
1

SOAR2D
Jonathan Voigt

University of Michigan

Soar Workshop 28



Outline
2

� About Soar2D

� What’s new with Eaters and Tanksoar

� New Room and Taxi environments

� Soar2D features� Soar2D features

� Future work



About Soar2D
3

� Cross-platform framework for building Soar simulations

� Mainly turn-based, grid map simulations for instruction and research

� Initial motivations:

� Reduce code duplication between Eaters and Tanksoar
� Soar integration details

� Configuration, logging, performance

Add new functionality to Eaters and Tanksoar for research� Add new functionality to Eaters and Tanksoar for research
� Data-driven game rules and objects so researchers can tweak them

� Create new environments similar to Eaters and Tanksoar
� And do it fast

� No new prerequisites
� Use same technology as debugger

� Included in Soar 8.6.4

� More powerful and correct than versions of Java Eaters and Tanksoar included 
in Soar 8.6.3 and before



� Single window

� More agent information

� Easier human control of 
agents for debugging

What’s new in Eaters and Tanksoar
4

�Go 1-on-1 against your tank

� Configuration manager

� Map editor

� Tanksoar: Some new graphics 
and notations



What’s new in Eaters and Tanksoar
5



New: Room Environment
6

� Rooms with objects 

separated by gateways

� Agents move and rotate in 

continuous space

� Very simple motion model

� Discrete mode available for � Discrete mode available for 

more simple Eaters and 

Tanksoar-like movement

� Objects adhere to 

underlying grid squares

� Agent can interact with 

objects, carry them

� Navigation aids to walls, 

objects and gateways

� Simple vision cone



New: Taxi Environment
7

� Implementation of taxi 
environment described by 
MAXQ paper (Dietterich, 1998)
� Used in Soar-RL research by Nate 

Derbinsky

� Taxi can move in four 

Destinations

� Taxi can move in four 
directions, pick up and drop 
off passenger, object is to 
successfully transport 
passenger to correct 
destination

� Uses one fuel unit each move

Fuel

Cab

Passenger



Configuration
8

� Files instead of command line options

� Many features configurable, including:

� Initial state

� Rule variations� Rule variations

� Simulation modes

� Termination conditions

� Control of third-party clients

� Logging options

� Configuration management inside Soar2D



Map Editor
9



Map File Format
10

� Section 1—Cell object list: Object classes

� Define properties, for example:
� ID to use on input link

� Color, shape, value

� Define behavior, for example:
� Charging ability to energy charger

� Flying, health and energy-modifying behavior to missiles� Flying, health and energy-modifying behavior to missiles

� Consumption behavior to food and missile packs

� Property and behavior flags trigger different parts of the code

� Behavior can be specific to events, such as collisions (missiles, chargers, food) or 
world updates (food value decay, missiles flying)

� Section 2—Cells: Instantiate the objects

� Flags available for random placement

� Section 3—Metadata: Optionally specify file with extra, arbitrary 
information to associate with map on the input link



Logging
11

� Goal: enough output to reproduce run

� Uses standard Java logging mechanisms

� Configurable logging levels and targets

� XML output possible� XML output possible
19 INFO orange: (move: north)(fire)

19 INFO yellow: (move: west)(fire)(shields: on)

19 INFO orange score: -3 -> -4 (yellow-41)

19 INFO yellow score: 0 -> 2 (yellow-41)

19 INFO orange score: -4 -> -5 (yellow-45)

19 INFO yellow score: 2 -> 4 (yellow-45)

19 INFO orange score: -5 -> -7 (fragged)

19 INFO yellow score: 4 -> 7 (fragged orange)

19 INFO orange: Spawning at (12,5), facing east

20 INFO red: (rotate: left)(radar: on)(radar-power: 3)(shields: off)

20 INFO purple: (move: east)

20 INFO green: (rotate: right)(radar: on)(radar-power: 4)

20 INFO black: (move: east)



Simulation Modes
12

� By cycle

� By output

run –d 1
Update 

World

run –o 1
Update 

World

Update callback

Update callback

� By time slice

World

run –d 1
Update 

World

Enough 

Time 

Passed?

Yes

No

Update callback



Headless Mode
13

� Skip GUI code to achieve maximum speed for 

experiments

� Log provides output to files or console

� Built for use in conjunction with scripting � Built for use in conjunction with scripting 

environments such as Nate’s SoarSim



Future Work
14

� Playback from log
� Motivation: Make inspection of runs easier

� Increased performance
� Motivation: Students running long experiments with it

� Scott Wallace, “Is there any way to get it to run slower?”

� Code cleanup, bug fixes, modularization, documentation� Code cleanup, bug fixes, modularization, documentation
� Motivation: Easier for people not named Voigt to change the code fast

� Waiting for current research to finish, fixes and docs coming this summer

� Better graphics
� Motivation: Make it more interesting

� Better interface so other AI systems can use it
� Motivation: Competition between cognitive architectures

� Storm architecture successfully hacked in last year


