Concept Learning for Semantic Memory

Yongjia Wang University of Michigan

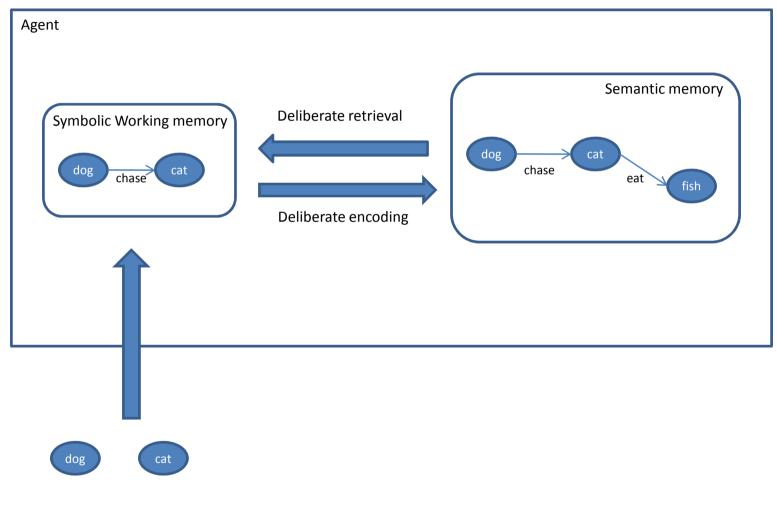
Outline

- Background & Motivation
- Algorithm
- Preliminary Evaluation
- Conclusion
- Nuggets and Coal

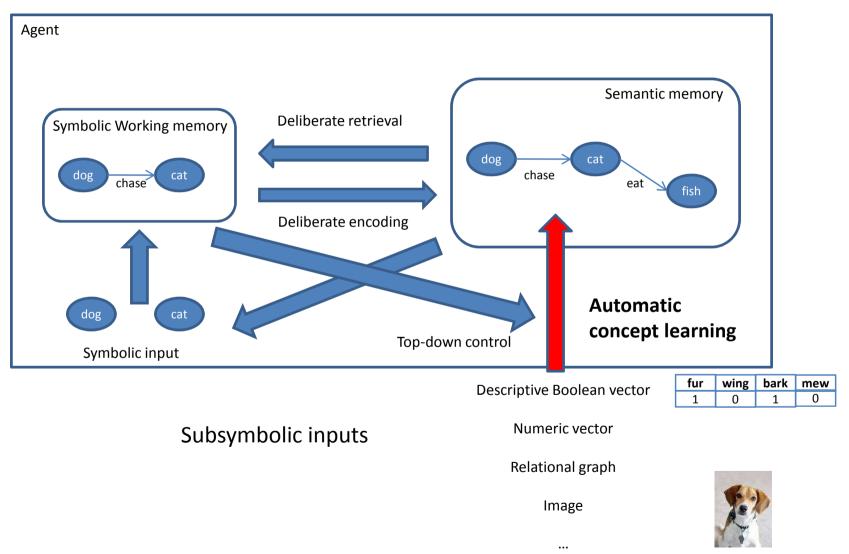
Semantic Memory

- Exploratory Research
- General characteristics of semantic memory
 - General facts
 - Abstract concepts
- Cognitive capabilities
 - Remembering and retrieving general facts
 - <u>Representing and learning abstract concepts</u>
 - Representing and learning world model

Semantic Learning



Semantic Learning



Motivation

- Previous instance based approach
 - Sufficient for encoding and retrieving general facts interfaced with working memory
 - Cannot learning from sub-symbolic input
- Prototype based approach
 - Generate symbols from sub-symbolic input

Learning Paradigms

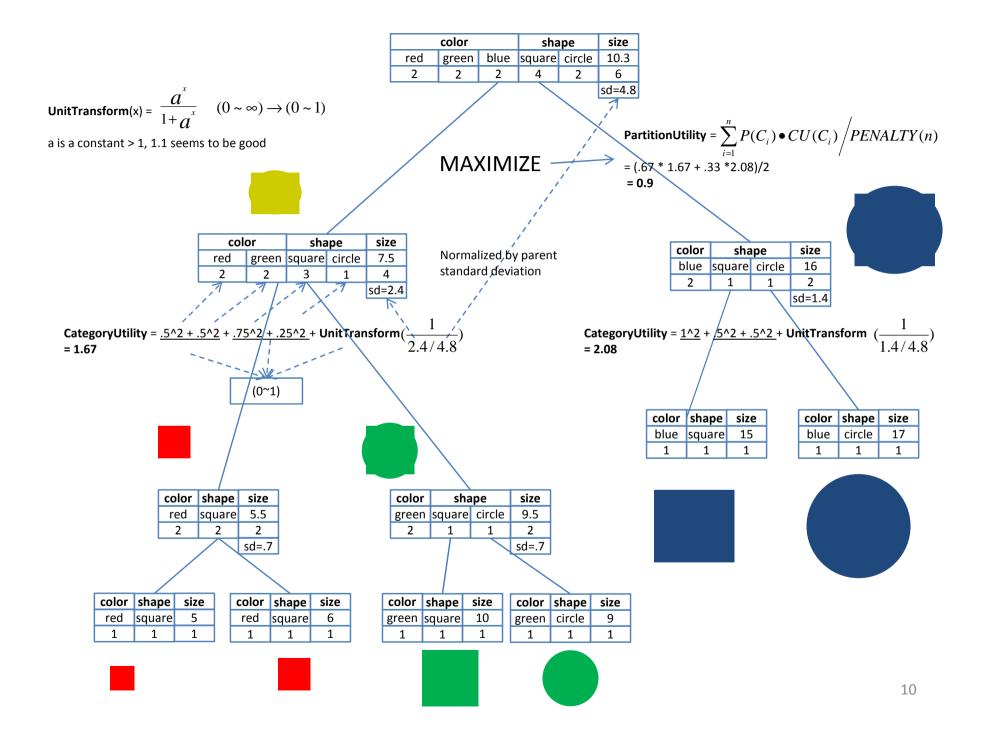
- Reinforcement learning
- Unsupervised learning
- Supervised learning
- Natural concept learning (Semi-supervised learning)
 - Unsupervised learning
 - Learn from input without class label
 - Supervised learning
 - Learn with class label
 - Externally supervised
 - Self supervised

Desired Algorithm Properties

- Semantic memory is the long term concept memory for a continuously learning agent
- Statistical learning
 - Robust against noisy environment
- Incremental
 - Continuously learning
- Scalable
 - Large amount of information
- Semi-supervised learning
 - Learn from both labeled and unlabeled input

Hierarchical Clustering Algorithm

- Adapted from COBWEB (D. Fisher)
- Major components
 - Clustering utility function
 - Local restructuring operators
 - Clustering space search
- Modification
 - Numeric attribute utility function
 - Local restructuring operators
 - Hash index based access (not evaluated)



Algorithm Properties Revisited

- Statistical learning
- Incremental
- Scalable
 - Hierarchy (log n)
- Semi-supervised learning
 - Unsupervised learning: incremental clustering
 - Weak supervised learning: assign class label
 - Stronger supervised learning: class label can participate in clustering utility evaluation

Preliminary Evaluations

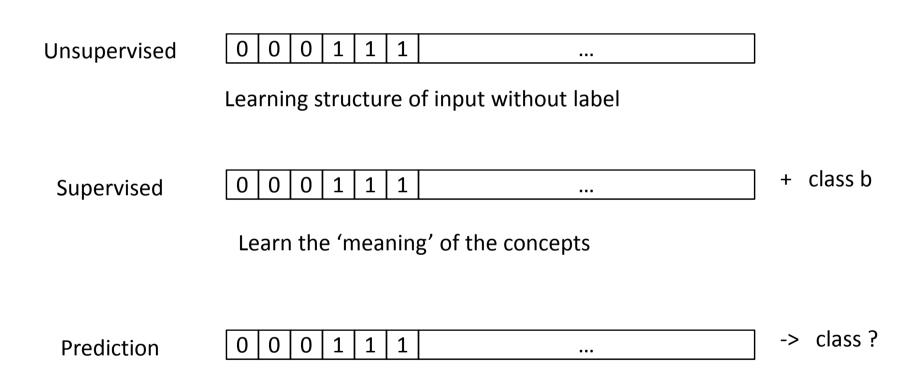
Purpose	Evaluation	Result
Unsupervised Clustering	Qualitative	?
Compare clustering with instance based learning	Prediction Accuracy	?
Compare different degrees of prior unsupervised learning	Prediction Accuracy	?

- Instance (exemplar) based learning
 - Naïve implementation
 - Linear complexity to find nearest neighbor (best partial match)
- Types of data
 - Symbolic to numeric features
 - Low dimension to high dimension vector input

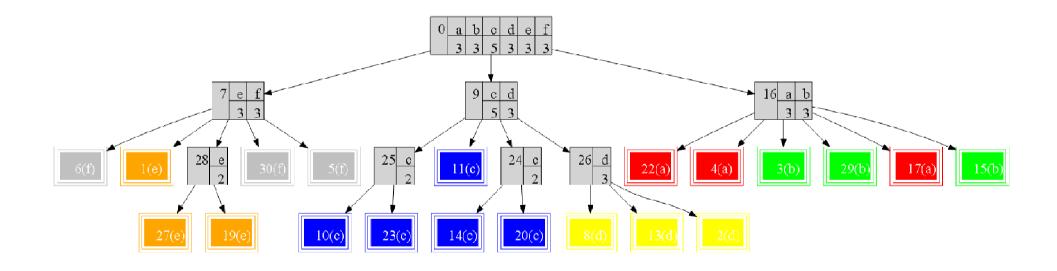
Evaluation on Artificial data set

Symbolic values	2			
values	Component1	Compo	nent2	20 Random features with values (1~3)
class a	0 0 0	0 0	0	
class b	0 0 0	1 1	1	
class c	1 1 1	1 1	1	
class d		2 2	2	
class e		2 2		
	2 2 2 2			
class f	2 2 2	0 0	0	
	Sig	nal		Noise

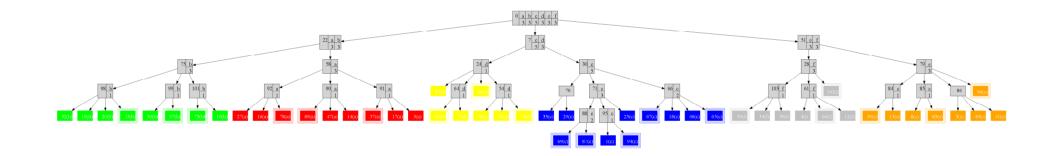
Training and Testing



Supervised learning after 20 instances

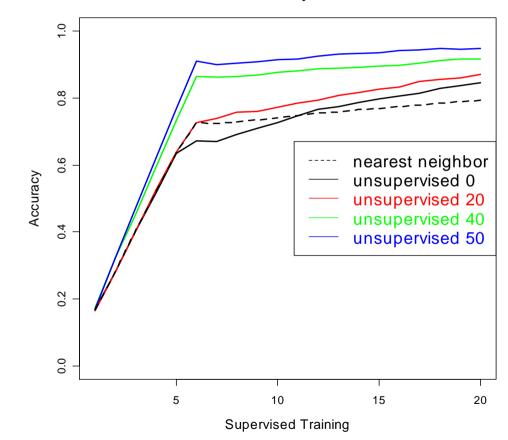


Unsupervised learning of 30 and then supervised learning of 20



Result

Prediction Accuracy Artificial Data



Artificial Data Evaluations

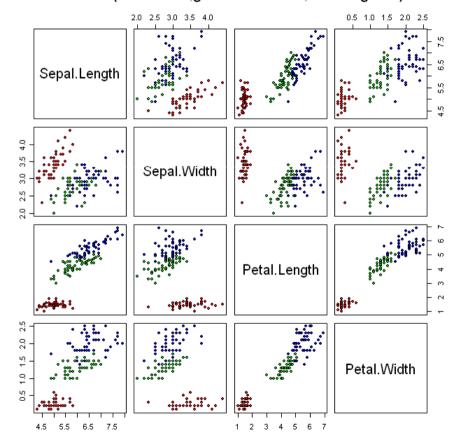
Purpose	Evaluation	Result
Unsupervised Clustering	Qualitative	+
Compare clustering with instance based learning	Prediction Accuracy	+
Compare different degrees of prior unsupervised learning	Prediction Accuracy	+

• High dimension symbolic vector

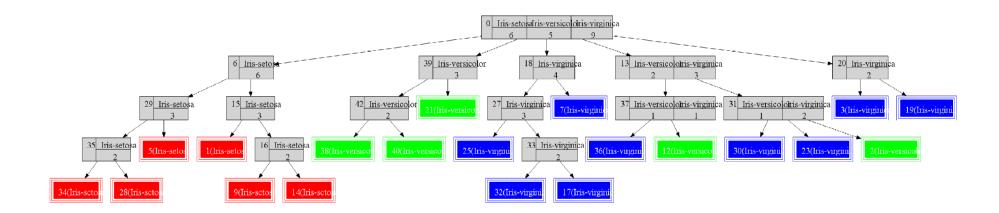
Iris Data Set

Fisher, R.A. (1936)

Iris Data (red=setosa,green=versicolor,blue=virginica)



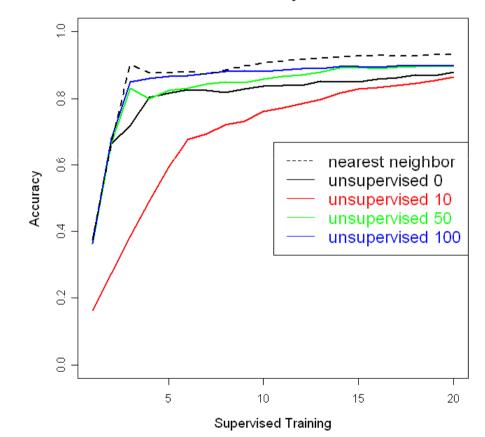
Supervised learning after 20 instances



Unsupervised learning of 50 and then supervised learning of 20

Result

Prediction Accuracy for Iris Data



Iris Data Evaluations

Purpose	Evaluation	Result
Unsupervised Clustering	Qualitative	+
Compare clustering with instance based learning	Prediction Accuracy	-
Compare different degrees of prior unsupervised learning	Prediction Accuracy	+

• Low dimension numeric vector

Letter Recognition Data

David J. Slate (1991)

Letter Recognition Data

David J. Slate (1991)

Number of Instances: 20000

Number of Attributes: 17 (Letter category and 16 numeric features)

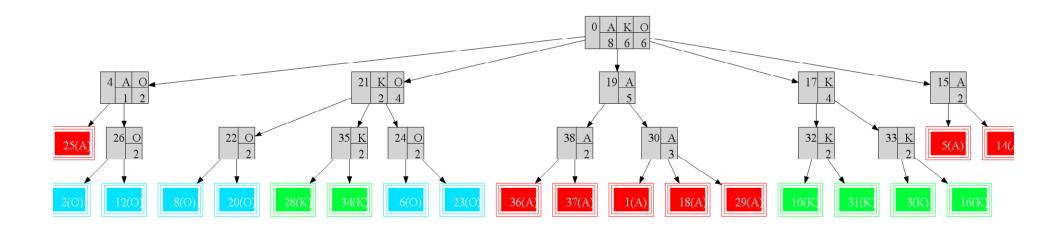
Attribute Information:

1.	lettr	capital letter (26 values from	n A to Z)
2.	x-box	horizontal position of box	(integer)
з.	y-box	vertical position of box	(integer)
4.	width	width of box	(integer)
5.	high	height of box	(integer)
6.	onpix	total # on pixels	(integer)
7.	x-bar	mean x of on pixels in box	(integer)
8.	y-bar	mean y of on pixels in box	(integer)
9.	x2bar	mean x variance	(integer)
10.	y2bar	mean y variance	(integer)
11.	xybar	mean x y correlation	(integer)
12.	x2ybr	mean of x * x * y	(integer)
13.	xy2br	mean of x * y * y	(integer)
14.	x-ege	mean edge count left to right	(integer)
15.	xegvy	correlation of x-ege with y	(integer)
16.	y-ege	mean edge count bottom to top	(integer)
17.	yegvx	correlation of y-ege with x	(integer)

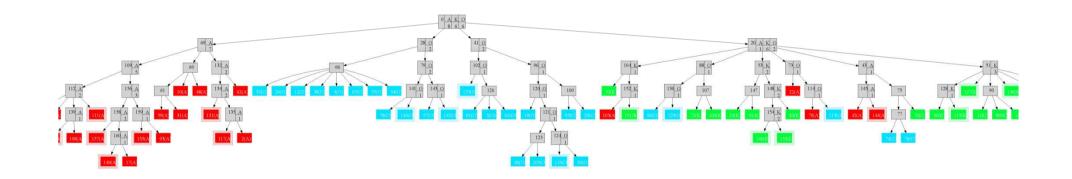
Easy Set and Difficult Set

- Difficult to test on entire data set
 - 26 classes
 - Diverse situations
 - Current implementation is not fast enough
- Tested on subpart of the data
 - Easy Set
 - A K O
 - Difficult Set
 - K R X

Supervised learning after 20 instances Easy Set – A K O

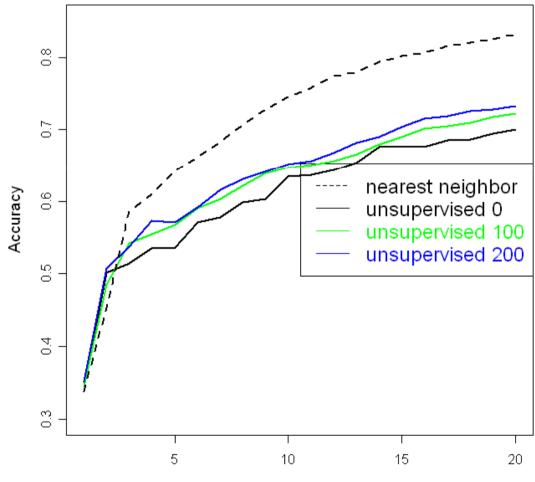


Unsupervised learning of 50 and then supervised learning of 20 Easy Set – A K O



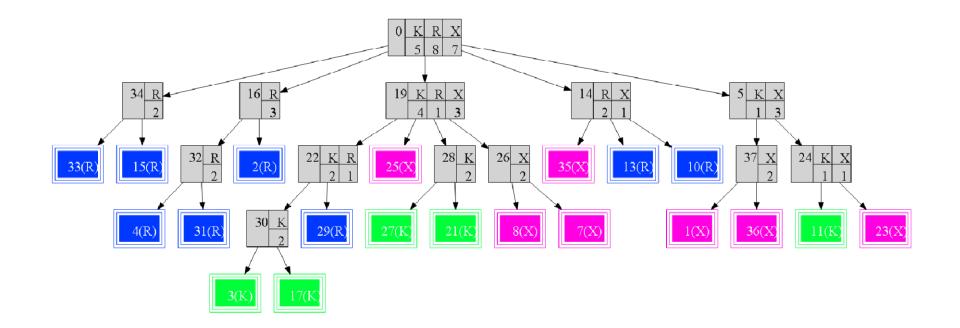
Result for easy set – A K O

Prediction Accuracy for A K O

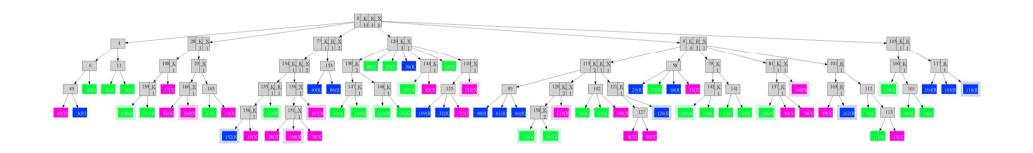


Supervised Training

Supervised learning after 20 instances Difficult Set – K R X

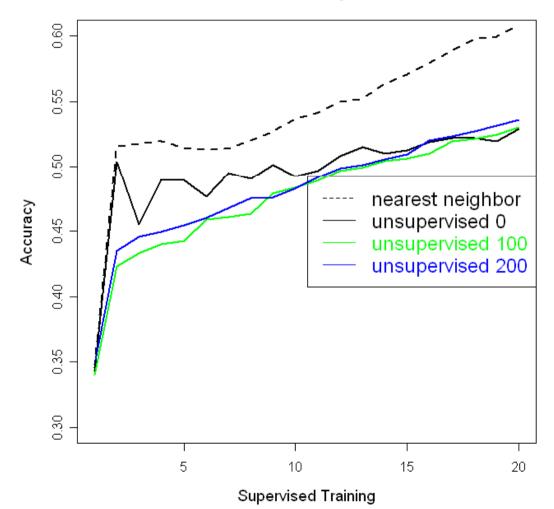


Unsupervised learning of 50 and then supervised learning of 20 Difficult Set – K R X



Result for difficult set – K R X

Prediction Accuracy for K R X



Letter Recognition Data Evaluations

Purpose	Evaluation	Result
Unsupervised Clustering	Qualitative	+
Compare clustering with instance based learning	Prediction Accuracy	?
Compare different degrees of prior unsupervised learning	Prediction Accuracy	?

• High dimension numeric vector

Conclusions

- Clustering is useful for filtering out 'noisy' features
 - Positive: Artificial data set
 - Negative: Iris data set.
- Quality of passive clustering directly depends on input features (slave of features)
 - Positive: All except K R X
 - Negative: K R X

Future Directions

- Adaptive feature selection
 - Generate and selection features
 - Clustering as guidance of feature selection
- Richer representation
 - Vector
 - Relational graph
 - Image
- Integration with Soar-RL
 - Provide abstract representation for symbolic TD learning

Nuggets and Coal

- Nuggets
 - Concept learning from subsymbolic input
 - Combine unsupervised and supervised learning
- Coal
 - Need feature selection
 - Need more realistic evaluation domain