

IMPACT Intelligent Modeling for Pedagogically-Aware Cultural Training

Office of Secretary of Defense SBIR Contract Air Force Research Lab, Mesa AZ

> Dr. Lisa Scott Holt Soar Technology

IMPACT team

- Soar Technology, Inc.
 - Dr. Lisa Scott Holt
 - Dr. Brian Stensrud
 - Dr. Robert Wray
- Subcontractors
 - Creative Technologies Research and Applications Center
 - Institute for Creative Technologies, USC
 - Phases I & II
 - Dr. Brian Magerko
 - Phase II

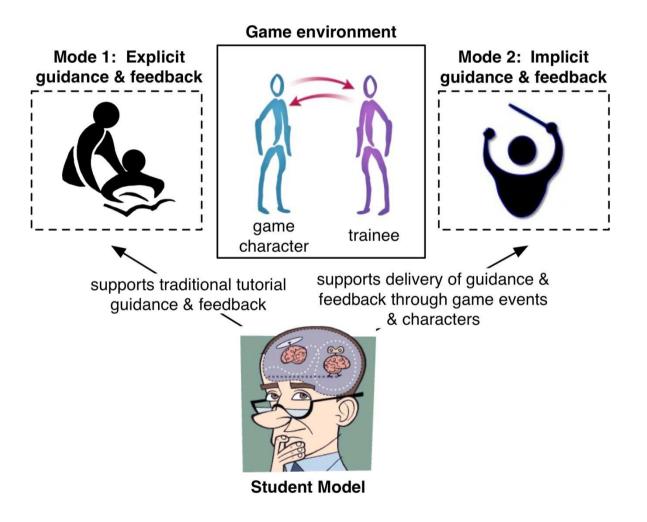
Goal

 Develop a robust approach to student modeling to support performance assessment and feedback in a cultural game environment.

What is a student model?

- It is the component of a training system that contains information about the student's knowledge and skill.
- It can be used to provide summative assessment information.
- It can also be used as the basis for providing individualized instruction.
- The kinds of information in the student model determine the degree of individualization possible.
 - Guidance
 - Feedback on performance (real-time and post-instruction)
 - Variations in instructional content

IMPACT Vision


Intelligent Modeling for Pedagogically-Aware Cultural Training

IMPACT aims to:

- Provide a realistic practice for cultural training in a game-based environment
- Support delivery of guidance and feedback during game play
 - Driven by deliberate instructional strategies
 - Tailored to individual student needs
 - Enabled by student model
- Support two modes of guidance and feedback
 - Explicit: through tutorial character
 - Implicit: through game events and characters (a tailored practice environment!)

IMPACT Vision

Phase I building blocks & challenges

- Cultural skills
 - · Challenge: What important skills can we train?
- Game-based training environments and pedagogical agents
 - · Challenge: How to provide guidance and feedback?
- Intelligent tutoring systems (ITS)
 - Challenge 1: How to represent domain knowledge?
 - Challenge 2: How to work with an ill-defined domain?

Cultural Skills: ELECT BiLAT

- Cultural training game
- Developed by ICT/CCT at USC
- Focused on bilateral engagement
 - Negotiation activities aimed at bringing about agreement
 - Social and cultural considerations in negotiation
- Primary game phases
 - Meeting preparation
 - Meeting rehearsal
 - Meeting conduct
 - Meeting AAR

Game-based training & pedagogical agents Providing training support

ELECT BILAT

- Intelligent Guided Experiential Learning (IGEL) Coach
- Game actions are mapped +/- to training objectives
 - Show photograph of wife: (-) small talk
 - Greet in Arabic: (+) begin meeting
- IGEL coach delivers positive or negative feedback
- Delivery of feedback determined by coach settings (controlled by instructor)
 - E.g., positive feedback after every third correct action and negative feedback after every error
- Explicit guidance and feedback delivered through a tutor character

Game-based training & pedagogical agents Providing training support

Interactive Story Architecture for Training (ISAT)

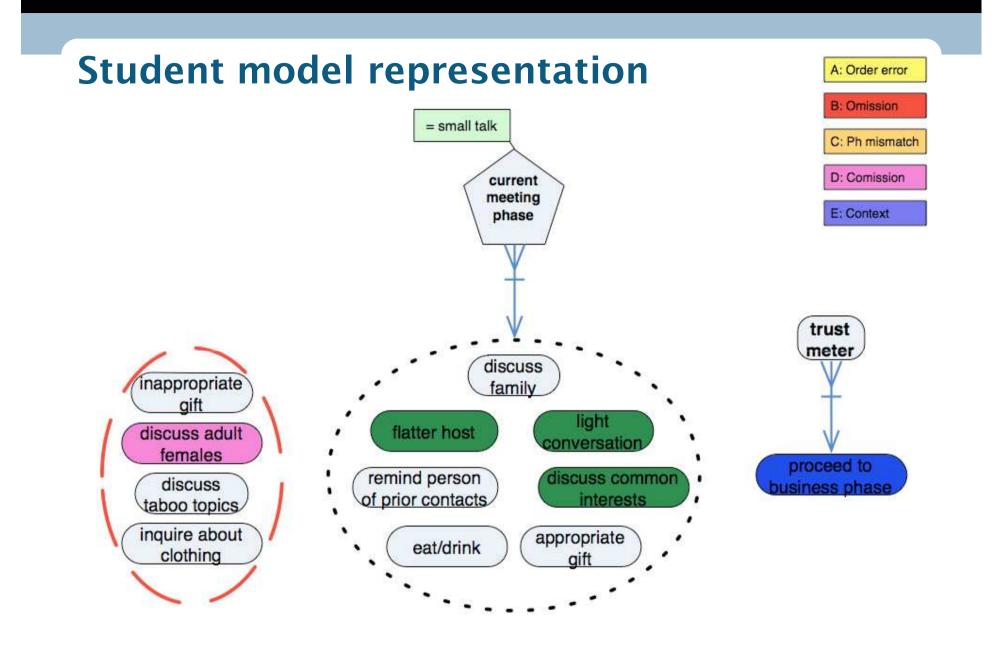
- Combines interactive story and intelligent tutoring approaches
- Intelligent director agent orchestrates an appropriate experience for each trainee
 - Alters story
 - Reacts to trainee actions
 - Does not disrupt immersive game experience
- Implicit guidance and feedback delivered through game events and characters (a tailored practice environment)

Intelligent Tutoring Systems (ITS)

- Three traditional components
 - Expert or domain model
 - · Targeted domain knowledge
 - Student model
 - · Representation of trainee's knowledge (inferred from behaviors)
 - Instructor model
 - Responses to trainee actions/pedagogical strategies
- Challenge 1: How to represent domain knowledge and trainee's knowledge to support the use of pedagogical strategies
- Challenge 2: Ill-defined domain makes representation task even more challenging

Ill-defined domains

- Space of possible actions is large
- Not always possible to classify actions as correct or incorrect
 - Dependent on contextual factors that vary from situation to situation
- Rules underlying the domain may not be wellunderstood or formalized
- CCT addressed some challenges in ELECT BiLAT
 - Finite set of actions (accessible through menus)
 - · Some action-training objective mappings are "mixed"


Constraint-based modeling

- Alternative to more common rule-based representations of domain knowledge
- Example
 - Declarative knowledge
 - Not very useful form for training
 - · "The speed limit in New Zealand is 50 km/h."
 - Procedural knowledge
 - · Can be used to generate behavior
 - · "If driving in New Zealand, drive at a speed of 50 km/h."
 - Constraint
 - $\cdot\,$ Can be used to assess behavior
 - $\cdot\,$ "If driving in New Zealand, speed ought to be 50 km/h."

Constraint-based modeling (cont.)

- Constraint is an ordered pair <R, S>
 - R is the relevance condition (If the situation is...)
 - S is the satisfaction condition (... then X should be true.)
- Used in tutorial systems
 - Does not require delineation of all solution paths
 - Constraints reflect important pedagogical points
 - Violation of constraints triggers need for guidance or feedback
- IMPACT representation
 - Constraint-based
 - Constraints currently represented conceptually, and not yet expressed in <R,S> computational form

Nuggets & Coal

- Constraint-based representation is useful for
 - Pedagogy
 - Ill-defined domains
- Phase II awarded!
 - Will implement and test effectiveness

- Student model is only a graphical representation
 - No code yet
- Phase II award in January, but still waiting for the \$\$ to get started

