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I. INTRODUCTION

Current robots have limited reasoning capabilities and lan-
guage capabilities, making interacting with them an extremely
challenging process. In the near future, we expect significant
improvements in all of these areas as well as the ability to learn
new tasks through natural language instruction, a capability we
call Interactive Task Learning (ITL). Previous ITL research
[6] has demonstrated that language instructions, coupled with
demonstrations, are effective in teaching novel tasks by allow-
ing the instructor to define the task problem space and guide
the robot through the task. Our research is embodied in an
ITL robot called Rosie (RObotic Soar Instructable Entity) that
is implemented in the Soar cognitive architecture [7]. Rosie
can learn over 50 games and puzzles [5], various procedural
kitchen tasks [9] and mobile and navigation tasks [8] through
situated interactive natural language instruction.

Robots that can learn new skills and tasks may solve some
issues in human robot interaction, but we expect that new
issues will arise exactly because of these new abilities. When
our robots know more, can reason better, and especially can
learn from their environment and other humans, a simple,
static model of the robot’s state and capabilities will be
insufficient. In short, the human and robot will lack a common
ground of understanding [3]. With ITL robots, establishing and
maintaining common ground becomes even more difficult and
crucial as the robot learns new tasks, concepts, and vocab-
ulary from its own experience and interactions with human
instructors. We thus characterized knowledge that constitutes
this common ground and implemented question-answering
mechanisms using which an instructor can build a mental
model of the robot’s current state and capabilities.

II. RELATED WORK

Some previous research focuses on transparency mechanisms
to improve a user’s mental model of the robot either through
question answering [4], visualization mechanisms [10] or
estimates of uncertainty [2, 11]. There has also been work
focusing on the robot providing specific information about
its perception [1] and intentions [12, 13] taking into account
the user’s perspective, so that the user can assist with respect
to a single task. Our research focuses on working towards
common ground about not only knowledge of perception but
also of those learned through instruction as well as instantiated
task components. Secondly, we focus on robots that can learn

different tasks across domains and our research is not restricted
to a single type of task or environment.

III. CHARACTERIZATION OF COMMON GROUND

Here we characterize types of knowledge needed to establish
and maintain common ground for a robot that can learn and
use a variety of task knowledge, and we provide examples of
Rosie that support achieving common ground.

A. Perception
During perception, an ITL robot builds an internal model of
its environment, using both its innate and learned knowledge.
Initially it may only have very simple, general ways of
representing and characterizing the world, such as in terms
of basic spatial primitives, colors, shapes, and sizes. As
it learns new features, concepts, and relations, its internal
understanding of the world will grow. A human attempting
to instruct or command a robot needs to know which task
components, features, concepts, and relations are available
for communicating with and teaching the robot, and what
distinctions the robot can make about its world.

Rosie has innate concepts for color, shape, and size, and
can be taught, through instruction, specific colors (“The color
of this block is blue.”), shapes and sizes. It also has innate
concepts of simple spatial relations, numbers, numeric com-
parators, functions, and nouns (objects, locations, ...). It can
learn new concepts that are defined by compositions of innate
and learned concepts. For example, Rosie can be taught larger
than (“If the volume of a block is more than the volume of an
object then the block is larger than the object.”), or surrounded
(“If the number of covered locations near a clear location is
eight then the clear location is surrounded.”), where “covered”
and “clear” are previously learned concepts.

Rosie’s perception and interpretation of its world can be
accessed by asking questions about specific objects, or through
more general questions such as: “What do you see?” From
its answers, an instructor can learn which concepts Rosie has
been taught, and confirm that Rosie’s perception of the world
is consistent with the instructor’s model.

B. Task Knowledge
Rosie learns the definitional components of a task, including
goal states, actions, failure conditions and task concepts from
natural language interactions with an instructor. Internal rep-
resentations are built up in Soar’s working memory as rela-
tional graph structures, and then stored in long-term semantic



memory [5] for later use. For example, the language used to
describe the goal of Tower of Hanoi is “The goal is that a
small block is on a medium block and the medium block is
on a large block and the large block is on the blue location.”
The instructor can access any of its learned task knowledge
through simple questions, such as, “What is the goal of Tower-
of-Hanoi?” The robot dynamically constructs an answer from
its internal representation: “The goal is that a small block is
on a medium block and a large block is on a blue location
and the medium block is on the large block.”

C. Instantiation of Task Components

Possibly more important than accessing the robot’s definitions
of task knowledge, is determining if that knowledge applies
to the current situation. That is, whether the knowledge is
instantiated in the robot’s current model of the environment.
Through question asking, Rosie allows the instructor to query
which innate and learned concepts (such as using larger than
or surrounded) and task components (such as goal detection)
are currently instantiated and which are not. This ability is
critical for debugging instructions - determining why a concept
or relation is not available, why a goal is not achieved when
it should be, or why a failure condition is achieved when it
shouldn’t be.

For example, when the instructor asks “Do you see the goal
of Tower-of-Hanoi?” in Figure 1, the robot needs to match
its learned goal predicates to its perceptual world model. If
it successfully instantiates all the necessary predicates, the
robot responds “Yes.” The instructor can use knowledge of
successfully instantiated task components to evaluate whether
the robot has learned relevant task knowledge correctly and
can apply it to the world. However, in Figure 1, if the small
block(ID: 4) was on location 2, instead of being on the medium
block, then the on predicate (4,5) would not be satisfied. In
that case, Rosie would answer, “No. A small block is not on
a medium block.” providing the exact unsatisfied precondition
that led to this failure. This response contributes to understand-
ing the cause of the robot’s failure, and is especially useful
when a non-expert instructor, someone who is unfamiliar with
the internal working of the robot, is interacting with it. The
robot can also tell the instructor which actions it can perform.
For example, in the mobile domain, if the robot is in a room
with a red box, blue box and trash bin, its response to “Which
actions do you see?” is “I see the following actions: pick-up
the blue box, pick-up the trash and pick-up the red box.” When
the robot learns new tasks, it incorporates those tasks into its
answers. For example, after the instructor teaches Rosie the
Deliver task, Rosie’s response to the question is “I see the
following actions: deliver the medium blue box, deliver the
trash, deliver the medium red box, pick-up the medium red
box, pick-up the trash and pick-up the medium blue box.”

Having access to this knowledge also helps the instructor
determine whether the robot correctly understands which ac-
tions it can perform in the current situation.
For example:

Fig. 1. At the bottom is a depiction of the Tower of Hanoi puzzle. On the
top is a representation of the long-term task knowledge learned for its goal.
The bold numbers uniquely identify the objects and show the instantiation of
the task concepts in perception.

Instructor: Pick up the red box.
[Rosie picks up red box]
Instructor: Which actions do you see?
Rosie: I see the following actions: give the red box
and put-down the red box.
Instructor: Can you pick up the blue box?
Rosie: No.

When the robot has picked up an object, it cannot pick up
any other object until it has put the first object down. The
instructor can use this knowledge to understand the robot’s
capabilities and limitations in different situations.

IV. DISCUSSION AND FUTURE WORK

The purpose of our research is to make it possible for an
instructor to access a robot’s knowledge through language,
including what it learns through instructions and what it
observes in its perception. The instructor can also access how
the learned knowledge is used by the robot while performing
a task, thus having access to the robot’s internal state.

Initially, the instructor has more need to build up an accu-
rate model of the robot’s knowledge and capabilities, which
led us to first implement instructor-driven explicit question-
answering in the robot. We also plan to explore other modali-
ties, so that the robot’s state is more readily available, without
explicit queries, such as via multi-modal transparency mech-
anisms where visual feedback continuously conveys the most
important aspects of the robot’s perceptual understanding and
other internal reasoning during task learning and execution.
We also plan to investigate ways for the robot to anticipate
the needs and intentions of the instructor, proactively providing
information that the instructor will need to maintain shared
common ground.
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