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Abstract

Agents that can learn new tasks through interactive in-
struction can utilize goal information to search for and
learn flexible policies. This approach can be resilient to
variations in initial conditions or issues that arise dur-
ing execution. However, if a task is not easily formu-
lated as achieving a goal or if the agent lacks sufficient
domain knowledge for planning, other methods are re-
quired. We present a hybrid approach to interactive task
learning that can learn both goal-oriented and procedu-
ral tasks, and mixtures of the two, from human natu-
ral language instruction. We describe this approach, go
through two examples of learning tasks, and outline the
space of tasks that the system can learn. We show that
our approach can learn a variety of goal-oriented and
procedural tasks from a single example and is robust to
different amounts of domain knowledge.

Introduction
As robotic and AI technologies advance, interactive au-
tonomous agents are becoming ever more prevalent in our
everyday lives. We can assign tasks to these agents, whether
it’s setting an alarm on a phone, answering a question, or
driving a car. As these agents become more capable and
general-purpose, it will be impossible to fully anticipate and
implement every possible task in advance. It will be cru-
cial to extend, customize, and correct the tasks that an agent
can perform in easy and natural ways. This is the goal of
research in the recently identified AI challenge problem of
Interactive Task Learning (ITL; Laird et al. 2017). Research
in ITL covers a range of domains (such as robots and arti-
ficial personal assistants) and forms of interaction (such as
speech, language, demonstrations, or kinesthetic training).

Laird et al. (2017) identify a set of desired characteristics
of Interactive Task Learning. It should be general, so that
the agent can learn a diverse set of tasks that involve diverse
concepts, procedures, and goals. The task learning should be
effective; allowing the agent to learn all aspects of the task
through interaction and generalize what is learned to per-
form the task in the future. Finally, the learning should be ef-
ficient; requiring few examples. We focus on applying these
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principles to the area of mixed-initiative situated interac-
tive instruction, where the human instructor and the robotic
agent collaborate together and engage in a joint conversation
with the purpose of having the robot learn a new task ‘from
scratch’ (with no initial knowledge about the task). This al-
lows the agent to learn while it is performing the task and
ask questions as problems arise. It also allows the instructor
to provide knowledge, corrections, and feedback.

Task learning includes learning how to actually perform
the task – what actions or subtasks the agent needs to execute
to complete the task. One way is to represent the goal of a
task, then use a state-based policy, which is a mapping from
each state to the appropriate action, to reach the goal. This
policy can be learned, such as through reinforcement learn-
ing, or the agent can use planning capabilities to identify
the next action the agent should take. Mohan et al. (2014)
use this formulation along with Explanation-Based Learn-
ing (EBL; DeJong and Mooney 1986) to learn goal-oriented
hierarchical tasks. This EBL approach relies on the insight
that “it is possible to form a justified generalization of a sin-
gle positive training example, provided the learning system
is endowed with some explanatory capabilities” (Mitchell,
Keller, and Kedar-Cabelli 1986). In order to learn new goal-
oriented tasks via EBL, the agent must have sufficient do-
main knowledge so that it can explain why the actions it exe-
cuted led it to the goal. Some of the benefits of this approach
are that it works over relational representations, which al-
lows the agent to reason over complex task structures and
their connection to language, and it can exploit rich domain
knowledge to learn from relatively few examples (Mohan
and Laird 2014). In addition, this approach can learn diverse
types of task knowledge, including task parameters, avail-
ability conditions, subtasks, policy information, termination
conditions, and action models.

Another way of learning to perform a task is to learn
a procedure, which directly represents the steps needed to
accomplish the task. This procedure can include complex
control flow, including loops, conditional, and enumeration
constructs. One such example is the work of Meriçli et al.
(2014), whose agent can learn procedural tasks in an office
environment by learning an Instruction Graph. This graph
represents the actions and the control flow between them.
However, without knowing the goal, an agent with only a
procedure has difficulty adjusting if something goes wrong,



unless the instructor specifically mentioned what to do in
those circumstances. An advantage of procedures is that in
many cases it is straight forward to correct or extend them.

Both of these formulations have their trade-offs, with each
having different types of tasks for which they are most ap-
propriate. A goal-based approach is flexible to changes in
the initial state and can adapt to unexpected conditions and
task variations. In addition, some tasks are easily formulated
by defining a goal. If you want the agent to store the milk in
the fridge, you may not care exactly how it is accomplished.
It can also be more efficient to teach, since the agent might
find a way to achieve the goal using its existing knowledge
without needing further instruction. However, in order for
the agent to use planning, it must have sufficient domain
knowledge to internally simulate its actions. A procedure-
learning approach need not rely on planning, which may al-
low it to learn a task in an environment in which it does not
know the world dynamics. It also may be difficult to formu-
late some tasks as achieving a goal as opposed to following a
sequence of steps. For example, the task of patrolling an of-
fice building involves driving to several locations (possibly
multiple times), but does not involve achieving a final goal
apart from the actions.

We present a hybrid approach to Interactive Task Learn-
ing that learns both goal-oriented tasks and procedural tasks,
as well as tasks that have elements of both. We extend the
explanation-based approach of Mohan et al. (2014) by ex-
panding the goal representation to allow for an ordered se-
quence of steps (including subgoals), and modifying the pol-
icy learning to build up a sequence of procedural steps (sub-
goals) when the explanation fails. This makes the task learn-
ing more general, by allowing the agent to learn tasks with-
out a goal or where the agent lacks sufficient domain knowl-
edge to learn a full policy. It is effective in learning all as-
pects of the task, and it can perform the task in the future af-
ter only one training example. It also generalizes to new task
variations with no additional training. In addition, the pro-
cedural learning is tightly integrated with the task learning
system – it is not a separate module. This allows the agent
to learn tasks that involve aspects of both, such as a task that
has a goal but the agent does not know how to accomplish it,
or a task where there are different formulations of subtasks
in the same hierarchy. It also improves the instructional effi-
ciency, both by allowing the instructor to choose whichever
formulation is easier to instruct for a particular task, and by
eliminating the need for instructions when the agent can in-
ternally search to determine the next action.

We begin with a review of related approaches to Inter-
active Task Learning, then give a brief description of the
agent architecture. Then we review the explanation-based
approach to learning tasks and describe what aspects of the
task are learned and how they are learned. We then describe
our extensions and how procedural tasks are learned. We
provide a qualitative analysis of how these extensions ex-
pand the space of learnable tasks, and demonstrate how the
agent learns two different tasks. We describe how the new
approach can compensate for a lack of domain knowledge.
Finally, we conclude with a discussion of the results and
identify shortcomings and future work.

Background
Interactive Task Learning can cover a range of interaction
modalities, domains, and learning approaches. For example,
Learning from Demonstration involves learning a policy for
motor actions from training such as teleoperation or kines-
thetic guidance (Argall et al. 2009). These approaches are
usually used for learning motor tasks such as pouring liquid
from a cup, and not larger scale hierarchical tasks.

There is a significant body of work on teaching tasks
through instruction. One class of approaches involves learn-
ing the task problem space (goals, actions, concepts) and
then using planning. Hinrichs et al. (2014) use language and
sketching to teach games like Tic Tac Toe. Their system con-
verts the input into the Game Description Language (GDL).
Cantrell et al. (2011) have a system that learns the meaning
of a verb used in a command by learning a representation of
its goal, then use a general planner to accomplish the task.
She et al. (2014) describe a system that is not directly given
the goal but instead is given a sequence of actions that ac-
complish the task. From there, it learns both the goal and the
preconditions, and it uses a planner to carry out the task. All
of these rely on having sufficient models of the low-level ac-
tions to enable planning and require some form of the goal.

Other robotic ITL systems involve learning a procedure
to carry out a task. The CoBot service robot (Meriçli et al.
2014) can learn a procedure that includes conditional and
looping structures, to which the instructor can make correc-
tions and changes. Mohseni-Kabir et al. (2015) have a sys-
tem that learns a hierarchical task network (HTN) from a
single example, and uses heuristics to group tasks and re-
duce the amount of instruction required. The system devel-
oped by Suddrey et al. (2017) also learns a HTN. It learns the
preconditions of a task and can search for a way to satisfy
the preconditions, giving some flexibility. However, without
a direct representation of the goal, these systems are locked
into performing a task a specific way.

Interactive Task Learning has also been applied to com-
puting domains. For example, PLOW (Allen et al. 2007) can
learn tasks in a web browser, where it can learn a proce-
dure for tasks such as finding a hotel near a certain address
using a webpage. LIA (Azaria, Krishnamurthy, and Mitchell
2016) can learn various personal assistant type tasks that can
be procedurally executed. These approaches can generalize
certain arguments to apply to similar situations, but do not
actually represent the goal or use planning.

These systems focus on one task formulation or the other.
In this work, we demonstrate a hybrid approach that learns
both formulations, and applies to tasks that mix the two.

Agent Overview
This work builds on previous research on Interactive Task
Learning, realized in an agent named Rosie (Mohan and
Laird 2014), and implemented within the Soar cognitive ar-
chitecture (Laird 2012). Soar provides a symbolic working
memory, a rule-based procedural memory, a long-term se-
mantic memory, an episodic memory, and interfaces to per-
ception and action, as well as associated learning mecha-
nisms for the long-term memories.



package(e1) obj(e1)
grabbed(e1) red(e2)
box(e2) obj(e2)
alice(e3) person(e3)
office(e4) loc(e4)
blue(e5) box(e5)
in(e2, e4)
left(e2, e3)
near(e5, e2)

Figure 1: A simulated world for the mobile robot and some
of the corresponding state predicates.

Perception and Actuation
The Rosie agent has been deployed on three platforms, in-
cluding a tabletop arm, a 4-wheeled mobile robot, and the
Fetch robot with a 7 DOF arm, as well as simulated versions
of those robots. The same task-learning agent can operate
across these domains by relying on a uniform representation
of the world and basic actions. Domain-specific perceptual
processing and procedural knowledge create and maintain
a stable representation of the agent’s current beliefs about
the world, and implement a set of primitive tasks, such as
pick-up(obj) or go-to(loc).

The agent’s beliefs about the world are represented in
working memory as a set of entities E = {ei} and predi-
cates over those entities P = {pi}, pi = name(e1, e2, ...).
Predicates over one entity are called properties, such as
visible(e1), red(e2), or table(e3), and predicates
over two entities are called relations, such as in(e1, e2)
or right-of(e3, e4). Entities are categorized as either
objects, persons, or locations. Some example predicates are
shown in Figure 1.

The instructor can interact with the agent using natural
language through a chat interface. When a new sentence is
received, the agent parses and grounds the sentence using
knowledge in Soar based on Embodied Construction Gram-
mar (Lindes and Laird 2017), producing a semantic repre-
sentation of the sentence, connected to concepts in its work-
ing and semantic memories, many of which are grounded in
its perception of the environment. When the agent commu-
nicates with the instructor, it produces a message structure
which is converted into English using simple templates.

Task Learning
Rosie can learn all aspects of a new task through interactive
instruction: task structure, goals, task decompositions, pol-
icy, preconditions, and postconditions. Work by Kirk et al.
(2016) has also shown how the agent can learn new predi-
cates that are used during by a task. The agent learns a gen-
eral declarative representation of the task knowledge called
the Task Concept Network (TCN) that it stores in its long-
term semantic memory. It also learns procedural rules that
apply the learned knowledge to the current situation when
the agent is actually executing the task. The learning is im-
passe driven, which means that the agent attempts to execute

Discard the soda.
What is the goal?
The goal is that the soda is in the garbage.
What do I do next?
Pick up the soda.
(The agent picks up the soda)
(The agent approaches the garbage)
(The agent puts the soda in the garbage)
I am ready for a new task

Figure 2: Dialog for teaching the discard task.

the task until it is missing some knowledge required to make
progress. Its response to the missing knowledge is to do in-
ternal reasoning or initiate an interaction with the instructor
to obtain that knowledge. For example, if it is missing the
knowledge to select the next action, it will either do an inter-
nal search to determine which action to select, or if that fails,
ask the instructor what it should do. It then interprets the in-
struction, learns from it, and continues performing the task.
In the following sections, we describe how each of these
aspects of the task is learned in greater detail. Throughout,
we will use the example of teaching the simple task: ‘Dis-
card the soda’, which involves putting a soda can into the
garbage. Example instructions can be seen in Figure 2.

Task Structure: When the agent receives a task command
with a new name, it creates a new Task Concept Network
(TCN) and extracts the argument structure from the com-
mand, replacing references to specific entities or predicates
with slots, which are placeholders that will be filled in during
a specific task execution. For example, with discard, there is
a single argument, an entity (the soda), so the TCN is ini-
tialized with the task name and a single entity argument slot.
More complex commands can have multiple arguments, e.g.
‘Deliver the green box to the office.’ Refer to Figure 3 for the
full TCN learned for discard.

Goal: Once the agent has a task structure, it attempts to
perform it, but reaches an impasse because it does not know
the goal. It then asks the instructor ‘What is the goal?’ and
the instructor can reply with a statement such as ‘The goal is
that the soda is in the garbage’, which will be interpreted as
a set of one or more predicates: {in(esoda, egarbage)}.
The agent adds a representation of the goal to the TCN,
which includes representations of the goal parameters. Pa-
rameters that appear in both the goal and the task command
(esoda) are explicit parameters and are generalized by being
linked to the same slots in the TCN. Parameters that only
appear in the goal (egarbage and in) are assumed to be defi-
nitional for that goal and are not generalized. They are added
as new slots with implicit values (descriptions of the argu-
ment that can be matched against the state).

The agent then constructs a representation of the goal
in working memory using the general version in the TCN.
This goal is connected to specific entities in the world, ei-
ther matched through the arguments in the task structure
(for explicit parameters) or through the implicit values for
that slot (for implicit parameters). As a side effect of this



slote

type

type

goal
slotppredicate1subgoal1

slote1
slote2

task-rep arg1 slote

entity
type

discard
name

implicit

subtasks arg1

garbage

in

approach

subtask

subtask

pickup

implicit

arg1 entity

entity slote

Task Structure

Goal Structure

Subtasks

Figure 3: Task Concept Network for the discard task. Argument slots are shown as squares. Dashed rectangles represent the
root nodes of other concepts in semantic memory. The third subtask for putdown is omitted.

processing, a rule is learned through Soar’s chunking mech-
anism that in the future will elaborate the goal given the
current task and it incorporates the matching logic in its
conditions. In the case of discard, it learns a rule summa-
rized as [if task=discard(ei) and garbage(ej)
then goal=in(ei, ej)]. This is a rule that applies to a
discard task even if there is a different (non-soda) argument.

Task Decomposition: To actually execute the task, the
agent must decompose it into a sequence of subtasks. Each
subtask is either a previously learned task, or one of the
hand-coded tasks that the agent initially knows how to ex-
ecute (such as pick-up or go-to). If it has a goal for the
task, it performs an internal search to find a solution, which
if successful, determines the next subtask to select. If it can-
not identify the next subtask, it asks the instructor ‘What
should I do next?’ and the instructor can respond with the
next subtask (e.g. ‘Pick up the soda.’). Rosie performs that
subtask in its environment, and then uses internal planning
to identify the next two actions, approach(egarbage) and
put(esoda, egarbage), thus avoiding further instruction.

The agent learns each subtask to use in the future through
a process that is very similar to learning the goal. First it
stores a general structure of the subtask in the TCN, where
the arguments are connected to slots (see Figure 3). Then,
it matches that general structure against the current state
to construct a proposal of that subtask. Through chunking,
it also learns a rule to propose that subtask during the
parent task that is connected to specific entities in the
world. This proposal rule includes additional constraints
inherent to the subtask, such as if putting down an object
the object must be grabbed. For the discard task, it would
learn a rule summarized as [if task=discard(ei)
and visible(ei) and not grabbed(ei) then
propose pickup(ei)].

Policy: Once the task is successfully completed, the agent
knows which subtasks are used in the parent task, but does
not have a specific policy for when to do each subtask.
It must learn a policy mapping the current state to the
appropriate subtask Π : S → T . After the task is finished,

the agent does a retrospective analysis of its experience
and uses its domain knowledge to generate an explanation
of why those subtasks led to the goal being satisfied. First,
it retrieves the initial state (state of the world when the
task began) from Soar’s episodic memory, along with the
sequence of subtasks that it executed. It then repeatedly
selects each subtask in order, and simulating the effects of
the subtask on the state until it achieves the goal. Soar’s
chunking mechanism identifies the features of the state
that caused each subtask to succeed, and learns a rule that
prefers the executed subtask in a given state. This EBL
approach ignores irrelevant aspects of the state and learns
a general rule that applies to new and different situations.
For the discard task, it learns a rule that can be summarized
as: [if task=discard(ei) and grabbed(ei)
and garbage(ej) and near(eself, ej) then
perform putdown(ei, in(ej))].

Preconditions: The knowledge it learns from the above
methods is sufficient for the agent to perform the task in
the future. However, to truly learn hierarchical tasks, the
agent must be able to use and plan with a learned task.
Thus it must learn the preconditions (when it can per-
form a task) and postconditions (what the task accom-
plishes). To learn the preconditions, the agent again re-
trieves the initial state when the task began, and simu-
lates performing the task using the policy. If it succeeds
in reaching the goal, it learns a rule to propose the task in
a similar manner to learning the policy. The rule will in-
corporate the features of the state that had to be present
in order for the entire task to succeed. For discard, this
would be: [If object(ei) and visible(ei) and
garbage(ej) then propose discard(ei)].

Postconditions: Rosie does not have sufficient domain
knowledge to model all of the side effects of each subtask.
Thus, when the agent learns how the subtask changes the
world (postconditions), it only includes what the agent in-
tends to accomplish. It uses the learned representation of the
goal as the postconditions, thus the postconditions for dis-
card would be to add in(earg1, egarbage) to the state.
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Learning Procedural Tasks
The above approach is a powerful and flexible way of learn-
ing new tasks, since the agent can use its pre-existing knowl-
edge to adapt to different initial conditions or problems that
arise during execution. For example, in the discard task, the
agent expects to see the garbage at the start. If the agent
was later told to do discard when the garbage was not
visible, the approach subtask would fail. It could use its
knowledge of the goal and ability to search for a solution.
Using its knowledge it would identify and perform the ad-
ditional subtask of find(egarbage). The explanation-based
approach to learning the policy assumes that there is a well-
defined goal and that the agent can predict how the subtasks
will achieve that goal. However, if one of those assumptions
is broken, the agent cannot learn the policy and thus will not
learn how to execute the task in the future.

Some tasks do not have a goal that can be easily expressed
as achieving some external state in the world. For example,
consider a patrol task where the agent is told to drive in a
predetermined route around a building, going from one lo-
cation to another. When the task is finished, the state of the
world has not changed. Instead of achieving a new state of
the world, the purpose of patrol is to perform the movement
subtasks in a specific order – to follow a specified procedure.
In other tasks, even when there is an explicit goal, the agent
might lack sufficient domain knowledge to know why the
subtasks it executed achieve the goal. For example, it may
not know how a microwave works, but can follow instruc-
tions to use one. In this case, the agent should still learn to
repeat the same procedure in the future, as opposed to sim-
ply failing to learn anything.

We extend the previous work on goal-based tasks by ex-
panding the goal representations to include an ordered list
of subgoals and once in a subgoal, have the agent execute
a specific subtask instead of attempt to achieve a set of de-
sired predicates in the world. We also change how the policy
is learned by splitting it into multiple learning episodes and
handling learning failures by adding new procedural sub-
goals onto the subgoal list. This process is described in detail
in the following sections.

Expanding the Goal Representation
The previous work is only able to represent a single goal
that consists of a set of one or more predicates over enti-
ties in the world. For example, the goal of store(emilk)
is in(emilk, efridge) and closed(efridge). We ex-
pand the goal representation to include an ordered list of
subgoals. An individual subgoal can be a set of predicates
as before, but now it can also be a reference to a subtask.
This represents the subgoal of performing the subtask, and
allows the agent to represent a procedural task as a series
of procedural subgoals. Consider a very simple patrol task
that consists of going to the copy room and then going to
the main office. This would be represented as two subgoals,
one corresponding to the subtask goto(ecopyroom) and the
second corresponding to the subtask goto(emainoffice).
In the Task Concept Network, the subgoals have links to the
appropriate subtask. An example of this new representation
is shown in Figure 4.

This new goal representation requires that the state in-
cludes the current subgoal. When the agent starts to exe-
cute a subtask, it retrieves the initial subgoal. When the cur-
rent subgoal is satisfied, the agent then retrieves the next
one. When the final subgoal is satisfied, the agent com-
pletes the task. For state-based subgoals, the agent can deter-
mine it is satisfied by detecting the subgoal in the state. For
procedural-based subgoals, the agent must deliberately mark
the subgoal as being satisfied once the corresponding sub-
task has finished. The goal elaboration rule that constructs
the current goal connected to the state, is learned in the same
way as before, with the caveat that the rule must not only test
the current state and task, but also the current subgoal.

Policy Learning
In the previous iteration of retrospective learning, the agent
tried to learn the entire policy at once. If this failed due to
missing domain knowledge about how a subtask modified
the state, the agent would not learn anything. We therefore
split the policy learning into individual learning episodes,
where in each episode the agent attempts to learn one piece
of the policy. This process is shown in Algorithm 1. The



Algorithm 1 Policy Learning
1: procedure learn-policy(task T)
2: TCN ← retrieve-TCN(T )
3: [subtaski]← retrieve-subtasks(T )
4: for i = N → 1 do
5: si ← initial-state(subtaski)
6: g ← subgoal(si, T )
7: snext ← simulate(si, subtaski)
8: plan← search(snext, g,Π)
9: if g 6= ∅ and plan 6= ∅ then

10: spre ← preconditions(sti, plan)
11: Π(spre)← subtaski
12: else
13: gnew ← create-subgoal(subtaski)
14: prepend-subgoal(TCN, gnew)

agent retrieves the TCN for task T from semantic memory
(line 2) and retrieves the series of subtasks it executes from
episodic memory (line 3). The agent then works backwards.
If it performed N subtasks, it starts with the Nth subtask
(subtaskN ) and goes through each until the first. For each
subtask subtaski it retrieves the state of the world at the
beginning of that subtask si and the subgoal at that time g
(lines 5-6). It applies subtask subtaski to state si and then
uses the existing policy Π to search for a plan to achieve the
goal (line 8). If this succeeds, the agent uses the explanation
to determine what was true in the state in order for the sub-
task and plan to successfully reach the goal (spre, line 10).
This then is added to the policy (line 11). If there was no
goal, or the plan failed, then a new goal is created to per-
form subtaski and is added to the beginning of the subgoal
list in the TCN (lines 13-14).

In the case of a procedural task of N steps, it creates a
list of N subgoals. In the case where there is a goal but the
agent was unable to explain the entire policy, from the point
at which the agent can generate an explanation, it can learn
a policy, but not before that point. Thus, it then creates a list
of procedural subgoals up to that point, and learns a policy
from there. This means a task can have both procedural and
goal-oriented components.

Evaluation
To evaluate our system, we first demonstrate the agent learn-
ing two different tasks, and describe what the agent learns
and how the agent adapts to variations in the task. We then
give a qualitative analysis of the space of tasks that our sys-
tem can learn and its limitations.

Task Learning Examples
We now go through two examples of task learning, one
which is a purely procedural task, and the second which
demonstrates how the agent can still learn a task when do-
main knowledge is missing. These were performed with a
simulated version of the mobile robot in a multi-room office
environment, although we can perform them on the physical
robot. This is the same simulated environment as shown in
Figure 1.

Lead a tour.
What is the goal or first subtask?
Go to the main office.
(When finished)What do I do next?
Say ‘This is the main office.’
What do I do next?
Go to the copy room.
What do I do next?
Say ‘Here is where you can print papers.’
What do I do next?
You are done

Figure 5: Dialog of teaching the tour task.

Giving a Tour: The first task is to lead a tour of the build-
ing. For brevity, this involves only two locations, but there
could be many more. The interaction for this task can be
seen in Figure 5. The instructor says ‘Lead a tour.’ This is
the first time the agent has seen this task, so it creates a new
TCN with a procedural structure with a single concept ar-
gument (for the concept tour). The instructor never gives a
goal, but starts going through a list of tasks. Each time the
agent executes the subtask and then asks what it should do
next. Finally, the instructor says ‘You are done.’ At this point
the agent begins the retrospective policy learning with per-
forming the final subtask (Saying ‘Here is where you make
copies’), but without a goal, the agent fails to learn a policy.
The agent creates a new goal with the first subgoal of per-
forming the say subtask. It keeps working back until it has
created a list of four ordered subgoals, one for each subtask.

The next time the agent is told to lead a tour, it retrieves
the first subgoal and performs the first subtask (driving to
the main office). Once that is finished, it marks that subgoal
as satisfied and advances to the next one. This occurs until
all the subtasks are finished. Thus it is able to accomplish
the task without any additional instructions.

Deliver: The second example is that of deliver, shown in
Figure 6. The instructor gives the command ‘Deliver the
package to David’ and provides the goal of ‘The goal is that
David is holding the package’. Normally, the agent would
have sufficient domain knowledge to internally plan and
solve the problem without any additional instruction. How-
ever, for this example we removed the model for pickup
which adds the predicate grabbed(package). Since
grabbed is a precondition for the give(package,
David) subtask, the search fails and the agent asks what
to do next. The instructor says ‘Pick up the package’, and
the agent does it. From there, the agent uses planning to find
the next two steps: find(David) and give(package,
David). Once it gives the package to David, it recognizes
that the goal was achieved, and completes the task.

During the policy learning, the agent first tries to learn the
policy for give, and is able to simulate achieving the goal.
Thus it learns the policy rule [if task=deliver(ei,
ej) and grabbed(ei) and visible(ej) then
do give(ei, ej)]. Similarly, it successfully learns a
policy rule for find as [if task=deliver(ei, ej)
and grabbed(ei) and not visible(ej) then



Deliver the package to David.
Please tell me the goal or the first action.
The goal is that David is holding the package.
(The search for the next action fails due to missing knowl-
edge)
What should I do next?
Pick up the package.
(Rosie picks up the package)
(Rosie finds David)
(Rosie gives the package to David)

Figure 6: Dialog of teaching the deliver task without the
model for the pickup subtask.

do find(ej)]. However, when it tries to learn a policy
for pickup, it fails because it is missing the knowledge
that it results in the object being grabbed. Thus it pushes a
new subgoal of performing the pickup action.

Afterwards, the agent is told to deliver a soda to
Bethany. It will attempt the first subgoal, which is to
perform pickup. However, suppose there is no soda
in the room, and thus it cannot perform that action. But
just as with other goals, it can try to search for a way
to satisfy that subgoal. It finds that if it performs the
subtask find(esoda), the soda will become visible
and the pickup action will succeed. This will also
get incorporated into the policy during the retrospective
learning as the rule if task=deliver(ei, ej) and
subgoal=pickup(ei) and not visible(ei)
then do find(ei). This demonstrates the benefit of
formulating these procedural steps as subgoals and allowing
the system to use planning to handle variations in the task.
Note that it is does all of this without requiring any further
instructions, and generalizes to new variations of deliver
involving different objects and people.

Space of Learnable Tasks
This work has expanded the space of tasks that Rosie can
learn to any task that can be broken down into a series of in-
dividual subtasks. In the least general case, Rosie can mem-
orize the task demonstration as a procedure and follow it in
the future. If the agent is provided with a description of the
goal and additional domain knowledge in the form of sub-
task models, it can learn a more flexible policy, which allows
some variation in the task. Currently, the subtasks must be
singular, meaning they involve specific entities in the world
and cannot have collections or numbers of entities (such as
all the red blocks or five drinks). These tasks must be even-
tually decomposable into the initial set of subtasks that the
agent knows how to do. It cannot learn new primitive motor
tasks; it can only learn compositions of existing motor tasks.
Similarly, the tasks are limited to entities and properties that
the agent knows how to perceive and incorporate into the
state representation. The agent also cannot perform tasks
that involve complex control flow, such as loops, enumer-
ations, or conditional subtasks and cannot learn task varia-
tions depending on the arguments. Currently, to teach a vari-
ation on a task we would use a different verb (e.g. ‘Deliver

the (obj) to (person)’ vs ‘Take the (obj) to the (location)’).
Our approach drastically increases the number of tasks that
the agent can learn. Previously, the same restrictions above
still applied, but the agent required that the task had a single
goal that could be described as a set of state predicates, and
that the agent knew sufficient models to explain how that
goal was achieved. Examples of new tasks that were previ-
ously not possible include patrolling a route, giving a tour,
making an announcement, and driving in a square.

Discussion
We present a hybrid approach to Interactive Task Learn-
ing that can learn tasks that are formulated as achieving a
goal, and tasks that are formulated as following a procedure.
When the agent has a goal, it uses its rich domain knowledge
to generate plans that will achieve that goal. This is flexible
to variations in the initial state and ways of accomplishing
the task. But if that domain knowledge is incomplete or if
there is not external goal to achieve, a procedure can provide
a different way of accomplishing a task, which is less flex-
ible but requires less knowledge. In addition, since our ap-
proach unifies these two formulations, it can learn tasks that
are a blend of the two – where a goal is given but the agent is
unable to generate a complete plan. The deliver example
also shows that with a hybrid approach, the agent can utilize
its planning capabilities even during procedural steps. This
ability to learn either task formulation is a significant step
in improving the generality of an ITL agent. It also is effec-
tive at learning all the aspects of a task and is able to perform
the task in the future without needing additional instructions.
This approach is also able to learn many tasks after a single
training example, which makes the learning very efficient. In
addition, this explanation-based approach produces general
results that can transfer to new variations in the task. Since
entities are parameterized, learning a task such as deliver
for one object automatically transfers to other objects with
the same affordances. Note that this transfer only happens
within variations of a task, not between different tasks.

There is also a benefit in having an approach that can
learn diverse task formulations, which distinguishes this
work from those that only learn goal-based or procedural
formulations. Indeed, one may be able to learn all the tasks
mentioned using only one or the other. However, we have
shown in the deliver example is that incorporating planning
into a procedure can accommodate simple variations and re-
duce the number of instructions needed. Alternatively, one
could possibly formulate the tasks like give a tour as achiev-
ing a goal and solve using planning (i.e. formulate it as a
goal involving information gathering and communication).
However, the goal would have to include temporal order-
ing information, and require that the state representation in-
clude complex information and communication predicates.
It would also be difficult for a non-expert user to try and
describe such a goal, as opposed to listing the steps.

As discussed in the previous section, there are limitations
of the tasks that the agent can learn. Since we can only learn
tasks that can be decomposed into a series of singular sub-
tasks, any task our agent can learn could also be solved by
a number of traditional planners. However, our approach is



not directly competing with planning research, in fact, in-
tegrating a better planner would improve the overall perfor-
mance. Our work addresses two key concerns. First, how can
an agent learn a representation of the task through instruc-
tion that can then be used during planning, and second, what
if the agent lacks the necessary knowledge for the planner to
succeed?

There are also task formulations that our agent cannot
currently handle. Some examples include preventing some-
thing from occurring, maintaining some condition, or max-
imizing some quantity. It is an area of future research to
see how well these formulations can be accommodated into
the current framework. Ideally we would like to have a uni-
fied approach that can handle all of these. In addition, there
are other approaches which can learn tasks which are more
than sequences. For example, Meriçli et al. (2014) can learn
a procedural Instruction Graph that incorporates additional
control constructs, such as loops and conditionals. We plan
on expanding the goal and task representations further to in-
corporate those structures, rather than being limited to a se-
quence, and allowing arguments to be collections of entities.
In addition, our agent cannot learn variations of a task where
the goal or procedure is different depending on the argument
being used (such as storing milk in the fridge verses cereal in
the pantry). This could be addressed by adding conditional
structures.

Finally, the instructor cannot correct or extend a proce-
dure, which would be one way of modifying a task. Our
agent only generalizes when it can create an explanation to
justify it, so this is likely to be correct if the domain knowl-
edge is correct. However, if some important aspect of the
task is not captured in the explanation, then it may learn
an incorrect policy. Another area of future work is to al-
low the agent to learn new task models. This could allow
it to initially learn a procedure, but then later move on to
a more flexible policy once it has acquired the additional
knowledge. These action models could be obtained through
instruction or learning from experience.
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