
Soar Integration Lessons Learned

2008 Soar Workshop

Dave Ray

ray@soartech.com

Overview

� Make debugging easier

� Apply basic software engineering to Soar systems

� Test your code

� Get along with SML

© 2008 Soar Technology, Inc. | Slide 2

Make it easy to tell what's going on

� Give agents and SSI code a
place to put useful
debugging information

� Poor man's VISTA
(SoarTech's, not Microsoft's)

� Here, SSI code in Sim Jr can

© 2008 Soar Technology, Inc. | Slide 3

� Here, SSI code in Sim Jr can
set arbitrary named
properties

� Easy to reference at runtime

� Not a replacement for a
good log

Make it easy to tell what's going on

� Startup and run is slower with TSI or Java debugger

� Create a simple command window for inspecting
agent state

� No print output so no overhead

� Window shown is ~100 lines of Java code in Sim Jr

© 2008 Soar Technology, Inc. | Slide 4

Open a real Soar
debugger when
you need it

Make it easy to tell what's going on

� Use SML filters to create custom debugging
commands

� Callable from Java Soar debugger and Soar files

sim-state command prints out the

© 2008 Soar Technology, Inc. | Slide 5

current state of our simulation
abstraction layer

JSAF, VR-Forces, etc

Sim Jr

Create a Simulation Abstraction Layer

� Create an abstraction layer for
your simulation/environment

� Code Soar I/O to abstraction
rather than simulation API

� Easier to move to new

Update Simulation

Update Controller

Sim Run Loop

E
v
e
n
ts

S
ta
te

A
c
ti
o
n
sFunction/Network

Boundary

© 2008 Soar Technology, Inc. | Slide 6

� Easier to move to new
simulations

� Easier to test by creating a
mock simulation

� Re-use I/O components in new
types of agents

Soar Agent

Simulation Abstraction Layer

E
v
e
n
ts

S
ta
te

A
c
ti
o
n
s

Boundary

Soar I/O Layer (SML)

JSAF, VR-Forces, etc

Sim Jr

Create a Simulation Abstraction Layer

� Log and playback simulation
state for testing/debugging

Update Simulation

Update Controller

Sim Run Loop

E
v
e
n
ts

S
ta
te

A
c
ti
o
n
sFunction/Network

Boundary

© 2008 Soar Technology, Inc. | Slide 7

Soar Agent

Simulation Abstraction Layer

E
v
e
n
ts

S
ta
te

A
c
ti
o
n
s

Boundary

Soar I/O Layer (SML)

Log File

Think about I/O modularity

Input

+udpate()

+loadProductions()

+configureAteAgent()

+getAgent()

+getOutputManager()

+getPrecisionInfo()

+getAttentionLevel()

+setAttentionLevel()

+setDesiredAltitude()

+setDesiredBearing()

+setDesiredHeading()

+setDesiredSpeed()

-helicopter

HeloSoarAgent

SoarAgentHandler

EntityController

+isContactOfInterest()

+update()

+updatePrecisionInfo()

ContactsInput

+getContact()

+update()

+remove()

+updatePrecisionInfo()

ContactInput

1 1 1 *

+update()

+updatePrecisionInfo()

VehicleStats

+update()

WeaponsInput

+update()

-weapon

WeaponInput

1 *

1

1

1

1

1

� Create separate class for
each logical unit of I/O

� One class per input-link
structure

� One class per output-link
command

© 2008 Soar Technology, Inc. | Slide 8

Output

+handleCommand()

CreateLocation

OutputCommandHandler

+handleCommand()

DeleteComputer

OutputCommandHandler

+handleCommand()

FireAtTarget

OutputCommandHandler

+handleCommand()

SetDesiredSpeed

OutputCommandHandler

+addHandler()

+removeHandler()

+addIgnoredCommand()

+handleOutput()

+addProcessedYes()

+addStatusComplete()

OutputCommandManager

1 1
1

1 1

1

1

1 1

1

1
... etc ...

Think about I/O modularity

Input

Output

+udpate()

+loadProductions()

+configureAteAgent()

+getAgent()

+getOutputManager()

+getPrecisionInfo()

+getAttentionLevel()

+setAttentionLevel()

+setDesiredAltitude()

+setDesiredBearing()

+setDesiredHeading()

+setDesiredSpeed()

-helicopter

HeloSoarAgent

SoarAgentHandler

EntityController

+isContactOfInterest()

+update()

+updatePrecisionInfo()

ContactsInput

+getContact()

+update()

+remove()

+updatePrecisionInfo()

ContactInput

1 1 1 *

+update()

+updatePrecisionInfo()

VehicleStats

+update()

WeaponsInput

+update()

-weapon

WeaponInput

1 *

1

1

1

1

+handleCommand()

CreateLocation

OutputCommandHandler

+handleCommand()

DeleteComputer

OutputCommandHandler

+handleCommand()

FireAtTarget

OutputCommandHandler

+handleCommand()

SetDesiredSpeed

OutputCommandHandler

+addHandler()

+removeHandler()

+addIgnoredCommand()

+handleOutput()

+addProcessedYes()

+addStatusComplete()

OutputCommandManager

1

1 1
1

1 1

1

1

1 1

1

1
... etc ...

� Easier to maintain

� Where is "set-desired-speed" handled?

� Oh, in SetDesiredSpeed.java

� How is "contacts" input structure created?

� Oh, in ContactsInput.java

� Easier to test

I/O classes are decoupled so they can be

© 2008 Soar Technology, Inc. | Slide 9

� I/O classes are decoupled so they can be
used in isolation

� Easier to reuse

� I/O classes are decoupled so they can be
dropped in to new agents

Test your Soar I/O code

� Benefits of unit testing

• Automated – run with continuous integration tools like
CruiseControl

• Easily testable code is more modular

• Writing tests first forces you to actually use API you’re
creating … hopefully a friendlier API results

© 2008 Soar Technology, Inc. | Slide 10

creating … hopefully a friendlier API results

• Confidence that new functionality works and didn’t break old
code

� Most effective during implementation, not after

� How can we unit test our Soar I/O code?

� Here I focus on JUnit but same principles apply to all
xUnit-style frameworks

JUnit Basics

� Test case

• Java class that implements one or more unit tests

• Unit tests are public methods that start with “test” (JUnit 3)

� setUp()

• Method called before each unit test is run

• Initialize objects used by all unit tests in test case

© 2008 Soar Technology, Inc. | Slide 11

• Initialize objects used by all unit tests in test case

� tearDown()

• Method called after each unit test is run

• Called even if test fails

• Clean up objects initialized in setUp()

� Assertions

• Assert that the software is in a particular state

• e.g. assertTrue(passedFunction.wasCalled())

Technicalities

� These are technically integration tests, not unit tests

� They test both Soar and Java I/O code

� In pure TDD, one or the other would be replaced by a
mock object

� This is too painful, so we ignore the TDD zealots and

© 2008 Soar Technology, Inc. | Slide 12

� This is too painful, so we ignore the TDD zealots and
call them unit tests anyway

Unit Testing Soar Input

� Use Soar rules to test that input is correct

• Powerful pattern matching

• Easier than parsing “print” output (even in XML)

• Scriptable in Soar if you have Tcl ☺

� Ideally, behavior developer create Soar tests

© 2008 Soar Technology, Inc. | Slide 13

• Ensures that behavior developer and software engineer agree
on I/O spec

Unit Testing Soar Input

� Create agent with “passed” and “failed” RHS functions

� Initialize Java input class to be tested

� Load productions that test for expected input and call
“passed” function

� Run the agent a few steps

© 2008 Soar Technology, Inc. | Slide 14

� Run the agent a few steps

� Check that “passed” function was called

Unit Testing Soar Input

ContactsInputTest.java

public void setUp()
{

sim = ...; // Initialize mock simulation with single contact
agent = ...; // Initialize Soar agent

}

public void testContactAppearsOnInputLink()

� Java side of unit test

© 2008 Soar Technology, Inc. | Slide 15

public void testContactAppearsOnInputLink()
{

// agent and sim initialized in setUp()
// Install "passed" and "failed" RHS functions
TestRhsFunctions testFunctions = new TestRhsFunctions(agent.GetKernel());

// Install the input class we're testing
ContactsInput contacts = new ContactsInput(sim, agent);

// Load test productions
agent.LoadProductions("test/com/soartech/simjr/helosoar/ContactsInputTest.soar");
SoarException.throwOnError(agent);
agent.ExecuteCommandLine("run 1");
assertTrue(testFunctions.passed());

}

Unit Testing Soar Input

ContactsInputTest.soar

sp {test*contact
(state <s> ^superstate nil

^io.input-link.contacts <contacts>)
(<contacts> ^contact <c> -^contact {<other> <> <c> })
(<c> ^callsign test - contact

� Soar side of unit test

© 2008 Soar Technology, Inc. | Slide 16

(<c> ^callsign test - contact
^force red

... Test all attributes of <c> ...
-->

(exec passed)
}

... Test failure conditions ...

Unit Testing Soar Output

� Similar to input

� Procedure

• Create agent

• Load productions that trigger output command

• Check that the output command was triggered

© 2008 Soar Technology, Inc. | Slide 17

• Check that the output command performed correct actions

Multi-step Unit Tests

� What about multi-step unit tests?

� Test productions may fire in wrong step

� Create a TestStepInput class to put ^test-step on
input-link.

ContactsInputTest.java

public void testContactAppearsOnInputLink()
{

© 2008 Soar Technology, Inc. | Slide 18

{
... Other initialization ...
TestStepInput testStep = new TestStepInput(agent);

... First step ...
testStep.set("initial-contact");
agent.ExecuteCommandLine("run 1");
assertTrue(testFunctions.passed());

testStep.set("contact-destroyed");
testFunctions.reset();

contact.setDestroyed(true);
agent.ExecuteCommandLine("run 1");
assertTrue(testFunctions.passed());

}

Using SML with JUnit

� Global state accumulates between tests

� “Shutdown()” SML after each test

� My solution

• Create a custom base class for all test classes

• Call Shutdown() from tearDown() method

© 2008 Soar Technology, Inc. | Slide 19

• Call Shutdown() from tearDown() method

Think about SML threads

� SML Event Thread

• Receives SML events when client is not running Soar

� SML Run Thread

• Whatever thread the client calls Run from

• Run is a blocking call

• Receives SML events during the Run call

© 2008 Soar Technology, Inc. | Slide 20

• Receives SML events during the Run call

� Basic rules while Soar is running

• Make SML calls (start and stop, WME creation, etc) only
from the Run thread

• In other words, only make calls from callbacks

Think about SML threads (cont)

© 2008 Soar Technology, Inc. | Slide 21

Think about SML threads(cont)

� Remember

• SML callbacks arrive on event thread or thread Run was called
from!

• All SML commands (run, sp, matches, etc) are BLOCKING

• Only make SML calls from callbacks when running Soar

� If you don’t follow these guidelines

© 2008 Soar Technology, Inc. | Slide 22

� If you don’t follow these guidelines

• Deadlock

• Corrupted data

• Despair

� SoarJavaDebugger/src/doc/DocumentThread2.java
handles many SML threading issues.

Create a set of SML utilities

� SML C++ API fairly usable

� SWIG-generated API doesn't fit as naturally in other
languages (Java, C#, etc)

� Create a set of SML utilities to make it easier to use

• Wrap commands to turn SML errors (agent.HadError(), etc)

© 2008 Soar Technology, Inc. | Slide 23

• Wrap commands to turn SML errors (agent.HadError(), etc)
into exceptions

• Function to turn list of output commands into native list

• Functions to convert WME values to desired type

• static double getDouble(Identifier parent, String attr, double def)

• etc.

� Maybe these could be rolled into SWIG-generated
code for each target language?

SML Wishlist

� gSKI removal

� Support for multiple kernels in one process

• Currently can't spread agents across cores without using
separate processes

� Allow agents to sleep, like OS threads

© 2008 Soar Technology, Inc. | Slide 24

� Allow agents to sleep, like OS threads

• Reduce CPU usage when agents are just waiting for new input

� RHS functions

• exec with argument list rather than argument string

• Ability to register "real" RHS functions with local kernel

The End

� Questions?

� Comments?

© 2008 Soar Technology, Inc. | Slide 25

