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Semantic Memory

• Exploratory Research

• General characteristics of semantic memory

– General facts

– Abstract concepts– Abstract concepts

• Cognitive capabilities

– Remembering and retrieving general facts

– Representing and learning abstract concepts

– Representing and learning world model
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Motivation

• Previous instance based approach

– Sufficient for encoding and retrieving general facts 

interfaced with working memory

– Cannot learning from sub-symbolic input– Cannot learning from sub-symbolic input

• Prototype based approach

– Generate symbols from sub-symbolic input
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Learning Paradigms

• Reinforcement learning

• Unsupervised learning

• Supervised learning

• Natural concept learning (Semi-supervised learning)• Natural concept learning (Semi-supervised learning)

– Unsupervised learning

• Learn from input without class label 

– Supervised learning

• Learn with class label

• Externally supervised

• Self supervised
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Desired Algorithm Properties

• Semantic memory is the long term concept 
memory for a continuously learning agent

• Statistical learning
– Robust against noisy environment

• Incremental• Incremental
– Continuously learning

• Scalable
– Large amount of information

• Semi-supervised learning
– Learn from both labeled and unlabeled input
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Hierarchical Clustering Algorithm

• Adapted from COBWEB (D. Fisher)

• Major components

– Clustering utility function

– Local restructuring operators– Local restructuring operators

– Clustering space search

• Modification

– Numeric attribute utility function

– Local restructuring operators

– Hash index based access (not evaluated)
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Algorithm Properties Revisited

• Statistical learning

• Incremental

• Scalable

– Hierarchy (log n)– Hierarchy (log n)

• Semi-supervised learning

– Unsupervised learning: incremental clustering

– Weak supervised learning: assign class label

– Stronger supervised learning: class label can 
participate in clustering utility evaluation

11



Preliminary Evaluations
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• Instance (exemplar) based learning
– Naïve implementation 

– Linear complexity to find nearest neighbor (best partial match)

• Types of data
– Symbolic to numeric features

– Low dimension to high dimension vector input
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Training and Testing

0 0 0 1 1 1 …Unsupervised

Learning structure of input without label
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0 0 0 1 1 1 … +   class bSupervised

0 0 0 1 1 1 … ->   class ?Prediction

Learn the ‘meaning’ of the concepts



Supervised learning after 20 instances
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Unsupervised learning of 30 and then 

supervised learning of 20
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Result

0.
6

0.
8

1.
0

Prediction Accuracy Artificial Data

nearest neighbor

5 10 15 20

0.
0

0.
2

0.
4

0.
6

Supervised Training

A
cc

u
ra

cy

nearest neighbor
unsupervised 0
unsupervised 20
unsupervised 40
unsupervised 50

17



Artificial Data Evaluations
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• High dimension symbolic vector
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Iris Data Set

Fisher, R.A. (1936)
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Supervised learning after 20 instances
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Unsupervised learning of 50 and then 

supervised learning of 20
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Result
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Iris Data Evaluations
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• Low dimension numeric vector
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Letter Recognition Data

David J. Slate (1991)
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Letter Recognition Data

David J. Slate (1991)

25



Easy Set and Difficult Set

• Difficult to test on entire data set

– 26 classes

– Diverse situations

– Current implementation is not fast enough– Current implementation is not fast enough

• Tested on subpart of the data

– Easy Set

• A K O

– Difficult Set

• K R X
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Supervised learning after 20 instances

Easy Set – A K O
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Unsupervised learning of 50 and then 

supervised learning of 20

Easy Set – A K O
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Result for easy set – A K O
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Supervised learning after 20 instances

Difficult Set – K R X
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Unsupervised learning of 50 and then 

supervised learning of 20

Difficult Set – K R X
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Result for difficult set – K R X
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Letter Recognition Data Evaluations
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• High dimension numeric vector
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Conclusions

• Clustering is useful for filtering out ‘noisy’ 

features

– Positive: Artificial data set

– Negative: Iris data set.– Negative: Iris data set.

• Quality of passive clustering directly depends 

on input features (slave of features)

– Positive: All except K R X

– Negative: K R X
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Future Directions

• Adaptive feature selection

– Generate and selection features

– Clustering as guidance of feature selection

• Richer representation

– Vector

– Relational graph

– Image

• Integration with Soar-RL

– Provide abstract representation for symbolic TD 
learning
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Nuggets and Coal

• Nuggets

– Concept learning from subsymbolic input

– Combine unsupervised and supervised learning

• Coal• Coal

– Need feature selection

– Need more realistic evaluation domain
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