [1])

(8: S1 ^smem S2 [1])

(2: S1 ^superstate nil [1])

(14: S1 ^top-state S1 [1])

(1: S1 ^type state [1])

The bracketed values are activation. To get the history of an individual element:

wm activation --history 18

history (60/5999999, first @ d1):

6 @ d1000000 (-1)

6 @ d999999 (-2)

6 @ d999998 (-3)

6 @ d999997 (-4)

6 @ d999996 (-5)

6 @ d999995 (-6)

6 @ d999994 (-7)

6 @ d999993 (-8)

6 @ d999992 (-9)

6 @ d999991 (-10)

considering WME for decay @ d1019615

This shows the last 60 references (of 5999999 in total, where the first occurred at decision
cycle 1). For each reference, it says how many references occurred in the cycle (such as 6 at
decision 1000000, which was one cycle ago at the time of executing this command). Note
that references during the current cycle will not be reflected in this command (or computed
activation value) until the end of output phase. If forgetting is on, this command will also
display the cycle during which the WME will be considered for decay. Even if the WME
is not referenced until then, this is not necessarily the cycle at which the WME will be
forgotten. However, it is guaranteed that the WME will not be forgotten before this cycle.

Options :

Option Description

-g, --get Print current parameter setting
-s, --set Set parameter value
-S, --stats Print statistic summary or specific statistic
-t, --timers Print timer summary or specific timer
-h, --history Print reference history of a WME

Parameters :

The activation command uses the --get|--set <parameter> <value> convention rather
than individual switches for each parameter. Running wm activation without any switches

222 CHAPTER 9. THE SOAR USER INTERFACE

displays a summary of the parameter settings.

Parameter Description Possible values Default

activation Enable working memory
activation

on, off off

decay-rate WME decay factor [0, 1] 0.5
decay-thresh Forgetting threshold (0, inf) 2.0
forgetting Enable removal of WMEs

with low activation values
on, off off

forget-wme If lti only remove WMEs
with a long-term id

all, lti all

max-pow-cache Maximum size, in MB, for
the internal pow cache

1, 2, . . . 10

petrov-approx Enables the (Petrov 2006)
long-tail approximation

on, off off

timers Timer granularity off, one off

The decay-rate and decay-thresh parameters are entered as positive decimals, but are
internally converted to, and printed out as, negative.

The petrov-approx may provide additional validity to the activation value, but comes
at a significant computational cost, as the model includes unbounded positive exponential
computations, which cannot be reasonably cached.

When activation is enabled, the system produces a cache of results of calls to the pow

function, as these can be expensive during runtime. The size of the cache is based upon three
run-time parameters (decay-rate, decay-thresh, and max-pow-cache), and one compile
time parameter, WMA REFERENCES PER DECISION (default value of 50), which estimates the
maximum number of times a WME will be referenced during a decision. The cache is
composed of double variables (i.e. 64-bits, currently) and the number of cache items is
computed as follows:

eˆ((decay thresh - ln(max refs)) / decay rate)

With the current default parameter values, this will incur about 1.04MB of memory. Holding
the decay-rate constant, reasonable changes to decay-thresh (i.e. +/- 5) does not greatly
change this value. However, small changes to decay-rate will dramatically change this
profile. For instance, keeping everything else constant, a decay-thresh of 0.3 requires
˜2.7GB and 0.2 requires ˜50TB. Thus, the max-pow-cache parameter serves to allow you to
control the space vs. time tradeoff by capping the maximum amount of memory used by this
cache. If max-pow-cache is much smaller than the result of the equation above, you may
experience somewhat degraded performance due to relatively frequent system calls to pow.

If forget-wme is lti and forgetting is on, only those WMEs whose id is a long-term
identifier at the decision of forgetting will be removed from working memory. If, for
instance, the id is stored to semantic memory after the decision of forgetting, the WME will
not be removed till some time after the next WME reference (such as testing/creation by a

9.3. SHORT-TERM MEMORY COMMANDS 223

rule).

Statistics Working memory activation tracks statistics over the lifetime of the agent.
These can be accessed using wm activation --stats <statistic>.
Running wm activation --stats without a statistic will list the values of all statistics.
Unlike timers, statistics will always be updated.

Available statistics are:

Name Label Description

forgotten-wmes Forgotten WMEs Number of WMEs removed from
working memory due to forgetting

Timers Working memory activation also has a set of internal timers that record the du-
rations of certain operations. Because fine-grained timing can incur runtime costs, working
memory activation timers are off by default. Timers of different levels of detail can be turned
on by issuing wm activation --set timers <level>, where the levels can be off or one,
one being most detailed and resulting in all timers being turned on. Note that none of
the working memory activation statistics nor timing information is reported by the stats

command.

All timer values are reported in seconds.

Timer Levels:

Option Description

wma forgetting Time to process forgetting operations each cycle
wma history Time to consolidate reference histories each cycle

9.3.2.2 wm add

Manually add an element to working memory.

wm add id [^]attribute value [+]

Options :

Option Description

id Must be an existing identifier.
^ Leading ^ on attribute is optional.

224 CHAPTER 9. THE SOAR USER INTERFACE

Option Description

attribute Attribute can be any Soar symbol. Use * to have
Soar create a new identifier.

value Value can be any soar symbol. Use * to have Soar
create a new identifier.

+ If the optional preference is specified, its value
must be + (acceptable).

Description Manually add an element to working memory. wm add is often used by an
input function to update Soar’s information about the state of the external world.

wm add adds a new wme with the given id, attribute, value and optional preference. The
given id must be an existing identifier. The attribute and value fields can be any Soar symbol.
If * is given in the attribute or value field, Soar creates a new identifier (symbol) for that
field. If the preference is given, it can only have the value + to indicate that an acceptable
preference should be created for this WME.

Note that because the id must already exist in working memory, the WME that you are
adding will be attached (directly or indirectly) to the top-level state. As with other WME’s,
any WME added via a call to add-wme will automatically be removed from working memory
once it is no longer attached to the top-level state.

Examples This example adds the attribute/value pair ^message-status received to the
identifier (symbol) S1:

wm add S1 ^message-status received

This example adds an attribute/value pair with an acceptable preference to the identifier
(symbol) Z2. The attribute is message and the value is a unique identifier generated by
Soar. Note that since the ^ is optional, it has been left off in this case.

wm add Z2 message * +

Warnings Be careful how you use this command. It may have weird side effects (possi-
bly even including system crashes). For example, the chunking mechanism can’t backtrace
through WMEs created via wm add nor will such WMEs ever be removed through Soar’s
garbage collection. Manually removing context/impasse WMEs may have unexpected side
effects.

9.3.2.3 wm remove

Manually remove an element from working memory.

9.3. SHORT-TERM MEMORY COMMANDS 225

wm remove timetag

Options :

Option Description

timetag A positive integer matching the timetag of an
existing working memory element.

Description The wm remove command removes the working memory element with the
given timetag. This command is provided primarily for use in Soar input functions; although
there is no programming enforcement, wm remove should only be called from registered input
functions to delete working memory elements on Soar’s input link.

Beware of weird side effects, including system crashes.

Warnings wm remove should never be called from the RHS of a production: if you try
to match a WME on the LHS of a production, and then remove the matched WME on the
RHS, Soar will crash.

If used other than by input and output functions interfaced with Soar, this command may
have weird side effects (possibly even including system crashes). Removing input WMEs or
context/impasse WMEs may have unexpected side effects. You’ve been warned.

9.3.2.4 wm watch

Print information about WMEs matching a certain pattern as they are added and removed.

wm watch -[a|r] -t <type> >pattern>

wm watch -[l|R] [-t <type>]

Options :

Option Description

-a, --add-filter Add a filter to print wmes that meet the type and
pattern criteria.

-r, --remove-filter Delete filters for printing wmes that match the
type and pattern criteria.

-l, --list-filter List the filters of this type currently in use. Does
not use the pattern argument.

-R, --reset-filter Delete all filters of this type. Does not use pattern
arg.

226 CHAPTER 9. THE SOAR USER INTERFACE

Option Description

-t, --type Follow with a type of wme filter, see below.

Watch Patterns :

The pattern is an id-attribute-value triplet:

id attribute value

Note that * can be used in place of the id, attribute or value as a wildcard that matches any
string. Note that braces are not used anymore.

Watch Types When using the -t flag, it must be followed by one of the following:

Option Description

adds Print info when a wme is added.
removes Print info when a wme is retracted.
both Print info when a wme is added or retracted.

When issuing a -R or -l, the -t flag is optional. Its absence is equivalent to -t both.

Description This commands allows users to improve state tracing by issuing filter-options
that are applied when watching WMEs. Users can selectively define which
object-attribute-value triplets are monitored and whether they are monitored for addi-
tion, removal or both, as they go in and out of working memory.

Examples Users can watch an attribute of a particular object (as long as that object
already exists):

soar> wm watch --add-filter -t both D1 speed *

or print WMEs that retract in a specific state (provided the state already exists):

soar> wm watch --add-filter -t removes S3 * *

or watch any relationship between objects:

soar> wm watch --add-filter -t both * ontop *

9.3.2.5 Default Aliases

add-wme wm add

9.3. SHORT-TERM MEMORY COMMANDS 227

aw wm add

remove-wme wm remove

rw wm remove

watch-wmes wm watch

wma wm activation

9.3.2.6 See Also

print
trace

9.3.3 preferences

Examine details about the preferences that support the specified identifier and attribute.

Synopsis

preferences [options] [identifier [attribute]]

9.3.3.1 Options

Option Description

-0, -n, --none Print just the preferences themselves
-1, -N, --names Print the preferences and the names of the

productions that generated them
-2, -t, --timetags Print the information for the --names option

above plus the timetags of the wmes matched by
the LHS of the indicated productions

-3, -w, --wmes Print the information for the --timetags option
above plus the entire WME matched on the LHS.

-o, --object Print the support for all the WMEs that comprise
the object (the specified identifier).

identifier Must be an existing Soar object identifier.
attribute Must be an existing attribute of the specified

identifier.

228 CHAPTER 9. THE SOAR USER INTERFACE

9.3.3.2 Description

The preferences command prints all the preferences for the given object identifier and
attribute. If identifier and attribute are not specified, they default to the current state and
the current operator. The Soar syntax attribute carat (^) is optional when specifying the
attribute. The optional arguments indicates the level of detail to print about each preference.

This command is useful for examining which candidate operators have been proposed and
what relationships, if any, exist among them. If a preference has o-support, the string, :O
will also be printed.

When only the identifier is specified on the command line, if the identifier is a state, Soar
uses the default attribute ^operator. If the identifier is not a state, Soar prints the support
information for all WMEs whose value is the
identifier.

When an identifier and the --object flag are specified, Soar prints the preferences / WME
support for all WMEs comprising the specified identifier.

For the time being, numeric-indifferent preferences are listed under the heading binary

indifferents:.

By default, using the --wmes option with a WME on the top state will only print the
timetags. To change this, the kernel can be recompiled with DO TOP LEVEL REF CTS, but
this has other consequences (see comments in kernel.h).

9.3.3.3 Examples

This example prints the preferences on (S1 ^operator) and the production names which
created the preferences:

soar> preferences S1 operator --names

Preferences for S1 ^operator:

acceptables:

O2 (fill) + :I

From water-jug*propose*fill

O3 (fill) + :I

From water-jug*propose*fill

unary indifferents:

O2 (fill) = :I

From water-jug*propose*fill

O3 (fill) = :I

9.3. SHORT-TERM MEMORY COMMANDS 229

From water-jug*propose*fill

selection probabilities:

O3 (fill) + =0. :I (50.0%)

From water-jug*propose*fill

O2 (fill) + =0. :I (50.0%)

From water-jug*propose*fill

If the current state is S1, then the above syntax is equivalent to:

preferences -n

This example shows the support for the WMEs with the ˆjug attribute:

soar> preferences s1 jug

Preferences for S1 ^jug:

acceptables:

(S1 ^jug I4) :O

(S1 ^jug J1) :O

This example shows the support for the WMEs with value J1, and the productions that
generated them:

soar> pref J1 -1

Support for (33: O3 ^fill-jug J1)

(O3 ^fill-jug J1) =0. :I (100.0%)

From water-jug*propose*fill

Support for (22: S1 ^jug J1)

(S1 ^jug J1) =0. :O (100.0%)

From water-jug*apply*initialize-water-jug

This example shows the support for all WMEs that make up the object S1:

soar> pref -o s1

Support for S1 ^name:

(S1 ^name water-jug) :O

Support for S1 ^jug:

(S1 ^jug I4) :O

(S1 ^jug J1) :O

Support for S1 ^svs:

Preferences for S1 ^operator:

acceptables:

230 CHAPTER 9. THE SOAR USER INTERFACE

O2 (fill) + :I

O3 (fill) + :I

unary indifferents:

O2 (fill) = :I

O3 (fill) = :I

Support for S1 ^smem:

Support for S1 ^epmem:

Support for S1 ^reward-link:

Arch-created wmes for S1 :

(2: S1 ^superstate nil)

(1: S1 ^type state)

Input (IO) wmes for S1 :

(15: S1 ^io I1)

Default Aliases

• pref

9.3.3.4 See Also

decide

9.3.4 svs

Control the behavior of the Spatial Visual System

Synopsis

svs <path> dir

svs <path> help

svs connect_viewer <port>

svs disconnect_viewer

svs filters

svs filters.<filter_name>

svs commands

svs commands.<command_name>

svs <state>.scene.world

svs <state>.scene.world.<path-to-node>

svs <state>.scene.properties

svs <state>.scene.sgel <sgel-command>

9.3. SHORT-TERM MEMORY COMMANDS 231

svs <state>.scene.draw on|off

svs <state>.scene.clear

9.3.4.1 Paths

SVS can be navigated by specifying a path after the svs command. This path mimicks a
directory structure and is specified by dot notation.

Path Argument Description

connect viewer <port> Connects to a svs viewer listening on
the given port

disconnect viewer Disconnects from an active svs viewer
filters Prints out a list of all the filters
filters.<filter name> Prints information about a specific fil-

ter
commands Prints out a list of all the soar com-

mands
commands.<command name> Prints information about a specific

command
<state>.scene.world Prints information about the world
<state>.scene.<node-
path>

Prints information about a specific
node

<state>.scene.properties Prints pos/rot/scale/tag info about all
nodes

<state>.scene.sgel <sgel> Sends an sgel command to the scene
<state>.scene.draw on Causes this scene to be the one drawn

on the viewer
<state>.scene.draw off Stops this scene from being drawn in

the viewer
<state>.scene.clear Removes all objects from the given

scene

9.3.4.2 Description

Each path can be followed by help to print some help info, or followed by dir to see the
children of that path.
The <state> variable is the identifier for the substate you want to examine. For example,
to do things to the topstate scene you would use svs S1.scene.

9.3.4.3 Examples

Print the full SVS directory structure

232 CHAPTER 9. THE SOAR USER INTERFACE

svs . dir

Print help information about connect viewer

svs connect_viewer help

Print information about a distance filter

svs filters.distance

Print all the nodes in the scene for substate S17

svs S17.scene.world dir

Print information about the node wheel2 on car5

svs S1.scene.world.car5.wheel2

Add a new node to the scene using SGEL

svs S1.scene.sgel add ball3 world ball .5 position 1 1 1

9.4 Learning

This section describes the commands for enabling and configuring Soar’s mechanisms of
chunking and reinforcement learning. The specific commands described in this section are:

chunk - Set the parameters for explanation-based chunking, Soar’s learning
mechanism.

rl - Get/Set RL parameters and statistics.

9.4.1 chunk

Sets the parameters for explanation-based chunking.

Synopsis

===

Chunk Commands and Settings

===

? | help Print this help listing

timers [on | OFF] Timing statistics (no args to print stats)

stats Print statistics on learning

------------------- Settings ----------------------

always | NEVER | only | except When Soar will learn new rules

bottom-only [on | OFF] Learn only from bottom sub-state

9.4. LEARNING 233

naming-style [numbered | RULE] Numeric names or rule-based names

max-chunks 50 Max chunks learned per phase

max-dupes 3 Max duplicate chunks (per rule, per phase)

------------------- Debugging ---------------------

interrupt [on | OFF] Stop after learning from any rule

explain-interrupt [on | OFF] Stop after learning rule watched

warning-interrupt [on | OFF] Stop after detecting learning issue

------------------- Fine Tune ---------------------

singleton Print all WME singletons

singleton <type> <attribute> <type> Add a WME singleton pattern

singleton -r <type> <attribute> <type> Remove a WME singleton pattern

----------------- EBC Mechanisms ------------------

add-ltm-links [on | OFF] Recreate LTM links in results

add-osk [on | OFF] Incorporate operator selection rules

merge [ON | off] Merge redundant conditions

lhs-repair [ON | off] Add conds for unconnected LHS IDs

rhs-repair [ON | off] Add conds for unconnected RHS IDs

user-singletons [ON | off] Unify with domain singletons

---------- Correctness Guarantee Filters ---------- Allow rules to form that...

allow-local-negations [ON | off] ...used local negative reasoning

allow-opaque* [ON | off] ...used knowledge from a LTM recall

allow-missing-osk* [ON | off] ...tested operators selected through OSK

allow-uncertain-operators* [ON | off] ...tested operators selected probabilistically

* disabled

To change a setting: chunk <setting> [<value>]

For a detailed explanation of these settings: help chunk

9.4.1.1 Description

The chunk command controls the parameters for explanation-based chunking. With no
arguments, this command prints out a basic summary of the current learning parameters, how
many rules have been learned and which states have learning active. With an ? argument,
it will list all sub-commands, options and their current values.

Turning on Explanation-Based Chunking Chunking is disabled by default. Learning
can be turned on or off at any point during a run. Also note that Soar uses most aspects of
EBC to create justifications as well, so many aspects of the chunking algorithm still occur
even when learning is off.

chunk always: Soar will always attempt to learn rules from sub-state

problem-solving.

chunk never: Soar will never attempt to learn rules.

chunk unflagged: Chunking is on in all states _except_ those that have had RHS

‘dont-learn‘ actions executed in them.

chunk flagged: Chunking is off for all states except those that are flagged

via a RHS ‘force-learn‘ actions.

The flagged argument and its companion force-learn RHS action allow Soar developers
to turn learning on in a particular problem space, so that they can focus on debugging the
learning problems in that particular problem space without having to address the problems
elsewhere in their programs at the same time. Similarly, the unflagged flag and its compan-
ion dont-learn RHS action allow developers to temporarily turn learning off for debugging
purposes. These facilities are provided as debugging tools, and do not correspond to any
theory of learning in Soar.

234 CHAPTER 9. THE SOAR USER INTERFACE

The bottom-only setting control when chunks are formed when there are multiple levels of
subgoals. With bottom-up learning, chunks are learned only in states in which no subgoal
has yet generated a chunk. In this mode, chunks are learned only for the “bottom” of the
subgoal hierarchy and not the intermediate levels. With experience, the subgoals at the
bottom will be replaced by the chunks, allowing higher level subgoals to be chunked.

9.4.1.2 Debugging Explanation-Based Chunking

The best way to understand why and how rules formed is to use the explain command. It
will create detailed snapshots of everything that existed when a rule or justification formed
that you can interactively explore. See explain for more information. You can even use it in
conjunction with the visualizer to create graphs depicting the dependency between rules in
a sub-state.

The stats command will print a detailed table containing statistics about all chunking
activity during that run.

The interrupt setting forces Soar to stop after forming any rule.

The explain-interrupt setting forces Soar to stop when it attempts to form a rule from a
production that is being watched by the explainer. See explain for more information.

The warning interrupts setting forces Soar to stop when it attempts to form a rule but
detects an issue that may be problematic.

The record-utility command is a tool to determine how much processing may be saved
by a particular learned rule. When enabled, Soar will detect that a chunk matched, but will
not fire it. Assuming that the rule is correct, this should lead to an impasse that causes a
duplicate chunk to form. The amount of time and decision cycles spent in that impasse are
recorded and stored for the rule. Rules are also flagged if a duplicate is not detected or if an
impasse is not generated.

This feature is not yet implemented.

9.4.1.3 Preventing Possible Correctness Issues

chunk allow-local-negations The option allow-local-negations control whether or
not chunks can be created that are derived from rules that check local WMEs in the substate
don’t exist. Chunking through local negations can result in overgeneral chunks, but disabling
this ability will reduce the number of chunks formed. The default is to enable chunking
through local negations.

If chunking through local negations is disabled, to see when chunks are discarded (and why),
set watch --learning print (see watch command).

The following commands are not yet enabled. Soar will currently allow all of these situations.

9.4. LEARNING 235

allow-missing-osk Used operator selection rules to choose operator

allow-opaque Used knowledge from opaque knowledge retrieval

allow-uncertain-operators Used operators selected probabilistically

allow-conflated-reasoning Tests a WME that has multiple reasons it exists

9.4.1.4 Other Settings that Control WHEN Rules are Learned

chunk max-chunks The max-chunks command is used to limit the maximum number of
chunks that may be created during a decision cycle. The initial value of this variable is 50;
allowable settings are any integer greater than 0.

The chunking process will end after max-chunks chunks have been created, even if there are
more results that have not been backtraced through to create chunks, and Soar will proceed
to the next phase. A warning message is printed to notify the user that the limit has been
reached.

This limit is included in Soar to prevent getting stuck in an infinite loop during the chunking
process. This could conceivably happen because newly-built chunks may match immediately
and are fired immediately when this happens; this can in turn lead to additional chunks being
formed, etc.

Important note:

If you see this warning, something is seriously wrong; Soar will be unable to guarantee
consistency of its internal structures. You should not continue execution of the Soar program
in this situation; stop and determine whether your program needs to build more chunks or
whether you’ve discovered a bug (in your program or in Soar itself).

chunk max-dupes The max-dupes command is used to limit the maximum number of
duplicate chunks that can form from a particular rule in a single decision cycle. The initial
value of this variable is 3; allowable settings are any integer greater than 0. Note that this
limit is per-rule, per-state. With the default value, each rule can match three times in a
sub-state and create two duplicate, reject rules before Soar will stop attempting to create
new rules based on that rule. The limit is reset the next decision cycle.

This limit is included in Soar to prevent slowing down when multiple matches of a rule in a
substate produce the same general rule. Explanation-based chunking can now produce very
general chunks, so this can happen in problem states in which the logic leads to multiple
matches, which leads to results being created multiple times in the same decision cycle.

236 CHAPTER 9. THE SOAR USER INTERFACE

9.4.1.5 Settings that Alter the Mechanisms that EBC Uses

chunk add-osk The option add-osk control whether or not operator selection knowl-
edge is backtraced through when creating justifications and chunks. When this option is
disabled, only requirement preferences (requires and prohibits) will be added backtraced
through. When this option is enabled, relevant desirability prefs (better, best, worse, worst,
indifferent) will also be added, producing more specific and possibly correct chunks. This
feature is still experimental, so the default is to not include operator selection knowledge.

The following commands are not yet enabled. Soar will always use the EBC mechanisms
listed below.

variablize-identity Variablize symbols based on identity analysis

variablize-rhs-funcs Variablize and compose RHS functions

enforce-constraints Track and enforce transitive constraints

repair Repair rules that aren’t fully connected

merge Merge redundant conditions

user-singletons Unify identities using domain-specific singletons

9.4.1.6 Chunk Naming Style

The numbered style for naming newly-created chunks is:

<prefix><chunknum>

The rule-based (default) style for naming chunks is:

<prefix>*<original-rule-name>*<impassetype>*<dc>-<dcChunknum>

where:

• prefix is either chunk or justification, depending on whether learning was on for that
state,
• chunknum is a counter starting at 1 for the first chunk created,
• original-rule-name is the name of the production that produced the result that resulted

in this chunk,
• dc is the number of the decision cycle in which the chunk was formed,
• impassetype is one of Tie, Conflict, Failure, StateNoChange, OpNoChange,

9.4. LEARNING 237

• dcChunknum is the number of the chunk within that specific decision cycle.

Note that when using the rule-based naming format, a chunk based on another chunk will
have a name that begins with prefix followed by -xN, for example
chunk-x3*apply-rule*42-2.

9.4.1.7 Default Aliases

learn chunk

cs chunk --stats

9.4.1.8 See Also

explain
trace
visualize

9.4.2 rl

Control how numeric indifferent preference values in RL rules are updated via reinforcement
learning.

Synopsis

rl -g|--get <parameter>

rl -s|--set <parameter> <value>

rl -t|--trace <parameter> <value>

rl -S|--stats <statistic>

Options :

Option Description

-g, --get Print current parameter setting
-s, --set Set parameter value
-t, --trace Print, clear, or init traces
-S, --stats Print statistic summary or specific statistic

238 CHAPTER 9. THE SOAR USER INTERFACE

Description The rl command sets parameters and displays information related to rein-
forcement learning. The print and trace commands display additional RL related infor-
mation not covered by this command.

9.4.2.1 Parameters

Due to the large number of parameters, the rl command uses the --get|--set <parameter>
<value> convention rather than individual switches for each parameter. Running rl with-
out any switches displays a summary of the parameter settings.

Parameter Description Possible values Default

chunk-stop If enabled,
chunking does not
create duplicate
RL rules that differ
only in
numeric-indifferent
preference value

on, off on

decay-mode How the learning
rate changes over
time

normal, exponential,
logarithmic,
delta-bar-delta

normal

discount-rate Temporal discount
(gamma)

[0, 1] 0.9

eligibility-trace-
decay-rate

Eligibility trace
decay factor
(lambda)

[0, 1] 0

eligibility-trace-
tolerance

Smallest eligibility
trace value not
considered 0

(0, inf) 0.001

hrl-discount Discounting of RL
updates over time
in impassed states

on, off off

learning Reinforcement
learning enabled

on, off off

learning-rate Learning rate
(alpha)

[0, 1] 0.3

step-size-
parameter

Secondary learning
rate

[0,1] 1

learning-policy Value update
policy

sarsa, q-learning,
off-policy-gq-lambda,
on-policy-gq-lambda

sarsa

meta Store rule
metadata in
header string

on, off off

9.4. LEARNING 239

Parameter Description Possible values Default

meta-learning-
rate

Delta-Bar-Delta
learning parameter

[0, 1] 0.1

temporal-discount Discount RL
updates over gaps

on, off on

temporal-
extension

Propagation of RL
updates over gaps

on, off on

trace Update the trace on, off off

update-log-path File to log
information about
RL rule updates

"", <filename> ""

Apoptosis Parameters :

Parameter Description Possible values Default

apoptosis Automatic excising
of productions via
base-level decay

none, chunks,
rl-chunks

none

apoptosis-decay Base-level decay
parameter

[0, 1] 0.5

apoptosis-thresh Base-level
threshold
parameter (negates
supplied value)

(0, inf) 2

Apoptosis is a process to automatically excise chunks via the base-level decay model (where
rule firings are the activation events). A value of chunks has this apply to any chunk, whereas
rl-chunks means only chunks that are also RL rules can be forgotten.

9.4.2.2 RL Statistics

Soar tracks some RL statistics over the lifetime of the agent. These can be accessed using
rl --stats <statistic>. Running rl --stats without a statistic will list the values of
all statistics.

Option Description

update-error Difference between target and current values in
last RL update

total-reward Total accumulated reward in the last update

240 CHAPTER 9. THE SOAR USER INTERFACE

Option Description

global-reward Total accumulated reward since agent
initialization

9.4.2.3 RL Delta-Bar-Delta

This is an experimental feature of Soar RL. It based on the work in Richard S. Sutton’s
paper “Adapting Bias by Gradient Descent: An Incremental Version of Delta-Bar-Delta”,
available online at http://webdocs.cs.ualberta.ca/~sutton/papers/sutton-92a.pdf.

Delta Bar Delta (DBD) is implemented in Soar RL as a decay mode. It changes the way
all the rules in the eligibility trace get their values updated. In order to implement this,
the agent gets an additional learning parameter meta-learning-rate and each rule gets
two additional decay parameters: beta and h. The meta learning rate is set manually; the
per-rule features are handled automatically by the DBD algorithm. The key idea is that the
meta parameters keep track of how much a rule’s RL value has been updated recently, and
if a rule gets updates in the same direction multiple times in a row then subsequent updates
in the same direction will have more effect. So DBD acts sort of like momentum for the
learning rate.

To enable DBD, use rl --set decay-mode delta-bar-delta. To change the meta learn-
ing rate, use e.g. rl --set meta-learning-rate 0.1. When you execute rl, under
the “Experimental” section of output you’ll see the current settings for decay-mode and
meta-learning-rate. Also, if a rule gets printed concisely (e.g. by executing p), and the
rule is an RL rule, and the decay mode is set to delta-bar-delta, then instead of printing the
rule name followed by the update count and the RL value, it will print the rule name, beta,
h, update count, and RL value.

Note that DBD is a different feature than meta. Meta determines whether metadata about
a production is stored in its header string. If meta is on and DBD is on, then each rule’s
beta and h values will be stored in the header string in addition to the update count, so you
can print out the rule, source it later and that metadata about the rule will still be in place.

9.4.2.4 RL GQ(λ)

Linear GQ(λ) is a gradient-based off-policy temporal-difference learning algorithm, as de-
veloped by Hamid Maei and described by Adam White and Rich Sutton (https://arxiv.
org/pdf/1705.03967.pdf). This reinforcement learning option provides off-policy learning
quite effectively. This is a good approach in cases when agent training performance is less
important than agent execution performance. GQ(λ) converges despite irreversible actions
and other difficulties approaching the training goal. Convergence should be guaranteed for
stable environments.

To change the secondary learning rate that only applies when learning with GQ(λ), set the
rl step-size-parameter. It controls how fast the secondary set of weights changes to allow

http://webdocs.cs.ualberta.ca/~sutton/papers/sutton-92a.pdf
https://arxiv.org/pdf/1705.03967.pdf
https://arxiv.org/pdf/1705.03967.pdf

9.4. LEARNING 241

GQ(λ) to improve the rate of convergence to a stable policy. Small learning rates such as
0.01 or even lower seems to be good practice.

rl --set learning-policy off-policy-gq-lambda will set Soar to use linear GQ(λ). It
is preferable to use GQ(λ) over sarsa or q-learning when multiple weights are active in
parallel and sequences of actions required for agents to be successful are sufficiently com-
plex that divergence is possible. To take full advantage of GQ(λ), it is important to set
step-size-parameter to a reasonable value for a secondary learning rate, such as 0.01.

rl --set learning-policy on-policy-gq-lambda will set Soar to use a simplification of
GQ(λ) to make it on-policy while otherwise functioning identically. It is still important to
set step-size-parameter to a reasonable value for a secondary learning rate, such as 0.01.

For more information, please see the relevant slides on http://www-personal.umich.edu/

~bazald/b/publications/009-sw35-gql.pdf

9.4.2.5 RL Update Logging

Sets a path to a file that Soar RL will write to whenever a production’s RL value gets
updated. This can be useful for logging these updates without having to capture all of
Soar’s output and parse it for these updates. Enable with e.g. rl --set update-log-path

rl\ log.txt. Disable with rl --set update-log-path "" - that is, use the empty string
“” as the log path. The current log path appears under the experimental section when you
execute “rl”.

9.4.2.6 RL Trace

If rl --set trace on has been called, then proposed operators will be recorded in the trace
for all goal levels. Along with operator names and other attribute-value pairs, transition
probabilities derived from their numeric preferences are recorded.

Legal arguments following rl -t or rl --trace are as follows:

Option Description

print Print the trace for the top state.
clear Erase the traces for all goal levels.
init Restart recording from the beginning of the traces

for all goal levels.

These may be followed by an optional numeric argument specifying a specific goal level
to print, clear, or init. rl -t init is called automatically whenever Soar is reinitialized.
However, rl -t clear is never called automatically.

The format in which the trace is printed is designed to be used by the program dot, as part
of the Graphviz suite. The command ctf rl.dot rl -t will print the trace for the top

http://www-personal.umich.edu/~bazald/b/publications/009-sw35-gql.pdf
http://www-personal.umich.edu/~bazald/b/publications/009-sw35-gql.pdf

242 CHAPTER 9. THE SOAR USER INTERFACE

state to the file “rl.dot”. (The default behavior for rl -t is to print the trace for the top
state.)

Here are some sample dot invocations for the top state:

Option Description

dot -Tps rl.dot -o rl.ps ps2pdf rl.ps

dot -Tsvg rl.dot -o rl.svg inkscape -f rl.svg -A rl.pdf

The .svg format works better for large traces.

9.4.2.7 See Also

excise
print
trace

9.5 Long-term Declarative Memory

This section describes the commands for enabling and configuring Soar’s long-term semantic
memory and episodic memory systems. The specific commands described in this section are:

smem - Get/Set semantic memory parameters and statistics.

epmem - Get/Set episodic memory parameters and statistics.

9.5.1 smem

Controls the behavior of and displays information about semantic memory.

Synopsis

===

- Semantic Memory Sub-Commands -

===

smem [? | help] Print help screen

smem [--enable | --disable] Turn smem on/off

smem [--get | --set] <option> [<value>] Print or set a parameter

smem --add { (id ^attr value)* } Add memory to smem

smem --backup <filename> Save copy of database

smem --clear Delete contents of smem

9.5. LONG-TERM DECLARATIVE MEMORY 243

smem --export <filename> [<LTI>] Save database to file

smem --init Reinit smem store

smem --query {(cue)* [<num>]} Query smem via given cue

smem --remove { (id [^attr [value]])* } Remove smem structures

------------------------ Printing ---------------------

print @ Print all smem contents

print <LTI> Print specific smem memory

smem --history <LTI> Print memory activation history

===

- Semantic Memory Parameters (use --set) -

===

enabled off

database [MEMORY | file] Store database in memory or file

append on Append or overwrite after init

path Path to database on disk

---------------------- Activation ---------------------

activation-mode [RECENCY | frequency | base-level]

activate-on-query [ON | off]

base-decay 0.5 Decay amount for base-level activation

base-update-policy [STABLE | naive | incremental]

base-incremental-threshes 10 Integer > 0

thresh 100 Integer >= 0

base-inhibition [on | OFF]

---------- Experimental Spreading Activation ----------

spreading [on | OFF]

spreading-limit 300 integer > 0

spreading-depth-limit 10 integer > 0

spreading-baseline 0.0001 1 > decimal > 0

spreading-continue-probability 0.9 1 > decimal > 0

spreading-loop-avoidance [on | OFF]

spreading-edge-updating [on | OFF]

spreading-wma-source [on | OFF]

spreading-edge-update-factor 0.99 1 > decimal > 0

------------- Database Optimization Settings ----------

lazy-commit on Delay writing store until exit

optimization [safety | PERFORMANCE]

cache-size 10000 Number of memory pages for SQLite cache

page-size 8k Size of each memory page

----------------- Timers and Statistics ---------------

timers [OFF | one | two | three] How detailed timers should be

smem --timers [<timer>] Print summary or specifics

smem --stats [<stat>] Print summary or specifics

Timers: smem_api, smem_hash, smem_init, smem_query,

smem_ncb_retrieval, three_activation

smem_storage, _total

Stats: act_updates, db-lib-version, edges, mem-usage,

mem-high, nodes, queries, retrieves, stores

For a detailed explanation of these settings: help smem

9.5.1.1 Summary Output

With no arguments, smem will return a quick summary of key aspects of semantic memory.

==

Semantic Memory Summary

==

Enabled off

Storage Memory (append after init)

--

Nodes 2

244 CHAPTER 9. THE SOAR USER INTERFACE

Edges 1

Memory Usage 406784 bytes

--

For a full list of smem’s sub-commands and settings: smem ?

Options :

Commands Description

-e, --enable, --on Enable semantic memory.
-d, --disable, --off Disable semantic memory.
-g, --get Print current parameter setting
-s, --set Set parameter value
-c, --clear Deletes all memories
-i, --init Deletes all memories if append is off
-S, --stats Print statistic summary or specific statistic
-t, --timers Print timer summary or specific statistic
-a, --add Add concepts to semantic memory
-r, --remove Remove concepts from semantic memory
-q, --query Print concepts in semantic store matching some cue
-h, --history Print activation history for some LTI
-b, --backup Creates a backup of the semantic database on disk

Printing To print from semantic memory, the standard print command can be used, for
example, to print a specific LTI:

p @23

To print the entire semantic store:

p @

Note that such print commands will honor the –depth parameter passed in.

The command trace --smem displays additional trace information for semantic memory not
controlled by this command.

9.5.1.2 Parameters

Due to the large number of parameters, the smem command uses the
--get|--set <parameter> <value> convention rather than individual switches for each
parameter. Running smem without any switches displays a summary of the parameter set-
tings.

9.5. LONG-TERM DECLARATIVE MEMORY 245

Parameter Description Possible values Default

append Controls whether
database is
overwritten or
appended when
opening or
re-initializing

on, off off

database Database storage
method

file, memory memory

learning Semantic memory
enabled

on, off off

path Location of
database file

empty, some path empty

The learning parameter turns the semantic memory module on or off. This is the same as
using the enable and disable commands.

The path parameter specifies the file system path the database is stored in. When path is
set to a valid file system path and database mode is set to file, then the SQLite database is
written to that path.

The append parameter will determine whether all existing facts stored in a database on
disk will be erased when semantic memory loads. Note that this affects semantic memory
re-initialization also, i.e. if the append setting is off, all semantic facts stored to disk will be
lost when a soar init is performed. For semantic memory,
append mode is by default on.

Note that changes to database, path and append will not have an effect until the database
is used after an initialization. This happens either shortly after launch (on first use) or after
a database initialization command is issued. To switch databases or database storage types
while running, set your new parameters and then perform an smem --init command.

Activation Parameters :

Parameter Description Possible values Default

activation-mode Sets the ordering
bias for retrievals
that match more
than one memory

recency, frequency,
base-level

recency

activate-on-query Determines if the
results of queries
should be
activated

on, off on

246 CHAPTER 9. THE SOAR USER INTERFACE

Parameter Description Possible values Default

base-decay Sets the decay
parameter for
base-level
activation
computation

> 0 0.5

base-update-
policy

Sets the policy for
re-computing
base-level
activation

stable, naive,
incremental

stable

base-incremental-
threshes

Sets time deltas
after which
base-level
activation is
re-computed for
old memories

1, 2, 3, . . . 10

thresh Threshold for
activation locality

0, 1, . . . 100

base-inhibition Sets whether or
not base-level
activation has a
short-term
inhibition factor.

on, off off

If activation-mode is base-level, three parameters control bias values. The base-decay

parameter sets the free decay parameter in the base-level model. Note that we do imple-
ment the (Petrov, 2006) approximation, with a history size set as a compile-time parameter
(default=10). The base-update-policy sets the frequency with which activation is re-
computed. The default, stable, only recomputes activation when a memory is referenced
(through storage or retrieval). The naive setting will update the entire candidate set of
memories (defined as those that match the most constraining cue WME) during a retrieval,
which has severe performance detriment and should be used for experimentation or those
agents that require high-fidelity retrievals. The incremental policy updates a constant num-
ber of memories, those with last-access ages defined by the base-incremental-threshes

set. The base-inhibition parameter switches an additional prohibition factor on or off.

Performance Parameters :

Parameter Description Possible values Default

cache-size Number of memory
pages used in the
SQLite cache

1, 2, . . . 10000

9.5. LONG-TERM DECLARATIVE MEMORY 247

Parameter Description Possible values Default

lazy-commit Delay writing
semantic store
changes to file
until agent exits

on, off on

optimization Policy for
committing data
to disk

safety, performance performance

page-size Size of each
memory page used
in the SQLite
cache

1k, 2k, 4k, 8k, 16k, 32k,
64k

8k

timers Timer granularity off, one, two, three off

When the database is stored to disk, the lazy-commit and optimization parameters control
how often cached database changes are written to disk. These parameters trade off safety
in the case of a program crash with database performance. When optimization is set to
performance, the agent will have an exclusive lock on the database, meaning it cannot be
opened concurrently by another SQLite process such as SQLiteMan. The lock can be relin-
quished by setting the database to memory or another database and issuing init-soar/smem
--init or by shutting down the Soar kernel.

9.5.1.3 Statistics

Semantic memory tracks statistics over the lifetime of the agent. These can be accessed
using smem --stats <statistic>. Running smem --stats without a statistic will list
the values of all statistics. Unlike timers, statistics will always be updated.

Available statistics are:

Name Label Description

act updates Activation Updates Number of times memory activation
has been calculated

db-lib-version SQLite Version SQLite library version
edges Edges Number of edges in the semantic

store
mem-usage Memory Usage Current SQLite memory usage in

bytes
mem-high Memory Highwater High SQLite memory usage

watermark in bytes
nodes Nodes Number of nodes in the semantic

store
queries Queries Number of times the query

command has been issued

248 CHAPTER 9. THE SOAR USER INTERFACE

Name Label Description

retrieves Retrieves Number of times the retrieve
command has been issued

stores Stores Number of times the store
command has been issued

9.5.1.4 Timers

Semantic memory also has a set of internal timers that record the durations of certain
operations. Because fine-grained timing can incur runtime costs, semantic memory timers
are off by default. Timers of different levels of detail can be turned on by issuing smem

--set timers <level>, where the levels can be off, one, two, or three, three being
most detailed and resulting in all timers being turned on. Note that none of the semantic
memory statistics nor timing information is reported by the stats command.

All timer values are reported in seconds.

Level one

Timer Description

total Total smem operations

Level two

Timer Description

smem api Agent command validation
smem hash Hashing symbols
smem init Semantic store initialization
smem ncb retrieval Adding concepts (and children) to working memory
smem query Cue-based queries
smem storage Concept storage

Level three

Timer Description

three activation Recency information maintenance

9.5.1.5 smem –add

Concepts can be manually added to the semantic store using the
smem --add <concept>

9.5. LONG-TERM DECLARATIVE MEMORY 249

command. The format for specifying the concept is similar to that of adding WMEs to
working memory on the RHS of productions.
For example:

smem --add {

(<arithmetic> ^add10-facts <a01> <a02> <a03>)

(<a01> ^digit1 1 ^digit-10 11)

(<a02> ^digit1 2 ^digit-10 12)

(<a03> ^digit1 3 ^digit-10 13)

}

Although not shown here, the common “dot-notation” format used in writing productions
can also be used for this command. Unlike agent storage, manual storage is automatically
recursive. Thus, the above example will add a new concept (represented by the temporary
“arithmetic” variable) with three children. Each child will be its own concept with two
constant attribute/value pairs.

9.5.1.6 smem –remove

Part or all of the information in the semantic store of some LTI can be manually removed
from the semantic store using the

smem --remove <concept>

command. The format for specifying what to remove is similar to that of adding WMEs to
working memory on the RHS of productions.
For example:

smem --remove {

(@34 ^good-attribute |gibberish value|)

}

If good-attribute is multi-valued, then all values will remain in the store except |gibberish
value|. If |gibberish value| is the only value, then good-attribute will also be removed.
It is not possible to use the common “dot-notation” for this command. Manual removal is
not recursive.

Another example highlights the ability to remove all of the values for an attribute:

smem --remove {

(@34 ^bad-attribute)

}

When a value is not given, all of the values for the given attribute are removed from the LTI
in the semantic store.

Also, it is possible to remove all augmentations of some LTI from the semantic store:

smem --remove {

(@34)

250 CHAPTER 9. THE SOAR USER INTERFACE

}

This would remove all attributes and values of @34 from the semantic store. The LTI will
remain in the store, but will lack augmentations.

(Use the following at your own risk.) Optionally, the user can force removal even in the
event of an error:

smem -r {(@34 ^bad-attribute ^bad-attribute-2)} force

Suppose that LTI @34 did not contain bad-attribute. The above example would remove
bad-attribute-2 even though it would indicate an error (having not found bad-attribute).

9.5.1.7 smem –query

Queries for LTIs in the semantic store that match some cue can be initialized external to an
agent using the
smem --query <cue> [<num>]
command. The format for specifying the cue is similar to that of adding a new identifier to
working memory in the RHS of a rule:

smem --query {

(<cue> ^attribute <wildcard> ^attribute-2 |constant|)

}

Note that the root of the cue structure must be a variable and should be unused in the rest of
the cue structure. This command is for testing and the full range of queries accessible to the
agent are not yet available for the command. For example, math queries are not supported.

The additional option of <num> will trigger the display of the top <num> most activated
LTIs that matched the cue.

The result of a manual query is either to print that no LTIs could be found or to print the
information associated with LTIs that were found in the print <lti> format.

9.5.1.8 smem –history

When the activation-mode of a semantic store is set to base-level, some history of activation
events is stored for each LTI. This history of when some LTI was activated can be displayed:

smem --history @34

In the event that semantic memory is not using base-level activation, history will mimic
print.

9.5.1.9 Experimental Spreading Activation

9.5. LONG-TERM DECLARATIVE MEMORY 251

Parameter Description Possible values Default

spreading Controls whether
spreading
activation is on or
off.

on, off off

spreading-limit Limits amount of
spread from any
LTI

0, 1, . . . 300

spreading-depth-
limit

Limits depth of
spread from any
LTI

0, 1, . . . , 10 10

spreading-baseline Gives minimum to
spread values.

0, . . . , 1 0.0001

spreading-
continue-
probability

Gives 1 - (decay
factor of spread
with distance)

0, . . . , 1 0.9

spreading-loop-
avoidance

Controls whether
spread traversal
avoids self-loops

on, off off

Spreading activation has been added as an additional mechanism for ranking LTIs in re-
sponse to a query. Spreading activation is only compatible with base-level activation.
activation-mode must be set to base-level in order to also use spreading. They are
additive. Spreading activation serves to rank LTIs that are connected to those currently
instanced in Working Memory more highly than those which are unconnected. Note that
spreading should be turned on before running an agent. Also, be warned that an agent
which loads a database with spreading activation active at the time of back-up currently has
undefined behavior and will likely crash as spreading activation currently maintains state in
the database.

Spreading activation introduces additional parameters. spreading-limit is an absolute cap
on the number of LTIs that can receive spread from a given instanced LTI. spreading-depth-limit
is an absolute cap on the depth to which a Working Memory instance of some LTI can spread
into the SMem network. spreading-baseline provides a minimum amount of spread that
an element can receive. spreading-continue-probability sets the amount of spread that
is passed on with greater depth. (It can also be thought of as 1-decay where decay is the
loss of spread magnitude with depth.) spreading-loop-avoidance is a boolean parameter
which controls whether or not any given spread traversal can loop back onto itself.

Note that the default settings here are not necessarily appropriate for your application. For
many applications, simply changing the structure of the network can yield wildly different
query results even with the same spreading parameters.

252 CHAPTER 9. THE SOAR USER INTERFACE

9.5.1.10 See Also

print
trace
visualize

9.5.2 epmem

Control the behavior of episodic memory.

Synopsis

epmem

epmem -e|--enable|--on

epmem -d|--disable|--off

epmem -i|--init

epmem -c|--close

epmem -g|--get <parameter>

epmem -s|--set <parameter> <value>

epmem -S|--stats [<statistic>]

epmem -t|--timers [<timer>]

epmem -v|--viz <episode id>

epmem -p|--print <episode id>

epmem -b|--backup <file name>

Options :

Option Description

-e, --enable, --on Enable episodic memory.
-d, --disable, --off Disable episodic memory.
-i, --init Re-initialize episodic memory
-c, --close Disconnect from episodic memory
-g, --get Print current parameter setting
-s, --set Set parameter value
-S, --stats Print statistic summary or specific statistic
-t, --timers Print timer summary or specific statistic
-v, --viz Print episode in graphviz format
-p, --print Print episode in user-readable format
-b, --backup Creates a backup of the episodic database on disk

9.5. LONG-TERM DECLARATIVE MEMORY 253

Description The epmem command is used to change all behaviors of the episodic memory
module, except for watch output, which is controlled by the trace --epmem command.

9.5.2.1 Parameters

Due to the large number of parameters, the epmem command uses the
--get|--set <parameter> <value> convention rather than individual switches for each
parameter. Running epmem without any switches displays a summary of the parameter
settings.

Main Parameters :

Parameter Description Possible values Default

append Controls whether
database is
overwritten or
appended when
opening or
re-initializing

on, off off

balance Linear weight of
match cardinality
(1) vs. working
memory activation
(0) used in
calculating match
score

[0, 1] 1

database Database storage
method

file, memory memory

exclusions Toggle the
exclusion of an
attribute string
constant

any string epmem, smem

force Forces episode
encoding/ignoring
in the next storage
phase

ignore, remember, off off

learning Episodic memory
enabled

on, off off

merge Controls how
retrievals interact
with long-term
identifiers in
working memory

none, add none

254 CHAPTER 9. THE SOAR USER INTERFACE

Parameter Description Possible values Default

path Location of
database file

empty, some path empty

phase Decision cycle
phase to encode
new episodes and
process epmem
link commands

output, selection output

trigger How episode
encoding is
triggered

dc, output, none output

Performance Parameters :

Parameter Description Possible values Default

cache-size Number of memory
pages used in the
SQLite cache

1, 2, . . . 10000

graph-match Graph matching
enabled

on, off on

graph-match-orderingOrdering of
identifiers during
graph match

undefined, dfs, mcv undefined

lazy-commit Delay writing
semantic store
changes to file
until agent exits

on, off on

optimization Policy for
committing data
to disk

safety, performance performance

page-size Size of each
memory page used
in the SQLite
cache

1k, 2k, 4k, 8k, 16k, 32k,
64k

8k

timers Timer granularity off, one, two, three off

The learning parameter turns the episodic memory module on or off. When learning

is set to off, no new episodes are encoded and no commands put on the epmem link are
processed. This is the same as using the enable and disable commands.

The phase parameter determines which decision cycle phase episode encoding and retrieval
will be performed.

The trigger parameter controls when new episodes will be encoded. When it is set to

9.5. LONG-TERM DECLARATIVE MEMORY 255

output, new episodes will be encoded only if the agent made modifications to the output-
link during that decision cycle. When set to ‘dc’, new episodes will be encoded every decision
cycle.

The exclusions parameter can be used to prevent episodic memory from encoding parts of
working memory into new episodes. The value of exclusions is a list of string constants.
During encoding, episodic memory will walk working memory starting from the top state
identifier. If it encounters a WME whose attribute is a member of the exclusions list,
episodic memory will ignore that WME and abort walking the children of that WME, and
they will not be included in the encoded episode. Note that if the children of the excluded
WME can be reached from top state via an alternative non-excluded path, they will still
be included in the encoded episode. The exclusions parameter behaves differently from
other parameters in that issuing epmem --set exclusions <val> does not set its value to
<val>. Instead, it will toggle the membership of <val> in the exclusions list.

The path parameter specifies the file system path the database is stored in. When path is
set to a valid file system path and database mode is set to file, then the SQLite database is
written to that path.

The append parameter will determine whether all existing episodes recorded in a database
on disk will be erased when epmem loads it. Note that this affects episodic memory re-
initialization also, i.e. if the append setting is off, all episodic memories stored to disk will
be lost when an init-soar is performed. Note that episodic memory cannot currently append
to an in-memory database. If you perform an init-soar while using an in-memory database,
all current episodes stored will be cleared.

Note that changes to database, path and append will not have an effect until the database
is used after an initialization. This happens either shortly after launch (on first use) or after
a database initialization command is issued. To switch databases or database storage types
after running, set your new parameters and then perform an epmem --init.

The epmem --backup command can be used to make a copy of the current state of the
database, whether in memory or on disk. This command will commit all outstanding changes
before initiating the copy.

When the database is stored to disk, the lazy-commit and optimization parameters control
how often cached database changes are written to disk. These parameters trade off safety
in the case of a program crash with database performance. When optimization is set to
performance, the agent will have an exclusive lock on the database, meaning it cannot be
opened concurrently by another SQLite process such as SQLiteMan. The lock can be relin-
quished by setting the database to memory or another database and issuing init-soar/epmem
--init or by shutting down the Soar kernel.

The balance parameter sets the linear weight of match cardinality vs. cue activation. As
a performance optimization, when the value is 1 (default), activation is not computed. If
this value is not 1 (even close, such as 0.99), and working memory activation is enabled, this
value will be computed for each leaf WME, which may incur a noticeable cost, depending
upon the overall complexity of the retrieval.

256 CHAPTER 9. THE SOAR USER INTERFACE

The graph-match-ordering parameter sets the heuristic by which identifiers are ordered
during graph match (assuming graph-match is on). The default, undefined, does not
enforce any order and may be sufficient for small cues. For more complex cues, there will be a
one-time sorting cost, during each retrieval, if the parameter value is changed. The currently
available heuristics are depth-first search (dfs) and most-constrained variable (mcv). It is
advised that you attempt these heuristics to improve performance if the query graph match

timer reveals that graph matching is dominating retrieval time.

The merge parameter controls how the augmentations of retrieved long-term identifiers
(LTIs) interact with an existing LTI in working memory. If the LTI is not in working
memory or has no augmentations in working memory, this parameter has no effect. If the
augmentation is in working memory and has augmentations, by default (none), episodic
memory will not augment the LTI. If the parameter is set to add then any augmentations
that augmented the LTI in a retrieved episode are added to working memory.

9.5.2.2 Statistics

Episodic memory tracks statistics over the lifetime of the agent. These can be accessed
using epmem --stats <statistic>. Running epmem --stats without a statistic will list
the values of all statistics. Unlike timers, statistics will always be updated.
Available statistics are:

Name Label Description

time Time Current episode ID
db-lib-version SQLite Version SQLite library version
mem-usage Memory Usage Current SQLite memory usage in

bytes
mem-high Memory Highwater High SQLite memory usage

watermark in bytes
queries Queries Number of times the query

command has been processed
nexts Nexts Number of times the next command

has been processed
prevs Prevs Number of times the previous

command has been processed
ncb-wmes Last Retrieval WMEs Number of WMEs added to working

memory in last reconstruction
qry-pos Last Query Positive Number of leaf WMEs in the query

cue of last cue-based retrieval
qry-neg Last Query Negative Number of leaf WMEs in the

neg-query cue of the last cue-based
retrieval

qry-ret Last Query Retrieved Episode ID of last retrieval
qry-card Last Query

Cardinality
Match cardinality of last cue-based
retrieval

9.5. LONG-TERM DECLARATIVE MEMORY 257

Name Label Description

qry-lits Last Query Literals Number of literals in the DNF graph
of last cue-based retrieval

9.5.2.3 Timers

Episodic memory also has a set of internal timers that record the durations of certain op-
erations. Because fine-grained timing can incur runtime costs, episodic memory timers are
off by default. Timers of different levels of detail can be turned on by issuing epmem --set

timers <level>, where the levels can be off, one, two, or three, three being most de-
tailed and resulting in all timers being turned on. Note that none of the episodic memory
statistics nor timing information is reported by the stats command.

All timer values are reported in seconds.

Level one

Timer Description

total Total epmem operations

Level two

Timer Description

epmem api Agent command validation
epmem hash Hashing symbols
epmem init Episodic store initialization
epmem ncb retrieval Episode reconstruction
epmem next Determining next episode
epmem prev Determining previous episode
epmem query Cue-based query
epmem storage Encoding new episodes
epmem trigger Deciding whether new episodes should be encoded
epmem wm phase Converting preference assertions to working memory changes

Level three

Timer Description

ncb edge Collecting edges during reconstruction
ncb edge rit Collecting edges from relational interval tree
ncb node Collecting nodes during reconstruction
ncb node rit Collecting nodes from relational interval tree
query cleanup Deleting dynamic data structures
query dnf Building the first level of the DNF

258 CHAPTER 9. THE SOAR USER INTERFACE

Timer Description

query graph match Graph match
query result Putting the episode in working memory
query sql edge SQL query for an edge
query sql end ep SQL query for the end of the range of an edge
query sql end now SQL query for the end of the now of an edge
query sql end point SQL query for the end of the point of an edge
query sql start ep SQL query for the start of the range of an edge
query sql start now SQL query for the start of the now of an edge
query sql start point SQL query for the start of the point of an edge
query walk Walking the intervals
query walk edge Expanding edges while walking the intervals
query walk interval Updating satisfaction while walking the intervals

Visualization When debugging agents using episodic memory it is often useful to inspect
the contents of individual episodes. Running
epmem --viz <episode id> will output the contents of an episode in graphviz format. For
more information on this format and visualization tools, see http://www.graphviz.org.
The epmem --print option has the same syntax, but outputs text that is similar to using
the print command to get the substructure of an identifier in working memory, which is
possibly more useful for interactive debugging.

9.5.2.4 See Also

trace
wm

9.6 Other Debugging Commands

This section describes the commands used primarily for debugging or to configure the trace
output printed by Soar as it runs. Many of these commands provide options that simplify or
restrict runtime behavior to enable easier and more localized debugging. Users may specify
the content of the runtime trace output, examine the backtracing information that supports
generated justifications and chunks, or request details on Soar’s performance.

The specific commands described in this section are:

trace - Control the information printed as Soar runs. (was watch)

output - Controls sub-commands and settings related to Soar’s output.

output enabled - Toggles printing at the lowest level.

http://www.graphviz.org

9.6. OTHER DEBUGGING COMMANDS 259

output console - Redirects printing to the the terminal. Most users will
not change this.

output callbacks - Toggles standard Soar agent callback-based printing.

output log - Record all user-interface input and output to a file.

output command-to-file - Dump the printed output and results of a com-
mand to a file.

output print-depth - Set how many generations of an identifier’s children
that Soar will print

output warnings - Toggle whether or not warnings are printed.

output verbose - Control detailed information printed as Soar runs.

output echo-commands - Set whether or not commands are echoed to
other connected debuggers.

explain - Provides interactive exploration of why a rule was learned.

visualize - Creates graph visualizations of Soar’s memory systems or processing.

stats - Print information on Soar’s runtime statistics.

debug - Contains commands that provide access to Soar’s internals. Most users
will not need to access these commands

debug allocate - Allocate additional 32 kilobyte blocks of memory for a
specified memory pool without running Soar.

debug port - Returns the port the kernel instance is listening on.

debug time - Uses a default system clock timer to record the wall time
required while executing a command.

debug internal-symbols - Print information about the Soar symbol ta-
ble.

Of these commands, trace is the most often used (and the most complex).
output print-depth is related to the print command. stats is useful for understanding
how much work Soar is doing.

9.6.1 trace

Control the run-time tracing of Soar.

Synopsis

==

Soar Trace Messages

==

------------------------- Level 1 --------------------------

260 CHAPTER 9. THE SOAR USER INTERFACE

Operator decisions and states on -d

------------------------- Level 2 --------------------------

Phases off -p

State removals caused by GDS violation off -g

------------------ Level 3: Rule firings -------------------

Default rules off -D

User rules off -u

Chunks off -c

Justifications off -j

Templates off -T

Firings inhibited by higher-level firings off -W

------------------------- Level 4 --------------------------

WME additions and removals off -w

------------------------- Level 5 --------------------------

Preferences off -r

---------------- Additional Trace Messages -----------------

Chunking dependency analysis off -b

Goal dependency set changes off -G

Episodic memory recording and queries off -e

Numeric preference calculations off -i

Learning Level off -L 0-2

Reinforcement learning value updates off -R

Semantic memory additions off -s

Working memory activation and forgetting off -a

WME Detail Level none -n, -t, -f

9.6.1.1 Trace Levels

trace 0-5

Use of the --level (-l) flag is optional but recommended.

Option Description

0 trace nothing; equivalent to -N

1 trace decisions; equivalent to -d

2 trace phases, gds, and decisions; equivalent to
-dpg

3 trace productions, phases, and decisions;
equivalent to -dpgP

4 trace wmes, productions, phases, and decisions;
equivalent to -dpgPw

5 trace preferences, wmes, productions, phases, and
decisions; equivalent to -dpgPwr

9.6. OTHER DEBUGGING COMMANDS 261

It is important to note that trace level 0 turns off ALL trace options, including backtrac-
ing, indifferent selection and learning. However, the other trace levels do not change these
settings. That is, if any of these settings is changed from its default, it will retain its new
setting until it is either explicitly changed again or the trace level is set to 0.

9.6.1.2 Options

trace [options]

Option Flag Argument to Option Description

-l, --level 0 to 5 (see Trace Levels below) This flag is optional
but recommended. Set
a specific trace level
using an integer 0 to 5,
this is an inclusive
operation

-N, --none No argument Turns off all printing
about Soar’s internals,
equivalent to --level

0

-b, --backtracing remove (optional) Print backtracing
information when a
chunk or justification is
created

-d, --decisions remove (optional) Controls whether state
and operator decisions
are printed as they are
made

-e, --epmem remove (optional) Print episodic retrieval
traces and IDs of newly
encoded episodes

-g, --gds remove (optional) Controls printing of
warnings when a state
is removed due to the
GDS

-G, --gds-wmes remove (optional) Controls printing of
warnings about wme
changes to GDS

-i,

--indifferent-selection

remove (optional) Print scores for tied
operators in random
indifferent selection
mode

262 CHAPTER 9. THE SOAR USER INTERFACE

Option Flag Argument to Option Description

-p, --phases remove (optional) Controls whether
decisions cycle phase
names are printed as
Soar executes

-r, --preferences remove (optional) Controls whether the
preferences generated
by the traced
productions are printed
when those productions
fire or retract

-P, --productions remove (optional) Controls whether the
names of productions
are printed as they fire
and retract, equivalent
to -Dujc

-R, --rl remove (optional) Print RL debugging
output

-s, --smem remove (optional) Print log of semantic
memory storage events

-w, --wmes remove (optional) Controls the printing of
working memory
elements that are
added and deleted as
productions are fired
and retracted.

-a, --wma remove (optional) Print log of working
memory activation
events

-A, --assertions remove (optional) Print assertions of rule
instantiations and the
preferences they
generate.

When appropriate, a specific option may be turned off using the remove argument. This
argument has a numeric alias; you can use 0 for remove. A mix of formats is acceptable,
even in the same command line.

Tracing Productions By default, the names of the productions are printed as each pro-
duction fires and retracts (at trace levels 3 and higher). However, it may be more helpful to
trace only a specific type of production. The tracing of firings and retractions of productions
can be limited to only certain types by the use of the following flags:

9.6. OTHER DEBUGGING COMMANDS 263

Option Flag Argument to Option Description

-D, --default remove (optional) Control only
default-productions as
they fire and retract

-u, --user remove (optional) Control only
user-productions as
they fire and retract

-c, --chunks remove (optional) Control only chunks as
they fire and retract

-j,

--justifications

remove (optional) Control only
justifications as they
fire and retract

-T, --template remote (optional) Soar-RL template
firing trace

Note: The production watch command is used to trace individual productions specified by
name rather than trace a type of productions, such as --user.

Additionally, when tracing productions, users may set the level of detail to be displayed
for WMEs that are added or retracted as productions fire and retract. Note that detailed
information about WMEs will be printed only for productions that are being traced.

Option Flag Description

-n, --nowmes When tracing productions, do not print
any information about matching wmes

-t, --timetags When tracing productions, print only the
timetags for matching wmes

-f, --fullwmes When tracing productions, print the full
matching wmes

Option Flag Argument to Option Description

-L, --learning noprint, print, or fullprint
(see table below)

Controls the printing of
chunks/justifications as
they are created

Tracing Learning As Soar is running, it may create justifications and chunks which are
added to production memory. The trace command allows users to monitor when chunks and
justifications are created by specifying one of the following arguments to the --learning

command:

264 CHAPTER 9. THE SOAR USER INTERFACE

Argument Alias Effect

noprint 0 Print nothing about new chunks or jus-
tifications (default)

print 1 Print the names of new chunks and jus-
tifications when created

fullprint 2 Print entire chunks and justifications
when created

9.6.1.3 Description

The trace command controls the amount of information that is printed out as Soar runs.
The basic functionality of this command is to trace various levels of information about Soar’s
internal workings. The higher the level, the more information is printed as Soar runs. At
the lowest setting, 0 (--none), nothing is printed. The levels are cumulative, so that each
successive level prints the information from the previous level as well as some additional
information. The default setting for the level is 1, (--decisions).

The numerical arguments inclusively turn on all levels up to the number specified. To use
numerical arguments to turn off a level, specify a number which is less than the level to
be turned off. For instance, to turn off tracing of productions, specify --level 2 (or 1 or
0). Numerical arguments are provided for shorthand convenience. For more detailed control
over the trace settings, the named arguments should be used.

With no arguments, this command prints information about the current trace status, i.e.,
the values of each parameter.

For the named arguments, including the named argument turns on only that setting. To
turn off a specific setting, follow the named argument with remove or 0.

The named argument --productions is shorthand for the four arguments --default, --user,
--justifications, and --chunks.

9.6.1.4 Examples

The most common uses of trace are by using the numeric arguments which indicate trace lev-
els. To turn off all printing of Soar internals, do any one of the following (not all possibilities
listed):

trace --level 0

trace -l 0

trace -N

Note: You can turn off printing at an even lower level using the output command.

Although the --level flag is optional, its use is recommended:

trace --level 5 ## OK

9.6. OTHER DEBUGGING COMMANDS 265

trace 5 ## OK, avoid

Be careful of where the level is on the command line, for example, if you want level 2 and
preferences:

trace -r -l 2 ## Incorrect: -r flag ignored, level 2 parsed after it and overrides the setting

trace -r 2 ## Syntax error: 0 or remove expected as optional argument to -r

trace -r -l 2 ## Incorrect: -r flag ignored, level 2 parsed after it and overrides the setting

trace 2 -r ## OK, avoid

trace -l 2 -r ## OK

To turn on printing of decisions, phases and productions, do any one of the following (not
all possibilities listed):

trace --level 3

trace -l 3

trace --decisions --phases --productions

trace -d -p -P

Individual options can be changed as well. To turn on printing of decisions and WMEs, but
not phases and productions, do any one of the following (not all possibilities listed):

trace --level 1 --wmes

trace -l 1 -w

trace --decisions --wmes

trace -d --wmes

trace -w --decisions

trace -w -d

To turn on printing of decisions, productions and WMEs, and turns phases off, do any one
of the following (not all possibilities listed):

trace --level 4 --phases remove

trace -l 4 -p remove

trace -l 4 -p 0

trace -d -P -w -p remove

To trace the firing and retraction of decisions and only user productions, do any one of the
following (not all possibilities listed):

trace -l 1 -u

trace -d -u

To trace decisions, phases and all productions except user productions and justifications, and
to see full WMEs, do any one of the following (not all possibilities listed):

trace --decisions --phases --productions --user remove --justifications remove --fullwmes

trace -d -p -P -f -u remove -j 0

trace -f -l 3 -u 0 -j 0

9.6.1.5 Default Aliases

v trace -A

266 CHAPTER 9. THE SOAR USER INTERFACE

w trace

watch trace

9.6.1.6 See Also

epmem
production
output
print
run
wm

9.6.2 output

Controls settings related to Soar’s output

Synopsis

===

- Output Sub-Commands and Options -

===

output [? | help]

enabled on Globally toggle all output

console off Send output to std::out for debugging

callbacks on Send output to standard print callback

agent-logs <channel-number> [ON | off] Whether agent log channel prints

agent-writes on Allow RHS-funtion output

output log [--append | -A] <filename> Log all output to file

output log --add <string>

output log [--close]

output command-to-file [-a] <file> <cmd> [args] Log output from single command

echo-commands off Echo commands to debugger

print-depth 1 Default print depth

warnings on Print all warnings

To view/change a setting: output <setting> [<value>]

For a detailed explanation of these settings: help output

9.6.2.1 Summary Screen

Using the output command without any arguments will display some key output settings:

===

- Output Status -

9.6. OTHER DEBUGGING COMMANDS 267

===

Printing enabled Yes

Printing to std::out Yes

Agent RHS write output on

All agent log channels enabled.

Warnings on

Soar release compilation OFF

Debug printing ON

9.6.2.2 output command-to-file

This command logs a single command. It is almost equivalent to opening a log using clog,
running the command, then closing the log, the only difference is that input isn’t recorded.

Running this command while a log is open is an error. There is currently not support for
multiple logs in the command line interface, and this would be an instance of multiple logs.

This command echoes output both to the screen and to a file, just like clog.

Options :

Option Description

-a, --append Append if file exists.
filename The file to log the results of the command to
command The command to log
args Arguments for command

9.6.2.3 output log

The output log command allows users to save all user-interface input and output to a file.
When Soar is logging to a file, everything typed by the user and everything printed by Soar
is written to the file (in addition to the screen).

Invoke output log with no arguments to query the current logging status. Pass a filename
to start logging to that file (relative to the command line interface’s home directory). Use
the close option to stop logging.

Usage

output log [-A] filename

268 CHAPTER 9. THE SOAR USER INTERFACE

output log --add string

output log --close

Options :

Option Description

filename Open filename and begin logging.
-c, --close Stop logging, close the file.
-a, --add string Add the given string to the open log file.
-A, --append Opens existing log file named filename and

logging is added at the end of the file.

Examples To initiate logging and place the record in foo.log:

output log foo.log

To append log data to an existing foo.log file:

output log -A foo.log

To terminate logging and close the open log file:

output log -c

Known Issues with log Does not log everything when structured output is selected.

9.6.2.4 General Output Settings

Invoke a sub-command with no arguments to query the current setting. Partial commands
are accepted.

Option Valid Values Default

echo-commands yes or no off
print-depth >= 1 1
verbose yes or no no
warnings yes or no yes

output agent-logs A Soar agent has 100 log channels available. By default, all are turned
on. The log RHS-function allows printing as with the write function, but limits output to
only the specified log channel.

9.6. OTHER DEBUGGING COMMANDS 269

output echo-commands output echo-commands will echo typed commands to other
connected debuggers. Otherwise, the output is displayed without the initiating command,
and this can be confusing.

output print-depth The print-depth command reflects the default depth used when
working memory elements are printed (using the print). The default value is 1. This default
depth can be overridden on any particular call to the print command by explicitly using the
--depth flag, e.g. print --depth 10 args.

By default, the print command prints objects in working memory, not just the individual
working memory element. To limit the output to individual working memory elements, the
--internal flag must also be specified in the print command. Thus when the print depth
is 0, by default Soar prints the entire object, which is the same behavior as when the print
depth is 1. But if --internal is also specified, then a depth of 0 prints just the individual
WME, while a depth of 1 prints all WMEs which share that same identifier. This is true
when printing timetags, identifiers or WME patterns.

When the depth is greater than 1, the identifier links from the specified WME’s will be
followed, so that additional substructure is printed. For example, a depth of 2 means that
the object specified by the identifier, wme-pattern, or timetag will be printed, along with
all other objects whose identifiers appear as values of the first object. This may result in
multiple copies of the same object being printed out. If --internal is also specified, then
individuals WMEs and their timetags will be printed instead of the full objects.

output verbose The verbose command enables tracing of a number of low-level Soar
execution details during a run. The details printed by verbose are usually only valuable to
developers debugging Soar implementation details.

output warnings The warnings command enables and disables the printing of warning
messages. At startup, warnings are initially enabled. If warnings are disabled using this
command, then some warnings may still be printed, since some are considered too important
to ignore.

The warnings that are printed apply to the syntax of the productions, to notify the user
when they are not in the correct syntax. When a lefthand side error is discovered (such
as conditions that are not linked to a common state or impasse object), the production is
generally loaded into production memory anyway, although this production may never match
or may seriously slow down the matching process. In this case, a warning would be printed
only if warnings were on. Righthand side errors, such as preferences that are not linked to
the state, usually result in the production not being loaded, and a warning regardless of the
warnings setting.

270 CHAPTER 9. THE SOAR USER INTERFACE

9.6.2.5 Default Aliases

ctf output command-to-file

clog output log

default-wme-depth output print-depth

echo-commands output echo-commands

verbose output verbose

warnings output warnings

9.6.3 explain

Allows you to explore how rules were learned.

Synopsis

======= Explainer Commands and Settings =======

explain ? Print this help listing

---------------- What to Record ---------------

all [on | OFF] Record all rules learned

justifications [on | OFF] Record justifications

record <chunk-name> Record specific rule

list-chunks List all rules learned

list-justifications List all justifications

----------- Starting an Explanation -----------

chunk [<chunk name> | <chunk id>] Start discussing chunk

formation Describe formation

----------- Browsing an Explanation -----------

instantiation <inst id> Explain instantiation

explanation-trace Switch explanation trace

wm-trace Switch to WM trace

------------ Supporting Analysis --------------

constraints Display extra transitive

constraints required by

problem-solving

identity Display identity to

identity set mappings

stats Display statistics about

currently discussed chunk

------------------ Settings -------------------

after-action-report [on | OFF] Print statistics to file

on init and exit

only-chunk-identities [ON | off] Identity analysis only

prints identities sets

found in chunk

9.6. OTHER DEBUGGING COMMANDS 271

To change a setting: explain <setting> [<value>]

For a detailed explanation of these settings: help explain

9.6.3.1 Summary Screen

Using the explain command without any arguments will display a summary of which rule
firings the explainer is watching for learning. It also shows which chunk or justification the
user has specified is the current focus of its output, i.e. the chunk being discussed.

Tip: This is a good way to get a chunk id so that you don’t have to type or paste in a chunk
name.

===

Explainer Summary

===

Watch all chunk formations Yes

Explain justifications No

Number of specific rules watched 0

Chunks available for discussion: chunkx2*apply2 (c 14)

chunk*apply*o (c 13)

chunkx2*apply2 (c 12)

chunk*apply*d (c 11)

chunkx2*apply2 (c 6)

chunk*apply* (c 15)

chunkx2*apply (c 8)

chunk*apply*c (c 5)

chunkx2*apply (c 10)

chunk*apply (c 1)

* Note: Printed the first 10 chunks. ’explain list’ to see other 6 chunks.

Current chunk being discussed: chunk*apply*down-gripper(c 3)

Use ’explain chunk [<chunk-name> | id]’ to discuss the formation of that chunk.

Use ’explain ?’ to learn more about explain’s sub-command and settings.

9.6.3.2 explain chunk

This starts the process.

Tip: Use c, which is an alias to explain chunk, to quickly start discussing a chunk, for
example:
soar % c 3

Now explaining chunk*apply*move-gripper-above*pass*top-state*OpNoChange*t6-1.

- Note that future explain commands are now relative

to the problem-solving that led to that chunk.

Explanation Trace Using variable identity IDs Shortest Path to Result Instantiation

sp {chunk*apply*move-gripper-above*pass*top-state*OpNoChange*t6-1

1: (<s1> ^top-state <s2>) ([140] ^top-state [162])

272 CHAPTER 9. THE SOAR USER INTERFACE

-{

2: (<s1> ^operator <o*1>) ([140] ^operator [141])

3: (<o*1> ^name evaluate-operator) ([141] ^name evaluate-operator)

}

4: (<s2> ^gripper <g1>) ([162] ^gripper [156]) i 30 -> i 31

5: (<g1> ^position up) ([156] ^position up) i 30 -> i 31

6: (<g1> ^holding nothing) ([156] ^holding nothing) i 30 -> i 31

7: (<g1> ^above <t1>) ([156] ^above [157]) i 30 -> i 31

8: (<s2> ^io <i2>) ([162] ^io [163]) i 31

9: (<i2> ^output-link <i1>) ([163] ^output-link [164]) i 31

10: (<i1> ^gripper <g2>) ([164] ^gripper [165]) i 31

11: (<s2> ^clear { <> <t1> <b1> }) ([162] ^clear { <>[161] [161] }) i 30 -> i 31

12: (<s1> ^operator <o1>) ([140] ^operator [149])

13: (<o1> ^moving-block <b1>) ([149] ^moving-block [161])

14: (<o1> ^name pick-up) ([149] ^name pick-up)

-->

1: (<g2> ^command move-gripper-above +) ([165] ^command move-gripper-above +)

2: (<g2> ^destination <c1> +) ([165] ^destination [161] +)

}

9.6.3.3 explain formation

explain formation provides an explanation of the initial rule that fired which created a
result. This is what is called the ‘base instantiation’ and is what led to the chunk being
learned. Other rules may also be base instantiations if they previously created children of
the base instantiation’s results. They also will be listed in the initial formation output.
soar % explain formation

--

The formation of chunk ’chunk*apply*move-gripper-above*pass*top-state*OpNoChange*t6-1’ (c 1)

--

Initial base instantiation (i 31) that fired when apply*move-gripper-above*pass*top-state matched at level 3 at time 6:

Explanation trace of instantiation # 31 (match of rule apply*move-gripper-above*pass*top-state at level 3)

(produced chunk result)

Identities instead of variables Operational Creator

1: (<s> ^operator <op>) ([159] ^operator [160]) No i 30 (pick-up*propose*move-gripper-above)

2: (<op> ^name move-gripper-above) ([160] ^name move-gripper-above) No i 30 (pick-up*propose*move-gripper-above)

3: (<op> ^destination <des>) ([160] ^destination [161]) No i 30 (pick-up*propose*move-gripper-above)

4: (<s> ^top-state <t*1>) ([159] ^top-state [162]) No i 27 (elaborate*state*top-state)

5: (<t*1> ^io <i*1>) ([162] ^io [163]) Yes Higher-level Problem Space

6: (<i*1> ^output-link <o*1>) ([163] ^output-link [164]) Yes Higher-level Problem Space

7: (<o*1> ^gripper <gripper>) ([164] ^gripper [165]) Yes Higher-level Problem Space

-->

1: (<gripper> ^command move-gripper-above +) ([165] ^command move-gripper-above +)

2: (<gripper> ^destination <des> +) ([165] ^destination [161] +)

This chunk summarizes the problem-solving involved in the following 5 rule firings:

i 27 (elaborate*state*top-state)

i 28 (elaborate*state*operator*name)

i 29 (pick-up*elaborate*desired)

i 30 (pick-up*propose*move-gripper-above)

i 31 (apply*move-gripper-above*pass*top-state)

9.6.3.4 explain instantiation

This is probably one of the most common things you will do while using the explainer. You
are essentially browsing the instantiation graph one rule at a time.

Tip: Use i, which is an alias to explain instantiation, to quickly view an instantiation,
for example:
soar % i 30

Explanation trace of instantiation # 30 (match of rule pick-up*propose*move-gripper-above at level 3)

9.6. OTHER DEBUGGING COMMANDS 273

- Shortest path to a result: i 30 -> i 31

Identities instead of variables Operational Creator

1: (<s> ^name pick-up) ([152] ^name pick-up) No i 28 (elaborate*state*operator*name)

2: (<s> ^desired <d*1>) ([152] ^desired [153]) No i 29 (pick-up*elaborate*desired)

3: (<d*1> ^moving-block <mblock>) ([153] ^moving-block [154]) No i 29 (pick-up*elaborate*desired)

4: (<s> ^top-state <ts>) ([152] ^top-state [155]) No i 27 (elaborate*state*top-state)

5: (<ts> ^clear <mblock>) ([155] ^clear [154]) Yes Higher-level Problem Space

6: (<ts> ^gripper <g>) ([155] ^gripper [156]) Yes Higher-level Problem Space

7: (<g> ^position up) ([156] ^position up) Yes Higher-level Problem Space

8: (<g> ^holding nothing) ([156] ^holding nothing) Yes Higher-level Problem Space

9: (<g> ^above { <> <mblock> <a*1> }) ([156] ^above { <>[154] [157] }) Yes Higher-level Problem Space

-->

1: (<s> ^operator <op1> +) ([152] ^operator [158] +)

2: (<op1> ^name move-gripper-above +) ([158] ^name move-gripper-above +)

3: (<op1> ^destination <mblock> +) ([158] ^destination [154] +)

9.6.3.5 explain explanation-trace and wm-trace

In most cases, users spend most of their time browsing the explanation trace. This is where
chunking learns most of the subtle relationships that you are likely to be debugging. But
users will also need to examine the working memory trace to see the specific values matched.

To switch between traces, you can use the explain e and the explain w commands.

Tip: Use et and ‘wt’, which are aliases to the above two commands, to quickly switch
between traces.

soar % explain w

Working memory trace of instantiation # 30 (match of rule pick-up*propose*move-gripper-above at level 3)

1: (S9 ^name pick-up) No i 28 (elaborate*state*operator*name)

2: (S9 ^desired D6) No i 29 (pick-up*elaborate*desired)

3: (D6 ^moving-block B3) No i 29 (pick-up*elaborate*desired)

4: (S9 ^top-state S1) No i 27 (elaborate*state*top-state)

5: (S1 ^clear B3) Yes Higher-level Problem Space

6: (S1 ^gripper G2) Yes Higher-level Problem Space

7: (G2 ^position up) Yes Higher-level Problem Space

8: (G2 ^holding nothing) Yes Higher-level Problem Space

9: (G2 ^above { <> B3 T1 }) Yes Higher-level Problem Space

-->

1: (S9 ^operator O9) +

2: (O9 ^name move-gripper-above) +

3: (O9 ^destination B3) +

9.6.3.6 explain constraints

This feature explains any constraints on the value of variables in the chunk that were required
by the problem-solving that occurred in the substate. If these constraints were not met, the
problem-solving would not have occurred.

Explanation-based chunking tracks constraints as they apply to identity sets rather than
how they apply to specific variables or identifiers. This means that sometimes constraints
that appear in a chunk may have been a result of conditions that tested sub-state working
memory element. Such conditions don’t result in actual conditions in the chunk, but they
can provide constraints. explain constraints allows users to see where such constraints
came from.

This feature is not yet implemented. You can use explain stats to see if any transitive
constraints were added to a particular chunk.

274 CHAPTER 9. THE SOAR USER INTERFACE

9.6.3.7 explain identity

explain identity will show the mappings from variable identities to identity sets. If avail-
able, the variable in a chunk that an identity set maps to will also be displayed. (Requires
a debug build because of efficiency cost.)

Variable identities are the ID values that are displayed when explaining an individual chunk
or instantiation. An identity set is a set of variable identities that were unified to a particular
variable mapping. The null identity set indicates identities that should not be generalized,
i.e. they retain their matched literal value even if the explanation trace indicates that the
original rule had a variable in that element.

By default, only identity sets that appear in the chunk will be displayed in the identity
analysis. To see the identity set mappings for other sets, change the only-chunk-identities
setting to off.

soar % explain identity

===

- Variablization Identity to Identity Set Mappings -

===

-== NULL Identity Set ==-

The following variable identities map to the null identity set and will

not be generalized: 282 301 138 291 355 336 227 309 328 318 128 218 345

-== How variable identities map to identity sets ==-

Variablization IDs Identity CVar Mapping Type

Instantiation 36:

125 -> 482 | IdSet 12 | <s> | New identity set

126 -> 493 | IdSet 11 | <o> | New identity set

Instantiation 38:

Instantiation 41:

146 -> 482 | IdSet 12 | <s> | New identity set

147 -> 493 | IdSet 11 | <o> | New identity set

Instantiation 42:

151 -> 180 | IdSet 1 | <ss> | New identity set

149 -> 482 | IdSet 12 | <s> | New identity set

150 -> 493 | IdSet 11 | <o> | New identity set

307 -> 180 | IdSet 1 | <ss> | Added to identity set

187 -> 180 | IdSet 1 | <ss> | Added to identity set

334 -> 180 | IdSet 1 | <ss> | Added to identity set

173 -> 180 | IdSet 1 | <ss> | Added to identity set

280 -> 180 | IdSet 1 | <ss> | Added to identity set

Instantiation 53:

9.6. OTHER DEBUGGING COMMANDS 275

219 -> 489 | IdSet 15 | | New identity set

Instantiation 61:

Instantiation 65:

319 -> 492 | IdSet 20 | <t> | New identity set

9.6.3.8 explain stats

explain stats prints statistics about the chunk being discussed.

===

Statistics for ’chunk*apply*move-gripper-above*pass*top-state*OpNoChange*t6-1’ (c 1):

===

Number of conditions 14

Number of actions 2

Base instantiation i 31 (apply*move-gripper-above*pass*top-state)

===

Generality and Correctness

===

Tested negation in local substate No

LHS required repair No

RHS required repair No

Was unrepairable chunk No

===

Work Performed

===

Instantiations backtraced through 5

Instantiations skipped 6

Constraints collected 1

Constraints attached 0

Duplicates chunks later created 0

Conditions merged 2

9.6.3.9 After-Action Reports

The explainer has an option to create text files that contain statistics about the rules learned
by an agent during a particular run. When enabled, the explainer will write out a file with the
statistics when either Soar exits or a soar init is executed. This option is still considered
experimental and in beta.

9.6.3.10 Visualizing an Explanation

Soar’s visualize command allows you to create images that represent processing that the
explainer recorded. There are two types of explainer-related visualizations.

(1) The visualizer can create an image that shows the entire instantiation graph at once and
how it contributed to the learned rule. The graph includes arrows that show the dependencies
between actions in one rule and conditions in others. This image is one of the most effective
ways to understand how a chunk was formed, especially for particularly complex chunks.
To use this feature, first choose a chunk for discussion. You can then issue the visualize

command with the appropriate settings.

276 CHAPTER 9. THE SOAR USER INTERFACE

(2) The visualizer can also create an image that shows how identities were joined during
identity analysis. This can be useful in determining why two elements were assigned the
same variable.

9.6.3.11 Default Aliases

c explain chunk

i explain instantiation

ef explain formation

ei explain identities

es explain stats

et explain explanation-trace

wt explain wm-trace

9.6.3.12 See Also

chunk
visualize

9.6.4 visualize

Creates visualizations of Soar’s memory systems or processing.

Synopsis

======= Visualization Commands and Settings =======

visualize ? Print this help listing

visualize [wm | smem | epmem] [id] [depth] Visualize from memory system

visualize [identity_graph | ebc_analysis] Visualize EBC explainer analysis

------------------ Presentation -------------------

rule-format [name | FULL] Print all conditions and

actions or just the rule name

memory-format [node | RECORD] Print memories as records

or just simple nodes

line-style polyline GraphViz line style that will

be used

separate-states [ON | off] Whether to create links

between goal states

architectural-wmes [on | OFF] Whether to include WMEs

created by the Soar architecture

color-identities [on | OFF] Color identities in visualization

use-joined-identities [ON | off] Color using final joined identities

------------------ File Handling ------------------

file-name soar_viz

use-same-file [on | OFF] Whether to create new files each time

generate-image [ON | off] Whether an image should be created

image-type svg Image type that will be generated

9.6. OTHER DEBUGGING COMMANDS 277

------------------ Post Actions -------------------

viewer-launch [ON | off] Launch image in viewer

editor-launch [on | OFF] Open data file in editor

print-debug [on | OFF] Print data file to screen

for debugging

9.6.4.1 Description

The visualize command will generate graphical representations of either Soar memory
structure or the analysis that explanation-based chunking performed to learn a rule.

This command can be instructed to automatically launch a viewer to see the visual rep-
resentation. If you have an editor that can open graphviz files, you can have Soar launch
that automatically as well. (Such editors allow you to move things around and lay out the
components of the visualization exactly as you want them.)

9.6.4.2 Visualizing Memory

visualize [wm | smem | epmem] [id] [depth]

The first argument is the memory system that you want to visualize.

The optional id argument allows you to specify either a root identifier from which to start
working memory or semantic memory visualizations, or an episode ID for episodic memory
visualization.

The depth argument specifies how many levels of augmentation that will be printed.

9.6.4.3 Visualizing How a Rule was Learned

visualize [identity graph | ebc analysis]

visualize identity graph will create a visualization of how the final identities used in
a learned rule were determined. This shows all identities involved and how the identity
analysis joined them based on the problem-solving that occurred.

visualize ebc analysis will create a visualization of the chunk that was learned and all
rules that fired in a substate that contributed to a rule being learned. In addition to all of
the dependencies between rules that fired, this visualization also shows which conditions in
the instantiations tested knowledge in the superstate and hence contributed to a conditions
in the final learned rule.

9.6.4.4 Presentation Settings

rule-format: This setting only applies to visualizing EBC processing. The full format
will print all conditions and actions of the rule. The name format will only print a simple
object with the rule name.

278 CHAPTER 9. THE SOAR USER INTERFACE

memory-format: This setting only applies to visualizing memory systems. The node format
will print a single graphical object for every symbol, using a circle for identifiers and a square
for constants. The record format will print a database-style record for each identifier with
all of its augmentations as fields. Links to other identifiers appear as arrows.

line-style is a parameter that is passed to Graphviz and affects how lines are drawn
between objects. See the Graphviz documentation for legal values.

separate-states is a parameter that determines whether a link to a state symbol is drawn.
When this setting is on, Soar will not connect states and instead will represent it as a
constant. This setting only applies to visualizing memory systems.

architectural-wmes is a parameter that determines whether working memory elements
created by the architecture, for example I/O and the various memory sub-system links, will
be included in the visualization. This setting only applies to visualizing memory systems.

9.6.4.5 File Handling Settings

file-name specifies the base file name that Soar will use when creating both graphviz data
files and images. You can specify a path as well, for example “visualization/soar viz”, but
make sure the directory exists first!

use-same-file tells the visualizer to always overwrite the same files for each visualization.
When off, Soar will create a new visualization each time by using the base file name and
adding a new number to it each time. Note that this command does not yet handle file
creation as robustly as it could. If the file already exists, it will simply overwrite it rather
than looking for a new file name.

generate-image specifies whether the visualizer should render the graphviz file into an
image. This setting is overridden if the viewer-launch setting is enabled.

image-type specifies what kind of image that visualizer should create. Graphviz is capable
of rendering to a staggering number of different image types. The default that the visualizer
uses is SVG, which is a vector-based format that can be scaled without loss of clarity. For
other legal formats, see the Graphviz or DOT documentation.

9.6.4.6 Post Action Settings

After the data and image files are generated, the visualizer can automatically launch an
external program to view or edit the output.

viewer-launch specifies whether to launch an image viewer. Most web browser can view
SVG files.

editor-launch specifies whether to launch whatever program is associated with .gv files.
For example, on OSX, the program OmniGraffle can be used to great effect.

print-debug specifies whether to print the raw Graphviz output to the screen. If you are

9.6. OTHER DEBUGGING COMMANDS 279

having problems, you may want to use this setting to see what it is generating for your agent.

Note that your operating system chooses which program to launch based on the file type.
This feature has not been tested extensively on other platforms. Certain systems may not
allow Soar to launch an external program.

9.6.4.7 See Also

explain
epmem
smem
chunk

9.6.5 stats

Print information on Soar’s runtime statistics.

Synopsis

stats [options]

9.6.5.1 Options

Option Description

-m, --memory report usage for Soar’s memory pools
-l, --learning report statistics about rules learned via

explanation-based chunking
-r, --rete report statistics about the rete structure
-s, --system report the system (agent) statistics (default)
-M, --max report the per-cycle maximum statistics (decision

cycle time, WM changes, production fires)
-R, --reset zero out the per-cycle maximum statistics

reported by --max command
-t, --track begin tracking the per-cycle maximum statistics

reported by --max for each cycle (instead of only
the max value)

-T, --stop-track stop and clear tracking of the per-cycle maximum
statistics

-c, --cycle print out collected per-cycle maximum statistics
saved by --track in human-readable form

280 CHAPTER 9. THE SOAR USER INTERFACE

Option Description

-C, --cycle-csv print out collected per-cycle maximum statistics
saved by --track in comma-separated form

-S, --sort N sort the tracked cycle stats by column number N,
see table below

–sort parameters :

Option Description

0 Use default sort
1, -1 Sort by decision cycle (use negative for descending)
2, -2 Sort by DC time (use negative for descending)
3, -3 Sort by WM changes (use negative for descending)
4, -4 Sort by production firings (use negative for descending)

9.6.5.2 Description

This command prints Soar internal statistics. The argument indicates the component of
interest, --system is used by default.

With the --system flag, the stats command lists a summary of run statistics, including the
following:

• Version — The Soar version number, hostname, and date of the run.
• Number of productions — The total number of productions loaded in the system,

including all chunks built during problem solving and all default productions.
• Timing Information — Might be quite detailed depending on the flags set at compile

time. See note on timers below.
• Decision Cycles — The total number of decision cycles in the run and the average

time-per-decision-cycle in milliseconds.
• Elaboration cycles — The total number of elaboration cycles that were executed

during the run, the average number of elaboration cycles per decision cycle, and the
average time-per-elaboration-cycle in milliseconds. This is not the total number of
production firings, as productions can fire in parallel.
• Production Firings — The total number of productions that were fired.
• Working Memory Changes — This is the total number of changes to working

memory. This includes all additions and deletions from working memory. Also prints
the average match time.
• Working Memory Size — This gives the current, mean and maximum number of

working memory elements.

The stats argument --memory provides information about memory usage and Soar’s memory
pools, which are used to allocate space for the various data structures used in Soar.

9.6. OTHER DEBUGGING COMMANDS 281

The stats argument --learning provides information about rules learned through Soar’s
explanation-based chunking mechanism. This is the same output that chunk stats provides.
For statistics about a specific rule learned, see the explain command.

The stats argument --rete provides information about node usage in the Rete net, the large
data structure used for efficient matching in Soar.

The --max argument reports per-cycle maximum statistics for decision cycle time, working
memory changes, and production fires. For example, if Soar runs for three cycles and there
were 23 working memory changes in the first cycle, 42 in the second, and 15 in the third, the
--max argument would report the highest of these values (42) and what decision cycle that it
occurred in (2nd). Statistics about the time spent executing the decision cycle and number
of productions fired are also collected and reported by --max in this manner. --reset zeros
out these statistics so that new maximums can be recorded for future runs. The numbers
are also zeroed out with a call to init-soar.

The --track argument starts tracking the same stats as the --max argument but records
all data for each cycle instead of the maximum values. This data can be printed using the
--cycle or --cycle-csv arguments. When printing the data with --cycle, it may be sorted
using the --sort argument and a column integer. Use negative numbers for descending sort.
Issue --stop-track to reset and clear this data.

A Note on Timers The current implementation of Soar uses a number of timers to
provide time-based statistics for use in the stats command calculations. These timers are:

• total CPU time
• total kernel time
• phase kernel time (per phase)
• phase callbacks time (per phase)
• input function time
• output function time

Total CPU time is calculated from the time a decision cycle (or number of decision cycles)
is initiated until stopped. Kernel time is the time spent in core Soar functions. In this case,
kernel time is defined as the all functions other than the execution of callbacks and the input
and output functions. The total kernel timer is only stopped for these functions. The phase
timers (for the kernel and callbacks) track the execution time for individual phases of the
decision cycle (i.e., input phase, preference phase, working memory phase, output phase,
and decision phase). Because there is overhead associated with turning these timers on and
off, the actual kernel time will always be greater than the derived kernel time (i.e., the sum
of all the phase kernel timers). Similarly, the total CPU time will always be greater than
the derived total (the sum of the other timers) because the overhead of turning these timers
on and off is included in the total CPU time. In general, the times reported by the single
timers should always be greater than than the corresponding derived time. Additionally, as
execution time increases, the difference between these two values will also increase. For those
concerned about the performance cost of the timers, all the run time timing calculations can
be compiled out of the code by defining NO TIMING STUFF (in kernel.h) before compilation.

282 CHAPTER 9. THE SOAR USER INTERFACE

9.6.5.3 Examples

Track per-cycle stats then print them out using default sort:

stats --track

run

stop

stats --cycle

Print out per-cycle stats sorting by decision cycle time

stats --cycle --sort 2

Print out per-cycle stats sorting by firing counts, descending

stats --cycle --sort -4

Save per-cycle stats to file stats.csv

ctf stats.csv stats --cycle-csv

Default Aliases

st stats

9.6.5.4 See Also

timers
init-soar
command-to-file

9.6.6 debug

Contains commands that provide access to Soar’s internals. Most users will not need to
access these commands.

Synopsis

==

Debug Commands and Settings

==

allocate [pool blocks] Allocates extra memory to a memory pool

internal-symbols Prints symbol table

port Prints listening port

time <command> [args] Executes command and prints time spent

9.6. OTHER DEBUGGING COMMANDS 283

debug allocate

debug allocate [pool blocks]

This allocate command allocates additional blocks of memory for a specified memory pool.
Each block is 32 kilobyte.

Soar allocates blocks of memory for its memory pools as it is needed during a run (or
during other actions like loading productions). Unfortunately, this behavior translates to an
increased run time for the first run of a memory-intensive agent. To mitigate this, blocks
can be allocated before a run by using this command.

Issuing the command with no parameters lists current pool usage, exactly like stats com-
mand’s memory flag.

Issuing the command with part of a pool’s name and a positive integer will allocate that
many additional blocks for the specified pool. Only the first few letters of the pool’s name
are necessary. If more than one pool starts with the given letters, which pool will be chosen
is unspecified.

Memory pool block size in this context is approximately 32 kilobytes, the exact size deter-
mined during agent initialization.

9.6.6.1 debug internal-symbols

The internal-symbols command prints information about the Soar symbol table. Such
information is typically only useful for users attempting to debug Soar by locating memory
leaks or examining I/O structure.

9.6.6.2 debug port

The port command prints the port the kernel instance is listening on.

9.6.6.3 debug time

debug time command [arguments]

The time command uses a system clock timer to record the time spent while executing a
command. The most common use for this is to time how long an agent takes to run.

9.6.6.4 See Also

stats

284 CHAPTER 9. THE SOAR USER INTERFACE

9.7 File System I/O Commands

This section describes commands which interact in one way or another with operating system
input and output, or file I/O. Users can save/retrieve information to/from files, redirect the
information printed by Soar as it runs, and save and load the binary representation of
productions. The specific commands described in this section are:

cd - Change directory.

dirs - List the directory stack.

load - Loads soar files, rete networks, saved percept streams and external li-
braries.

load file - Sources a file containing soar commands and productions. May
also contain Tcl code if Tcl mode is enabled.

load library - Loads an external library that extends functionality of Soar.

load rete-network - Loads a rete network that represents rules loaded in
production memory.

load library - Loads soar files, rete networks, saved percept streams and
external libraries.

ls - List the contents of the current working directory.

popd - Pop the current working directory off the stack and change to the next
directory on the stack.

pushd - Push a directory onto the directory stack, changing to it.

pwd - Print the current working directory.

save - Saves chunks, rete networks and percept streams.

save agent - Saves the agent’s procedural and semantic memories and set-
tings to a single file.

save chunks - Saves chunks into a file.

save percepts - Saves future input link structures into a file.

save rete-network - Saves the current rete networks that represents rules
loaded in production memory.

echo - Prints a string to the current output device.

(See also the output command in Section 9.6.2 on page 266.)

The load file command, previously known as source, is used for nearly every Soar pro-
gram. The directory functions are important to understand so that users can navigate
directories/folders to load/save the files of interest. Saving and loading percept streams are
used mainly when Soar needs to interact with an external environment. Soar applications
that include a graphical interface or other simulation environment will often require the use
of echo. Users might take advantage of these commands when debugging agents, but care
should be used in adding and removing WMEs this way as they do not fall under Soar’s
truth maintenance system.

9.7. FILE SYSTEM I/O COMMANDS 285

9.7.1 File System

Soar can handle the following Unix-style file system navigation commands

9.7.1.1 pwd

Print the current working directory.

9.7.1.2 ls

List the contents of the current working directory.

9.7.1.3 cd

Change the current working directory. If run with no arguments, returns to the directory
that the command line interface was started in, often referred to as the home directory.

9.7.1.4 dirs

This command lists the directory stack. Agents can move through a directory structure by
pushing and popping directory names. The dirs command returns the stack.

9.7.1.5 pushd

Push the directory on to the stack. Can be relative path name or a fully specified one.

9.7.1.6 popd

Pop the current working directory off the stack and change to the next directory on the
stack. Can be relative pathname or a fully specified path.

Default Aliases

chdir cd

dir ls

topd pwd

286 CHAPTER 9. THE SOAR USER INTERFACE

9.7.2 load

Loads soar files, rete networks, saved percept streams and external libraries.

Synopsis

==

- Load Sub-Commands and Options -

==

load [? | help]

--

load file [--all --disable] <filename>

load file [--verbose]]

--

load library <filename> <args...>

--

load rete-network --load <filename>

--

load percepts --open <filename>

load percepts --close

--

9.7.2.1 load file

Load and evaluate the contents of a file. The filename can be a relative path or a fully
qualified path. The source will generate an implicit push to the new directory, execute the
command, and then pop back to the current working directory from which the command
was issued. This is traditionally known as the source command.

Options :

Option Description

filename The file of Soar productions and commands to load.
-a, --all Enable a summary for each file sourced
-d, --disable Disable all summaries
-v, --verbose Print excised production names

Summaries After the source completes, the number of productions sourced and excised
is summarized:

agent> source demos/mac/mac.soar

Total: 18 productions sourced.

9.7. FILE SYSTEM I/O COMMANDS 287

Source finished.

agent> source demos/mac/mac.soar

#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*

Total: 18 productions sourced. 18 productions excised.

Source finished.

This can be disabled by using the -d flag.

Multiple Summaries A separate summary for each file sourced can be enabled using the
-a flag:

agent> source demos/mac/mac.soar -a

_firstload.soar: 0 productions sourced.

all_source.soar: 0 productions sourced.

**

goal-test.soar: 2 productions sourced.

monitor.soar: 3 productions sourced.

search-control.soar: 4 productions sourced.

top-state.soar: 0 productions sourced.

elaborations_source.soar: 0 productions sourced.

_readme.soar: 0 productions sourced.

**

initialize-mac.soar: 2 productions sourced.

move-boat.soar: 7 productions sourced.

mac_source.soar: 0 productions sourced.

mac.soar: 0 productions sourced.

Total: 18 productions sourced.

Source finished.

Listing Excised Productions

agent> source demos/mac/mac.soar -d

Source finished.

agent> source demos/mac/mac.soar -d

#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*

Source finished.

A list of excised productions is available using the -v flag:

agent> source demos/mac/mac.soar -v

#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*

Total: 18 productions sourced. 18 productions excised.

288 CHAPTER 9. THE SOAR USER INTERFACE

Excised productions:

mac*detect*state*success

mac*evaluate*state*failure*more*cannibals

monitor*move-boat

monitor*state*left

...

Combining the -a and -v flags add excised production names to the output
for each file.

9.7.2.2 load rete-network

The load rete-network command loads a Rete net previously saved. The Rete net is Soar’s
internal representation of production memory; the conditions of productions are reordered
and common substructures are shared across different productions. This command provides
a fast method of saving and loading productions since a special format is used and no parsing
is necessary. Rete-net files are portable across platforms that support Soar.

If the filename contains a suffix of .Z, then the file is compressed automatically when it is
saved and uncompressed when it is loaded. Compressed files may not be portable to another
platform if that platform does not support the same uncompress utility.

Usage :

load rete-network -l <filename>

9.7.2.3 load percepts

Replays input stored using the capture-input command. The replay file also includes a
random number generator seed and seeds the generator with that.

Synopsis

load percepts --open filename

load percepts --close

Option Description

filename Open filename and load input and random seed.
-o, --open Reads captured input from file in to memory and

seeds the random number generator.
-c, --close Stop replaying input.

9.7. FILE SYSTEM I/O COMMANDS 289

Options

9.7.2.4 load library

Load a shared library into the local client (for the purpose of, e.g., providing custom event
handling).

Options :

Option Description

library name The root name of the library (without the .dll or
.so extension; this is added for you depending on
your platform).

arguments Whatever arguments the library’s initialization
function is expecting, if any.

Technical Details Sometimes, a user will want to extend an existing environment. For
example, the person may want to provide custom RHS functions, or register for print events
for the purpose of logging trace information. If modifying the existing environment is cum-
bersome or impossible, then the user has two options: create a remote client that provides
the functionality, or use load library. load library creates extensions in the local client,
making it orders of magnitude faster than a remote client.

To create a loadable library, the library must contain the following function:

#ifdef __cplusplus

extern "C" {

#endif

EXPORT char* sml_InitLibrary(Kernel* pKernel, int argc, char** argv) {

// Your code here

}

#ifdef __cplusplus

} // extern "C"

#endif

This function is called when load library loads your library. It is responsible for any
initialization that you want to take place (e.g. registering custom RHS functions, registering
for events, etc).

The argc and argv arguments are intended to mirror the arguments that a standard SML
client would get. Thus, the first argument is the name of the library, and the rest are
whatever other arguments are provided. This is to make it easy to use the same codebase

290 CHAPTER 9. THE SOAR USER INTERFACE

to create a loadable library or a standard remote SML client (e.g. when run as a standard
client, just pass the arguments main gets into sml InitLibrary).

The return value of sml InitLibrary is for any error messages you want to return to the
load-library call. If no error occurs, return a zero-length string.

An example library is provided in the Tools/TestExternalLibraryLib project. This ex-
ample can also be compiled as a standard remote SML client. The
Tools/TestExternalLibraryExe project tests loading the TestExternalLibraryLib li-
brary.

Load Library Examples To load TestExternalLibraryLib:

load library TestExternalLibraryLib

To load a library that takes arguments (say, a logger):

load library my-logger -filename mylog.log

9.7.2.5 Default aliases

source load file

rete-net, rn load rete-network

replay-input load input

load-libarary load library

9.7.2.6 See Also

file system
decide
production
save

9.7.3 save

Saves chunks, rete networks and percept streams.

Synopsis

==

- Save Sub-Commands and Options -

==

save [? | help]

9.7. FILE SYSTEM I/O COMMANDS 291

--

save agent <filename>

save chunks <filename>

--

save percepts --open <filename>

save percepts [--close --flush]

--

save rete-network --save <filename>

--

For a detailed explanation of sub-commands: help save

9.7.3.1 save agent

The save agent command will write all procedural and semantic memory to disk, as well
as many commonly used settings. This command creates a standard .soar text file, with
semantic memory stored as a series of smem --add commands.

9.7.3.2 save chunks

The save chunks command will write all chunks in memory to disk. This command creates
a standard .soar text file.

9.7.3.3 save rete-network

The save rete-network command saves the current Rete net to a file. The Rete net is Soar’s
internal representation of production memory; the conditions of productions are reordered
and common substructures are shared across different productions. This command provides
a fast method of saving and loading productions since a special format is used and no parsing
is necessary. Rete-net files are portable across platforms that support Soar.

Note that justifications cannot be present when saving the Rete net. Issuing a production
excise -j before saving a Rete net will remove all justifications.

If the filename contains a suffix of .Z, then the file is compressed automatically when it is
saved and uncompressed when it is loaded. Compressed files may not be portable to another
platform if that platform does not support the same uncompress utility.

Usage :

save rete-network -s <filename>

292 CHAPTER 9. THE SOAR USER INTERFACE

9.7.3.4 save percepts

Store all incoming input wmes in a file for reloading later. Commands are recorded decision
cycle by decision cycle. Use the command load percepts to replay the sequence.

Note that this command seeds the random number generator and writes the seed to the
capture file.

Options :

Option Description

filename Open filename and begin recording input.
-o, --open Writes captured input to file overwriting any

existing data.
-f, --flush Writes input to file as soon as it is encountered

instead of storing it in RAM and writing when
capturing is turned off.

-c, --close Stop capturing input and close the file, writing
captured input unless the flush option is given.

Usage

save percepts -o <filename>

...

save percepts -c

9.7.3.5 Default Aliases

capture-input save percepts

9.7.3.6 See Also

production
soar
load

9.7.4 echo

Print a string to the current output device.

9.7. FILE SYSTEM I/O COMMANDS 293

9.7.4.1 Synopsis

echo [--nonewline] [string]

9.7.4.2 Options

Option Description

string The string to print.
-n, --nonewline Supress printing of the newline character

9.7.4.3 Description

This command echos the args to the current output stream. This is normally stdout but can
be set to a variety of channels. If an arg is --nonewline then no newline is printed at the
end of the printed strings. Otherwise a newline is printed after printing all the given args.
Echo is the easiest way to add user comments or identification strings in a log file.

9.7.4.4 Example

This example will add these comments to the screen and any open log file.

echo This is the first run with disks = 12

9.7.4.5 See Also

clog

294 CHAPTER 9. THE SOAR USER INTERFACE

Index

!, see preference, 22, 69
!@, 53
+, see preference, 23, 59, 69
, (comma), 70
-, see preference, 23, 56, 69
<, see preference, 53, 69
<<, >>, 55, 61
<=, 53
<=>, 53
<>, 53
=, see preference, 69
>, see preference, 53, 69
>=, 53
@, 53
@+, 53
@-, 53
ˆ, (carat symbol), 43
~, see preference, 69

acceptable preference, see preference
actions, see production
alias (command), 198
arithmetic operations, 73
attribute, 6, 8, 14, 43, 44

multi-valued, see multi-valued attribute
tests, 60

attribute (attribute), 85
augmentation, see working memory element

best preference, see preference
better preference, see preference

choices (attribute), 85
chunk, 32, 91, 108

overgeneral, 32
chunk (command), 118, 232

add-osk, 235
allow-local-negations, 234
max-chunks, 234
max-dupes, 235
naming-style, 235

chunking, 32, 91

backtracing, 94, 101, 103, 115, 120
correctness, 101, 105, 109, 110, 117, 119
disjunctive context conflation, 113
ebc-components, 98
explanation-based chunking, 94, 110
identity, 95, 99, 104
inhibition, 108
learning from instruction, 114
literalization, 95, 96, 106, 116
negated conditions, 104, 112
NULL identity, 105
over-general, 105, 109, 110, 112, 114, 117
over-specialization, 110, 111
relevant operator selection knowledge, 101
repair, 107
RHS functions, 81, 117
singleton, 120
usage, 118

comments, 51
conditions, see production
conflict impasse, see impasse
conjunctive

conditions, 55
negation, 58

constant, 44, 83
constraint-failure impasse, see impasse

debug (command), 281
allocate, 281
internal-symbols, 282
port, 282
time, 282

decide (command), 194
indifferent-selection, 138, 195
numeric-indifferent-mode, 195
predict, 197
select, 197
set-random-seed, 197

decision cycle, 7, 24, 25
decision procedure, 7, 11, 15, 19, 22, 27, 84
disjunction

295

296 INDEX

of attributes, 61
of constants, 55

dot notation, 62, 65

echo (command), 291
elaboration, 7, 12
elaboration cycle, 24, 85
episodic memory, 155
epmem, 155

performance, 161
retrieve, 157
storage, 156
structures, 160

epmem (command), 251
exhaustion, 85
explain (command), 269

chunk, 270
constraints, 272
explanation-trace-and-wm-trace, 272
formation, 271
identity, 272
instantiation, 271
stats, 274

floating-point constants, 44
forgetting, 48

goal, 5
examples, 85
representation, 8, 16
result, see result
stack, 29
subgoal, see subgoal
termination, 34, 84

Goal Dependency Set, 35, 37
gp (command), 139, 202
grammar, 82, 83

help (command), 193

i-support, 15, 18, 31, 32, 38
I/O, 11, 15, 25, 86

input functions, 25, 87
input links, 87
io attribute, 87
output functions, 25, 87
output links, 87

identifier, 14, 43, 44, 46
impasse, 7, 27, 28, 84

conflict, 28, 34, 84

constraint-failure, 22, 28, 34, 84
elimination, 35
examples, 85
no-change, 22, 28, 84
operator no-change, 28, 35
resolution, 34, 84
state no-change, 28, 34
tie, 28, 34, 84
types, 84

impasse (attribute), 84
indifferent preference, see preference
indifferent-selection, 20
input functions, see I/O
input links, see I/O
instantiation, see production, 93, 99
integer, 44
interface, 183
io attribute, see I/O
item (attribute), 85
item-count (attribute), 85

justification, 31, 32, 108

link, 14, 46, 52
Linux, 4
load (command), 285

file, 285
library, 288
library-examples, 289
percepts, 287
rete-network, 287

LTI
comparisons, 53
definition, 144

Macintosh, 4
math-query, 150
motor commands, see I/O
multi-valued attribute, 14, 45, 58, 63

negated conditions, 56
negated conjunctions, 58
no-change impasse, see impasse
non-numeric (attribute), 85
non-numeric-count (attribute), 85
not equal test, 53
numeric comparisons, 53
numeric-indifferent preference, see preference

o-support, 18, 31, 32

INDEX 297

object, 6, 14, 44, 46
operator, 5

application, 11
comparison, see preferences
proposal, 9
representation, 8
selection, 11
support, 18

operator no-change impasse, see impasse
Operator Selection Knowledge (OSK), see Context-

Dependent Preference Set
output (command), 265

command-to-file, 266
echo-commands, 267
log, 266
print-depth, 268
verbose, 268
warnings, 268

output functions, see I/O
output links, see I/O

path notation, 62
persistence, 18, 32
predicates, 53
preference, 9, 19, 21, 46, 69

acceptable as condition, 59
acceptable(+), 20, 21, 23, 46
best(>), 20, 23
better(>val), 20, 23
binary indifferent(=val), 20
numeric-indifferent, 131
numeric-indifferent(=num), 20
prohibit, 21, 23
reject(-), 15, 20, 23
require(!), 21, 22
syntax, 48
unary indifferent(=), 20, 24
worse(<val), 20, 23
worst(<), 20, 24

preference memory, 9, 19
syntax, 48

preferences (command), 226
print (command), 48, 215
problem solving, 7, 11
problem space, 8, 12
production, 7, 16, 18

action side (RHS), 17, 18, 67, 83
coding conventions, 49, 50
comments, see comments

condition side (LHS), 17, 52, 83
conjunctions, see conjunctive
disjunction, see disjunction
firing, 16
flags, 50, 71, 140
grammar, 83
instantiation, 17, 32, 38, 45, 52
match, 7
structured value notation, 65
syntax, 48
templates, 140

production (command), 204
break, 205
excise, 206
find, 207
find-examples, 208
firing-counts, 208
matches, 209
memory-usage, 211
optimize-attribute, 212
print-formatting, 216
printing-options, 215
watch, 213

production memory, 6, 16, 48
prohibit preference, see preference

quiescence, 24, 112, 117
quiescence t (augmentation), 85

reinforcement learning, 131
reject preference, see preference
require preference, see preference
result, 27, 29, 91, 99, 102

support, 31
reward-link, 133
RHS Function, 71, 132

@, 77
abs, 73
atan2, 73
capitalize-symbol, 75
carriage return, line feed (crlf), 72
cmd, 81
compute-heading, 75
compute-range, 75
concat, 76
cos, 73
dc, 76
deep-copy, 76
div, 73

298 INDEX

dont-learn, 82, 117
exec, 81
float, 74
floating-point calculations, 73
force-learn, 82, 117
halt, 71
ifeq, 75
int, 74
interrupt, 71
link-stm-to-ltm, 77
log, 72
make-constant-symbol, 77
max, 74
min, 74
mod, 73
rand-float, 78
rand-int, 78
round-off, 79
round-off-heading, 79
sin, 73
size, 79
sqrt, 73
strlen, 79
timestamp, 80
trim, 80
wait, 71
write, 72

RHS of production, see production
RL, 131

chunking, 141
eligibility trace settings, 138
learning-policy, 134
operator, 131
reward-link, 133
rule, 131
rule generation, 139
substates, 137
temporal gaps, 136

rl (command), 236
discount-rate, 135
eligibility-trace-decay-rate, 138
eligibility-trace-tolerance, 138
hrl-discount, 137
learning-policy, 134, 139
learning-rate, 135
statistics, 239
temporal-extension, 136
trace, 240
update-logging, 240

run (command), 191

save (command), 289
agent, 290
chunks, 290
percepts, 291
rete-network, 290

scene graph, 165, 166
Scene Graph Edit Language, 168

semantic memory, 143
singleton, 100, 120
smem, 143

activation, 150
neg-query, 150
performance, 153
prohibit, 149
query, 148
retrieve, 147
storage, 147
store, 145
store-new, 146

smem (command), 241
add, 146, 248
history, 249
query, 249
remove, 248

SML, 72, 80, 86, 168
soar (command), 185

init, 147, 186
keep-all-top-oprefs, 187
max-dc-time, 188
max-elaborations, 188
max-goal-depth, 188
max-gp, 188
max-memory-usage, 189
max-nil-output-cycles, 189
stop, 187
stop-phase, 189
tcl, 189
timers, 189
version, 187
wait-snc, 190

sp (command), 49, 200
Spatial Visual System, 15, 165

filters, 173
stack, see goal
state, see goal
state no-change impasse, see impasse
state representation, 8, 16, 84

INDEX 299

stats (command), 278
structured value notation, 65
subgoal, see goal, 28, 29, 32, 84, 91, 99

augmentations, 84
termination, 84

substate, see subgoal
superstate, see goal, 29
superstate (attribute), 85
support, 32
SVS, see Spatial Visual System
svs (command), 229
symbol, 44
symbolic constant, 44
syntax

preferences, see preference
productions, see production
WMEs, see working memory element

templates, 140
tie impasse, see impasse
timetag, 45
top-state

for I/O, 89
trace (command), 258

levels, 259
type (attribute), 84
type comparisons, 53

Unix, 4

value, 14, 43, 44
variable, 83
variables, 17, 53, 67, 83
visualize (command), 275

Windows, 4
wm (command), 219

activation, 220
add, 223
remove, 224
watch, 225

WME, see working memory element
working memory, 6, 14

acceptable preference, 46
object, see object
syntax, 43

working memory activation, 48, 152, 158
working memory element, 14

syntax, 43
timetag, see timetag

worse preference, see preference
worst preference, see preference

300 INDEX

301

Summary of Soar Aliases and Functions

Predefined Aliases

There are a number of Soar “commands” that are shorthand for other Soar commands:

Alias Command Page

? help 194
a alias 198
add-wme wm add 223
allocate debug allocate 283
aw wm add 223
c explain chunk 271
capture-input save percepts 292
chdir cd 285
chunk-name-format chunk naming-style 232
cli soar tcl 189
clog output log 267
command-to-file output command-to-file 267
cs chunk stats 234
cts output command-to-file 267
d run -d 1 191
dir ls 285
e run -e 1 191
echo-commands output echo-commands 268
ef explain formation 272
ei explain identities 274
es explain stats 275
et explain explanation-trace 273
excise production excise 207
fc production firing-counts 209
firing-counts production firing-counts 209
gds print print --gds 216
gp-max soar max-gp 188
h help 194
i explain instantiation 272
indifferent-selection decide indifferent-selection 196
inds decide indifferent selection 196
init soar init 186
internal-symbols debug internal-symbols 283
interrupt soar stop 186
is soar init 186
learn chunk 232
load-library load library 289
man help 194
matches production matches 210
max-chunks chunk max-chunks 235
max-dc-time soar max-dc-time 187
max-elaborations soar max-elaborations 188
max-goal-depth soar max-goal-depth 188
max-memory-usage soar max-memory-usage 188
max-nil-output-cycles soar max-nil-output-cycles 189
memories production memory-usage 212
multi-attributes production optimize-attribute 213

302

numeric-indifferent-mode decide numeric-indifferent-mode 196
p print 216
pbreak production break 206
pc print --chunks 216
port debug port 283
predict decide predict 197
production-find production find 207
ps print --stack 216
pw production watch 214
pwatch production watch 214
quit exit 194
r run 191
remove-wme wm remove 224
replay-input load percepts 288
rete-net load rete-network 288
rn load rete-network 288
rw wm remove 224
s run 1 191
select decide select 197
set-default-depth output print-depth 269
set-stop-phase soar stop-phase 189
soarnews soar 185
source load file 286
srand decide srand 198
ss soar stop 186
st stats 279
step run -d 1 191
stop soar stop 186
stop-soar soar-stop 186
tcl soar tcl 189
time debug time 283
timers soar timers 190
topd pwd 285
un alias -r 198
unalias alias -r 198
varprint print -v -d 100 216
verbose trace -A 259
version soar version 187
w trace 259
waitsnc soar wait-snc 190
warnings output warnings 269
watch trace 259
watch-wmes wm watch 225
wma wm activation 220
wmes print -depth 0 -internal 216
wt explain wm-trace 273

303

Summary of Soar Functions

The following table lists the commands in Soar. See the referenced page number for a complete
description of each command.

Command Summary Page

alias Controls aliases for Soar procedures. 198
chunk Controls parameters for chunking. 232
debug Accesses Soars internals. 282
decide Controls operator-selection settings. 194
echo Echoes arguments to the output stream. 292
epmem Controls behavior of episodic memory. 252
explain Explores how rules were learned. 270
gp Defines a production template. 203
help Gets information about Soar commands. 194
load Loads files and libraries. 286
output Controls Soar output settings. 266
preferences Examines WME support. 227
print Prints items in working or production memory. 216
production Manipulates or analyzes Soar rules. 204
rl Controls RL preference update settings. 237
run Begins Soars execution cycle. 191
save Saves various aspects of Soar memory. 290
smem Controls behavior of semantic memory. 242
soar Controls settings for running Soar. 185
sp Defines a Soar production. 200
stats Prints information on Soar agent statistics. 279
svs Controls behavior of the Spatial Visual System. 230
trace Controls the run-time tracing of Soar. 259
visualize Creates visualizations of memory or processing. 276
wm Controls settings related to working memory. 219

	Contents
	Introduction
	Using this Manual
	Contacting the Soar Group
	Different Platforms and Operating Systems

	The Soar Architecture
	An Overview of Soar
	Types of Procedural Knowledge in Soar
	Problem-Solving Functions in Soar
	An Example Task: The Blocks-World
	Representation of States, Operators, and Goals
	Proposing candidate operators
	Comparing candidate operators: Preferences
	Selecting a single operator: Decision
	Applying the operator
	Making inferences about the state
	Problem Spaces

	Working memory: The Current Situation
	Production Memory: Long-term Procedural Knowledge
	The structure of a production
	Architectural roles of productions
	Production Actions and Persistence

	Preference Memory: Selection Knowledge
	Preference Semantics
	How preferences are evaluated to decide an operator

	Soar's Execution Cycle: Without Substates
	Input and Output
	Impasses and Substates
	Impasse Types
	Creating New States
	Results
	Justifications: Support for results
	Chunking: Learning Procedural Knowledge
	The calculation of o-support
	Removal of Substates: Impasse Resolution
	Soar's Cycle: With Substates
	Removal of Substates: The Goal Dependency Set

	The Syntax of Soar Programs
	Working Memory
	Symbols
	Objects
	Timetags
	Acceptable preferences in working memory
	Working Memory as a Graph
	Working Memory Activation

	Preference Memory
	Production Memory
	Production Names
	Documentation string (optional)
	Production type (optional)
	Comments (optional)
	The condition side of productions (or LHS)
	The action side of productions (or RHS)
	Grammars for production syntax

	Impasses in Working Memory and in Productions
	Impasses in working memory
	Testing for impasses in productions

	Soar I/O: Input and Output in Soar
	Overview of Soar I/O
	Input and output in working memory
	Input and output in production memory

	Procedural Knowledge Learning
	Chunking
	Explanation-based Chunking
	Overview of the EBC Algorithm
	Identity
	The Five Main Components of Explanation-Based Chunking

	What EBC Does Prior to the Learning Episode
	Identity Assignment and Propagation
	Relevant Operator Selection Knowledge Tracking

	What EBC Does During the Learning Episode
	Calculating the Complete Set of Results
	Backtracing and the Three Types of Analysis Performed
	Rule Formation

	Subtleties of EBC
	Relationship Between Chunks and Justifications
	Chunk Inhibition
	Chunks Based on Chunks
	Mixing Chunks and Justifications
	Generality and Correctness of Learned Rules
	Over-specialization and Over-generalization
	Previous Results and Rule Repair
	Missing Operator Selection Knowledge
	Generalizing Over Operators Selected Probabilistically
	Collapsed Negative Reasoning
	Problem-Solving That Doesn't Test The Superstate
	Disjunctive Context Conflation
	Generalizing retrieved knowledge
	Learning from Instruction
	Determining Which OSK Preferences are Relevant
	Generalizing From RHS Functions
	Situations in which a Chunk is Not Learned

	Usage
	Overview of the chunk command
	Enabling Procedural Learning
	Fine-tuning What Your Agent Learns
	Examining What Was Learned

	Explaining Learned Procedural Knowledge
	Visualizing the Explanation

	Reinforcement Learning
	RL Rules
	Reward Representation
	Updating RL Rule Values
	Gaps in Rule Coverage
	RL and Substates
	Eligibility Traces
	GQ(lambda)

	Automatic Generation of RL Rules
	The gp Command
	Rule Templates
	Chunking

	Semantic Memory
	Working Memory Structure
	Knowledge Representation
	Integrating Long-Term Identifiers with Soar

	Storing Semantic Knowledge
	Store command
	Store-new command
	User-Initiated Storage
	Storage Location

	Retrieving Semantic Knowledge
	Non-Cue-Based Retrievals
	Cue-Based Retrievals
	Retrieval with Depth

	Performance
	Math queries
	Performance Tweaking

	Episodic Memory
	Working Memory Structure
	Episodic Storage
	Episode Contents
	Storage Location

	Retrieving Episodes
	Cue-Based Retrievals
	Absolute Non-Cue-Based Retrieval
	Relative Non-Cue-Based Retrieval
	Retrieval Meta-Data

	Performance
	Performance Tweaking

	Spatial Visual System
	The scene graph
	svs_viewer

	Scene Graph Edit Language
	Examples

	Commands
	add_node
	copy_node
	delete_node
	set_transform
	set_tag
	delete_tag
	extract and extract_once

	Filters
	Result lists
	Filter List
	Examples

	Writing new filters
	Filter subclasses
	Generic Node Filters

	Command line interface

	The Soar User Interface
	Basic Commands for Running Soar
	soar
	run
	exit
	help
	decide
	alias

	Procedural Memory Commands
	sp
	gp
	production

	Short-term Memory Commands
	print
	wm
	preferences
	svs

	Learning
	chunk
	rl

	Long-term Declarative Memory
	smem
	epmem

	Other Debugging Commands
	trace
	output
	explain
	visualize
	stats
	debug

	File System I/O Commands
	File System
	load
	save
	echo

	Index
	Summary of Soar Aliases, Variables, and Functions

