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A B S T R A C T

In this paper, we present a Cognitive Manager for urban traffic control, built using MECA, the Multipurpose
Enhanced Cognitive Architecture, a cognitive architecture developed by our research group and implemented in
the Java language. The Cognitive Manager controls a set of traffic lights in a junction of roads based on in-
formation collected from sensors installed on the many lanes feeding the junction. We tested our Junction
Manager in 4 different test topologies using the SUMO traffic simulator, and with different traffic loads. The
junction manager seeks to optimize the average waiting times for all the cars crossing the junction, while at the
same time being able to provide preference to special cars (police cars or firefighters), called Smart Cars, and
equipped with special devices that grant them special treatment during the phase allocation policies provided by
the architecture. Simulation results provide evidence for an enhanced behavior while compared to fixed-time
policies.

1. Introduction

The concept of Smart Cities appeared during the Smart Growth
movement in the late 1990s (Harrison & Donnelly, 2011), where new
policies for urban planning were addressed. Among the many kinds of
services conceivable within the “smart cities” paradigm, one of para-
mount importance is urban traffic control. In big cities, increasing
traffic intensities are constantly creating huge traffic jams and the
standard approach for managing traffic lights (fixed-time controllers)
are not being able to maintain the situation under reasonable para-
meters anymore. Adaptive traffic controllers, which measure current
traffic conditions and try to employ dynamic policies, are available but
still without a standard approach being employed in real cases. The
problem is very complex, and even if the use of computational in-
telligence can help improving efficiency, in particular cases, there are
many reasons to believe that a proper solution might require the use of
scalable strategies, which might start by first employing simple local
solutions, followed by increasing scale-ups including new capabilities,
in order to improve the solution, as new details and strategies become
available, and are able to be incorporated in the solution. Following
(Kelaidonis et al., 2012), we propose that this boosting technology in
dealing with the problem might be the use of Cognitive Managers (see

Section 3) as a general abstraction in dealing with Smart Cities pro-
blems.

The general approach is to model the problem as a System of Systems
(SoS) (Gorod, Sauser, & Boardman, 2008). It is important to differ-
entiate here a System of Systems from simply a System of Subsystems. Any
traditional system can be understood as a system composed of sub-
systems or even a Family of Systems (FoS). Systems of systems, on the
contrary, are not just a larger version of the same old hierarchical
structure. A system of systems is “open at the top”, “open at the bottom”
and “continually evolves - but slowly enough to be stable” (Abbott,
2006). What characterizes an SoS is that new SoS parts are continuously
joining and leaving the SoS, establishing a dynamic configuration to it,
which easily might become very complex. Our approach proposes that
each part joining the SoS should be controlled by a Cognitive Manager,
responsible for internally controlling its own subsystem, with its own
performance measures, and externally interacting with the SoS, asking
and offering collaboration to other peers in the SoS. The Cognitive
Manager should be intelligent enough to decide how much to com-
promise, in its seek for optimization of its performance metrics, in order
to collaborate with requests coming from other SoS peers, and also how
much and when to ask for collaboration from other peers in order to
enhance its own performance indexes. For the construction of such
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Cognitive Managers, we understand that simpler computational in-
telligence techniques might not be enough. We might require some-
thing more robust and eclectic, like a cognitive architecture.

In this paper, we present a first contribution to the subject, de-
scribing a small SoS, composed by a set of Junction Cognitive Managers,
each of them controlling the traffic lights of a single junction in a city
topology, a Car Cognitive Manager, a simple smartphone application
which can turn any car (in principle, special cars, like police or fire-
fighters car) into a Smart Car, and a Coordinator Cognitive Manager,
which receives Smart Car requests for special treatment, identify a
possible Junction Cognitive Manager which is closer enough to the
Smart Car in order to collaborate with it, and send a reference of it to
the Car Cognitive Manager. After that, the Car Cognitive Manager starts
talking directly to the Junction Cognitive Manager and, if possible, the
Junction Cognitive Manager might collaborate and give priority access
to the Smart Car in its control of its traffic lights. In our implementation,
both the Car Cognitive Manager and the Coordinator Cognitive
Manager were simplified in order to allow our simulations to become
easier. The Junction Cognitive Manager, though, was constructed using
MECA, the Multipurpose Enhanced Cognitive Architecture (Gudwin
et al., 2017, 2018), a cognitive architecture being developed by our
research group. Our intention here is not to simply solve the traffic
problem, but to show the potential of MECA for building other kinds of
Cognitive Managers in other Smart Cities problems and evidence the
convenience of using cognitive architectures like MECA to build and
manage Systems of Systems. Our experimental results show a decrease
in waiting time which is comparable to other computational in-
telligence techniques (see Section 2), but because we are using a cog-
nitive architecture, it is scalable to include in the future other en-
hancements, like the communication between neighbor traffic lights.

In Section 2 we introduce the problem of urban traffic control,
providing an overview of the state of the art in the field. In Section 3 we
introduce some background about the construction of cognitive man-
agers and how they can be useful in building solutions for smart cities
technology. In Section 4, we explain how MECA can be used in order to
build a cognitive manager, and in Section 5 we describe the details of
our cognitive manager for the case of urban traffic control. In Section 6
we present our results and in Section 7 the conclusions.

2. State of the art in urban traffic control

After the first traffic signals controlled by human brains (police
officers), the first applications of traffic signal control began using
fixed-time control methods, with a predetermined cycle and split time
plan (green duration as a portion of the cycle time), which were con-
venient for relatively stable and regular traffic flows. These signal
control systems assume a periodic operation, in which each light goes
through its sequence of phases with calculated split parameters in a
cycle that is offset from its neighbors. A fixed-time plan can be built
using offline optimization tools, such as TRANSYT (Robertson, 1969),
SYNCHRO (Husch, Staff, & Albeck, 2003) and VISGAOST (Stevanovic,
2007), based on historical traffic flow data, for specific time periods.

Later on, real-time traffic-responsive control came into practice with
the help of sensing technologies. The idea is that any traffic control
action is made under a certain control strategy according to real-time
traffic data. The cycle length might be dynamically adjusted to meet the
traffic demand. The Sydney Co-ordinated Adaptive Traffic System
(SCATS) (Sims & Dobinson, 1980) dynamically adjusts common cycle
length of a given traffic network (or sub-network) to meet the traffic
demand. The SCOOT (Split Cycle and Offset Optimization Technique)
method (Robertson & Bretherton, 1991) and the ACS-Lite (Luyanda
et al., 2003) are examples which rely on the fixed-time offline calcu-
lation as a baseline or contingency plan. In some traffic control systems,
each intersection decides which phase to apply in order to enforce
safety and other constraints, rather than being oriented towards a
parametric timing plans (Mirchandani & Head, 2001; Papageorgiou,

Diakaki, Dinopoulou, Kotsialos, & Wang, 2003).
Some examples of applications in real-time traffic-responsive con-

trol in major cities are:

• New York City: 7660 (of a total of 12,460) signalized intersections
are controlled by a central computer network;

• Toronto: 83% of its signals are controlled by the Main Traffic Signal
System (MTSS). 15% also use the SCOOT method.

• Sydney: 3400 traffic signals co-ordinated by the SCATS. Designed
and developed by RTA, the system was first introduced in 1963 and
progressively developed since then. By October 2010, SCATS was
licensed to 33,200 intersections in 144 cities across 24 countries
worldwide, including Singapore, Hong Kong, Dublin, Tehran and
Minneapolis and Detroit.

• Melbourne: 3200 traffic lights across Victoria, including regional
areas such as Geelong and Ballarat, using SCATS. Some 500 inter-
sections also have tram and bus priority.

• Adelaide: 580 sets of coordinated traffic lights throughout the me-
tropolitan region managed by the Adelaide Coordinated Traffic
Signal (ACTS) System.

Finally, one major latter attempt was the introduction of computa-
tional intelligence, trying to simulate the intelligence of nature to some
extent by the usage of certain computational methods, which include
artificial neural networks, fuzzy systems, and evolutionary computation
algorithms (Zhao, Dai, & Zhang, 2012).

Some approaches consider the problem only locally, restricted only
to a small number of traffic lights (Sik, Soo, Kwang, & Kug, 1999). Some
reactive methods can achieve good performance for isolated intersec-
tions, making decisions quickly based on traffic flow, like interval be-
tween vehicles or anticipated queues of vehicles, but these methods are
susceptible to sub optimal decisions (Viti & Zuylen, 2010; Lämmer &
Helbing, 2008). However, when dealing with the whole urban network,
because of the non linear and stochastic events which happen in the
network and their inter-dependencies, the actual state of traffic be-
comes hard to assess and the effects of changes in traffic control be-
comes almost impossible to forecast (Srinivasan, Choy, & Cheu, 2006).
Hence, how to achieve scalable network-wide optimization remains a
challenging problem. Some methods try to produce more optimal so-
lutions considering a given time horizon, which is divided into discrete
intervals based on a fixed time resolution, forming a state space which
is searched via an optimization process.

Some examples include PRODYN (Henry, Farges, & Tuffal, 1983),
COP (Sen & Head, 1997), ALLONS-D (Porche & Lafortune, 1999), OPAC
(Gartner, Pooran, & Andrews, 2002), ADPAS (Kim, Park, & Baek, 2005)
and CRONOS (Boillot, Midenet, & Pierrelee, 2006). Network-wide
control systems, such as RHODES (Mirchandani & Head, 2001) and RT-
TRACS (Gartner et al., 2002), either apply additional signal control
guidance from neighboring intersections that incorporates non-local
impact or extend the prediction horizon with flow information from
neighboring intersections. The SchIC method (Xie, Smith, Lu, & Barlow,
2012) can achieve search space reduction and state elimination by
exploiting structural flow information in the prediction horizon and the
intersection control problem is formulated as a scheduling problem,
based on an aggregate representation on flow data. Recent works in-
vestigated different approaches to this problem, such as dynamic pro-
gramming (Heung, Ho, & Fung, 2005; Heydecker, Cai, & Wong, 2007),
neuro-fuzzy networks (Choy, Srinivasan, & Cheu, 2003) and re-
inforcement learning (Cai, Wong, & Heydecker, 2009). Nakamiti (1996)
developed a distributed control traffic system using a distributed
computational intelligence approach. In this approach, agents have to
interact with one another seeking for cooperation, despite their in-
complete, uncertain or even inconsistent knowledge, using a symbiosis
among distributed artificial intelligence, fuzzy sets theory, case-based
systems and genetic algorithms. Nakamiti’s distributed traffic control
system was applied to a central region of the city of Campinas, Brazil,
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concerning six junctions with eighteen traffic lights. In simulations
using real data, the distributed traffic controller performed better than
traditional fixed-time techniques, showing delay times 43% lower and
cars queues 24% smaller than the traditional fixed-time techniques
optimized for critical traffic scenarios.

Zhao et al. (2012) surveyed some commonly used computational
intelligence (CI) paradigms, analyzed their applications in traffic signal
control (TSC) systems for urban surface-way and freeway networks, and
introduced current and potential issues of control and management of
recurrent and non recurrent congestion in traffic networks. They
showed fuzzy controllers applied to single junctions that can bring up to
13% of improvement, and also fuzzy controllers for multiple junctions
and lanes that brought 25% performance improvement. Applications of
artificial neural networks were shown to produce optimal instantaneous
signal timing, while automatically adapting to long term changes. Even
in rush-hour conditions, improvements were still from 14.79% to
18.11% in average delay time and from 11.79% to 14.21% in average
travel time, compared with the isolated fixed-time control method.
Genetic algorithms and Swarm Intelligence approaches showed better
real-time overall performances, effectively alleviating urban traffic
pressures and reducing waiting time of vehicles. The authors conclude
that CI methodologies and technologies are effective solutions for TSC
problems. According to them, there is no criterion to determine which
technology is more suitable or how to apply these methodologies in the
field of TSC. They also believe that some specific problems, such as
“blue corridors” for emergency vehicles, will find new ways to be
solved. The researchers state that more research work is needed to build
the basis for the area and finally poses that CI technology will play an
active role in future intelligent traffic systems development.

Box and Waterson (2013) developed one traffic light controller
which learns strategies based on previous experience. They used human
experts to control a single microscopic traffic simulation of an area in
Southampton’s urban road network. The researchers used the human
experts’ decisions to train a neural network, which was later used to
control the simulation and achieved better results than earlier applied
algorithms and benchmarks.

3. Cognitive managers

Kelaidonis et al. (2012) introduced the notion of a Cognitive Man-
ager, as a special kind of agent managing a set of physical objects made
available at Internet due to a process of virtualization. This virtualiza-
tion consists in plugging-in physical objects from the real world to the
Internet, allowing them to provide information about themselves and in
some cases receiving commands meant to cause some change in the
object internal state or a mechanical action in the physical world. A
Virtual Object (VO) is then the representation of a physical object at the
Internet, providing information about it and possibly allowing com-
mands affecting its behavior in the physical world. In this sense, phy-
sical objects like cars, buses, trains, traffic lights, doors, ordinary lights,
air conditioners, and many other devices might provide information
and be (partially) remotely operated through Internet. Also, public
spaces like gardens, parking places, stations, libraries, and govern-
mental offices, might provide information such as images and sound,
and have themselves be managed in terms of access control, environ-
mental control and resource availability by the Internet.

Even though the existence of VOs brings an interesting scenario,
allowing us to grab information from different objects at a city en-
vironment, in general the situation starts to become more interesting
when many different VOs are mashed up into Composite Virtual Objects
(CVO) (Kelaidonis et al., 2012), which together provide some sort of
functionality, like e.g. the urban traffic control of multiple traffic lights
in a city environment. Each junction of streets/roads can be seen as a
whole system of VOs, where each traffic light is a VO, each induction
loop is also a VO, and all of them together can be seen as a CVO system.
One important difference between standard VOs and CVOs is that

usually a CVO has a dynamics in time, requiring some sort of control. In
this sense, a CVO Manager usually employs control rules opening and
closing traffic lights, such that the traffic might flow. These control
rules might be fixed, and in such a case a CVO might only offer traffic
statistics information, which might be useful for transit authorities. But
these control rules might be adaptive, and in this case, the CVO Man-
ager might accept requests for changing its control strategy, in specific
cases. Now, considering an SoS scenario, different CVO managers might
interoperate, requesting the collaboration of other systems. Imagine for
example, a CVO comprising the many systems available in a car,
managed by a car CVO manager, and a junction of streets (traffic lights
and induction loops on a crossroad), managed by a junction CVO
manager. The car CVO manager might require the collaboration of the
junction CVO manager to facilitate its passing through the traffic lights.
The junction CVO manager might decide to collaborate or not with the
car CVO manager, depending on its traffic conditions. In a light traffic
situation, (or if the car is an emergency vehicle like an ambulance, or a
police car), the junction CVO manager might change the traffic lights in
order to facilitate the car crossing the junction with minimal delay.
Also, neighbor junction CVO managers might exchange information
requesting some sort of collaboration with their neighbors in order to
dismiss a traffic jam.

The full specification for the behavior of a CVO manager can be,
though, very challenging. To provide the standard properties expected
from an SoS (autonomy, belonging, connectivity, diversity and emer-
gence) some sort of enhanced intelligence from the part of CVO man-
agers might be necessary. Following Kelaidonis et al. (2012), we pro-
pose that this should be solved by making these managers cognitive.

The term cognitive here is used in association with a technology that
operates inside a complex environment, observes it, makes behavior
choices, and receives feedback from it, all the while learning – assem-
bling a data set that will help determine future behaviors based on past
and current feedback (Thomas, Dasilva, & Mackenzie, 2005). This be-
havior might include interacting with other cognitive managers, asking
for their help, and also attending requests for help from still other
cognitive managers.

An example of such a scenario is presented in Fig. 1. Here, different
cognitive managers (CMs) join and leave the Smart City SoS. Some of
these are continuously managing a set of VOs (e.g. a junction CM
managing the different traffic lights and induction loops comprising a
junction crossroad), with goals (e.g. the goal of minimizing the average
trip time of all cars crossing the junction) and performance indexes
(PIs) to meet (e.g. a traffic quality index being measured at each
junction). We might have a house CM, providing access control, air
conditioned control, illumination control, etc. Others, like car CMs,
house CMs or people running their smartphones (which also work as
CMs), might appear and disappear as required, entering and leaving the

Fig. 1. Examples of cognitive managers.
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Smart City SoS and asking for collaboration regarding their own goals.
The construction of a Cognitive Manager might require a special

strategy in order to provide cognitive capabilities to these managers. In
our case, we propose that these cognitive abilities can be gained with the
aid of a cognitive architecture, in this case, the MECA Cognitive
Architecture (Gudwin, 2017). A cognitive architecture can be viewed as
a computational architecture suitable to bring cognitive abilities to an
artificial agent. Cognitive architectures (Kotseruba, Gonzalez, &
Tsotsos, 2016) are developed using as a source of inspiration different
models for cognitive capabilities human beings are known to possess,
like perception, memory, internal representation of the external world
and the ability to use this internal model to perform simulations pre-
dicting future scenarios, making plans of action and executing those
plans in order to satisfy the system’s goals and/or other motivations.

The cognitive abilities required for a particular cognitive manager
might depend on the VOs under their supervision, its goals and moti-
vations, its performance indexes and its possibilities for acting on the
real world. In our case, we used the CST toolkit (Paraense, Raizer, de
Paula, Rohmer, & Gudwin, 2016) and the MECA cognitive architecture
(Gudwin, 2017) to construct a cognitive manager. An overview of the

MECA cognitive architecture can be seen in Fig. 2.

4. Designing a cognitive manager with MECA

The MECA Cognitive Architecture provides many features for
building cognitive capabilities into a CVO Manager. The exploitation of
these features depends on the complexity envisioned for the manager.
First of all, it is necessary to analyze the VOs managed by the CVO
manager, in order to evaluate the potential information they are able to
provide, and the possible commands which can be sent to them. This
will allow the definition of the available Sensory and Motor Codelets to
be included in MECA, together with the Memory Objects to be created
by the Sensory Memory and those used as actuators by the Motor
Codelets (see Section 5 for an example).

4.1. Designing the behavioral system

After sensors and actuators are defined, the next step is to build up
the Behavior Subsystem. The MECA architecture is split by design into
two separate but complementary subsystems: System 1 and System 2,

Fig. 2. The MECA cognitive architecture.
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following cognitive models for dual-process theories. According to
these theories, System 1 is responsible for specialized and automatic
behavior, while System 2 is responsible for goal-based, deliberative
behaviors. These two subsystems are intertwined, and the deliberations
of System 2 are able to interfere with the automatic behaviors at System
1, generating a hybrid overall behavior, partially automatic, partially
deliberative. In MECA, System 1 is implemented by a Subsumption
architecture (Brooks, 1986), where three different kinds of behaviors
are possible:

• Random Behaviors.

• Reactive Behaviors.

• Motivated Behaviors.

In a subsumption architecture, all behaviors are generated in par-
allel, and they compete with each other in order to have access to the
actuators. So, at each time, all these three kinds of behaviors are gen-
erated, and evaluated given the actual situation and its context.

In simpler situations, where the CM must provide only a well known
automatic behavior, only Reactive Behavioral Codelets are necessary.
Reactive Behaviors are those which can be determined by a simple
function or algorithmic procedure over the inputs. So, the actuator
values are calculated as a function of the sensory inputs. The CM de-
signer must look at the Memory Objects at the Motor Memory and
delineate the set of different behaviors which might be able to de-
termine their value.

Different options might be considered. If different behaviors affect
the same actuators, Container Memories might be used such that the
many behaviors are allowed to compete and only the winner will be
able to affect the Motor Codelets.

In some situations, the designer might opt to include Random
Behaviors, in cases where only Reactive Behaviors are not enough to
generate a solution. In a Reactive Behavior, Codelets inputs are used to
verify if the conditions for running the behavior are met. If these con-
ditions are not met, the evaluation of the codelet outputs receives a very
low score, such that the behavior is not chosen. In situations where no
Reactive Behavior conditions are met, it might be reasonable to have
Random Behaviors generating an unexpected output.

This happens also in human behavior. When we don’t know what to
do, we start doing random moves, trying to move ourselves out of the
stuck situation, such that we are able again to decide what to do. The
use of Random Behaviors might move the system state to a different
condition, where other Reactive Behaviors are suitable, and then the
system might recover for example from a repetitive behavior where it
got stuck.

Even though Brooks proved that complex behaviors can be gener-
ated through the competition of Reactive Behaviors alone, there is a
limit on what can be expected from only Reactive (and eventually
Random) Behaviors. Reactive behaviors are blind. If the conditions for
triggering them are met, they are executed, without any evaluation on
the possible results to the system situation. If these conditions are well
defined, Reactive Behaviors can be quite effective. But the meeting of
any performance index is just a casual offspring of a fortunate set of
behaviors, chosen by the designer experience on the possible outcomes
of the system actions (or by learning, if a learning system is used to set
up a set of reactive behaviors). The system, in itself, is not using any
performance index for taking decisions. It is just reacting in a prescribed
way, following a script given the sensed situation. Reactive Systems
might be defined by a simple (or fuzzy) rule system, where rules match
a condition into a given action, or similarly, using a neural network
(e.g. a multi-layer Perceptron), where a learning system might be used
to train this neural network.

During the design of a Cognitive Manager, though, in many cases it
is possible to define one or more performance indexes, which the user
wants to optimize. In MECA, these performance indexes can be used to
determine a Motivated Behavior, giving rise to Drives. While in pure

Reactive Systems, actions are chosen as a mere function of the sensed
inputs, in Motivated Behavior, actions are chosen in order to optimize a
Drive.

The concept of motivational behavior in CAs has its inspiration in
studies about Human Motivation, realized by Hull (1943) and Maslow
(1943) in Cognitive Psychology. According to Hull’s theory of behavior
(Hull, 1943), when a motor action is a pre-requisite to optimize the
probability of survival of either an individual or a species, we say that
there is a state of needness. This need motivates or drives the associated
motor action. So, Hull defines a Drive as being a variable used to
characterize a need. Drives are used as a measurement of a performance
index, which the creature must optimize, to survive. In a living being, a
drive might be related to the many needs, such as the need for food, for
water, for air, the need to avoid injury, to maintain an optimal tem-
perature, the need to rest, to sleep, and to mate. In an artificial agent,
drives are just performance indexes the agent must optimize, being
directly associated with the desirable behaviors we want the agent to
manifest. They are involved with a desirable future state for the agent,
where drives values are minimized or maximized. So, a drive can be
seen as the measurement of the agent’s success in achieving a purpose.
Also, a behavior which is performed to satisfy a drive is said to be a
motivational behavior or a motivated behavior.

Following Hull’s ideas, Sun (2003) proposed a motivation theory to
be used within a Cognitive Architecture. According to Sun (2009),
humans, animals or cognitive agents need to follow important criteria
in daily activity to survive in any environment: sustainability, purpo-
sefulness, focus and adaptivity. Every agent must attend its physiolo-
gical needs (sustainability), such as hunger, thirst, avoid physical
dangers and others. Consequently, its actions must be based on its
purposes, instead of a random choice (purposefulness) (Anderson,
2014; Hull, 1943; Sun, 2009). Besides that, it must focus its activities
such that its needs and purposes are consistent, persistent and con-
tinuous (focus) (Sun, 2009; Toates, 1986). However, there may be
temporary or permanent situations in which the agent might enter into
a state of urgency (Sloman, 1987; Sun, 2009), while a special behavior
might be appropriate. Finally, the agent must be able to adapt its be-
haviors according to the objectives to get the best results (Sun, 2009).
These criteria, facilitate understanding that motivational dynamics in
animals or humans are a crucial part of composing a final behavior
(Sun, 2009).

Both theories suggest that motivations are used as a reference signal
in a feedback control system, guiding and optimizing human behaviors
in order to achieve the best results considering its internal needs.
Therefore, needs motivate humans and animals to decide the best
choice of action such that these internal needs can be suppressed and a
desired state reached.

The notion of drive is very important for understanding another
critical cognitive capability: emotions (Canamero, 1997). There is an
intrinsic relationship between motivations and emotions. The concept
of emotions came from cognitive psychology and philosophy, as an
alternative way to address the problem of behavior generation (Bates,
1994; Budakova & Dakovski, 2006; Canamero, 1997, 1998; Meyer,
2008; Picard, 1997; Reilly, 1996; Septseault & Nédélec, 2005). There is
no consensus about what emotions really are. Different approaches
have different views for what they are and how to model them. For
example, Ortony, Clore, and Collins (1990) understand emotions as
“valenced reactions to events, agents, or objects, with their particular
nature being determined by the way in which the eliciting situation is
construed”. Sloman (1998) and Sloman (2001), in turn, understands
emotions as internal “alarms” which give a momentary emphasis to
certain groups of signals. Damasio (1994) and Damasio (1999) distin-
guish between “emotions”, which affect the body and “feelings”, which
are a cognitive introspection of emotion. Other authors have completely
different views about what emotions are. For example, to Canamero
(1997), emotions work like “amplifiers” for motivations, working as
homeostatic processes related to physiological variables.
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In MECA, drives are memory objects generated by Motivational
Codelets in two ways: (i) directly from sensory variables or (ii) derived
from other existing drives in the agent. MECA relies on Canamero
(1997) model of emotions where emotions are viewed as cognitive
distortions on the map of drives, changing for a given time the relative
intensity of the different drives on the system, amplifying some drives
and decreasing the intensity of others. For that purpose, we include
another parameter in our conception of drive: emotional distortion,
which is a value (positive or negative) which is summed with the ac-
tivity level of a drive, in order to prioritize the motivated behaviors.

Emotional codelets are modulated by Moods. Moods are a kind of
emotional state which is determined byMood Codelets, based on sensory
data acquired from the environment. Depending on being in a normal
mood, or on an alternate mood like sleepy, worried, terrified, and in love,
the emotional codelet might determine a cognitive distortion to the
drives landscape, making that a different priority is used to select mo-
tivated behavior.

We can formalize the concept of drive as:

Definition 4.1. A drive d is defined as a tuple =d A θ δ p{ , , , } where:

• A is the activity level representing the intensity of the drive,
∈A [0, 1]

• θ is the urgency threshold such that if >A θ then the drive is in a
state or urgency, ∈θ [0, 1].

• δ is the emotional distortion which should be added to A in order to
compute the intensity of the drive, ∈ −δ [ 1, 1] and ⩽ + ⩽A δ0 ( ) 1.

• p is the priority, ∈p [0, 0.5], which is used to assign a fixed priority
while in urgency mode.

Given the definition of drive the calculation of the Eval value in the
Memory Objects (which are generated by the Motivational Behavioral
Codelets) is computed in the following way:

Definition 4.2. The calculation of the Eval parameter of a Memory
Object generated by a Motivational Codelet, should adopt the following
criteria:

= ⎧
⎨⎩

+ + >
+ + ⩽

Eval
p A δ θ

A δ A δ θ
0.5 if ,
( )/2 if . (1)

If we follow Definition 4.2 we will see that while in normal mode,
Eval will be a number between 0 and 0.5, while if in urgency mode,
Eval will be a number between 0.5 and 1. Using this convention, we
have a warranty that while in a state of urgency, the drive with the
biggest priority will always be selected by the dynamic subsumption
mechanism. This is depicted in Fig. 3.

If one or more performance indexes are available in our design of a
CM, we might define a Drive for each of the PIs and a corresponding
Motivated Behavior which is supposed to increase or decrease the Drive,
depending if the PI is supposed to be maximized or minimized.

After designing Motivated, Reactive and Random Behaviors in
System 1, it is also necessary to design the interference pattern which
System 2 is supposed to cause in every behavior in System 1. According
to the MECA architecture, System 2 is responsible for generating de-
liberative plans, which might interfere with System 1 Behaviors, in
order to affect the actuators, and consequently the Motor Codelets. It is
important to carefully fine tune how System 2 commands interfere with
System 1 Behaviors. All the Behavior Codelets in System 1, together

with their Local Inputs, have a Global Input. In MECA, this Global Input
comes from System 2, and holds the Next Action prescribed by the de-
liberative plans from System 2. This fine tuning is important, because
there is the risk of either System 2 or System 1 to systematically win the
competition and suppress the effect of the other subsystem. If System 2
always have priority, it might just “turn-off” the effect of System 1, and
work as a simple deliberative system. Otherwise, if System 2 is never
allowed to win the competition, it is like it doesn’t exist in the overall
system. A good tune might give preference to System 1 and in excep-
tional situations allow System 2 to take control.

A good rule in this case might be to use System 1 as the default
controller, handling most of the decisions in the determination of ac-
tions, while in normal operational conditions. System 2 should be ac-
tioned only while exceptional conditions are detected, requiring an
exceptional intervention. One example of such a duality in a Cognitive
Manager might occur while trying a local optimization (managed by
System 1 behaviors), when a call for a global optimization comes from
another Cognitive Manager communicating with the current CM. This
call for collaboration, in being an exceptional situation, should be
handled by System 2. System 2 should then analyze its availability for
collaboration, based on the current status of its performance indexes,
and decide if it is able to collaborate. If its performance indexes allow, it
might decide to collaborate, even though at the cost of a decreasing in
its performance indexes, with the hope of improving the performance
indexes of its solicitor, and with that improving some global (or higher
level) performance index. If its performance indexes are in a poor
condition (e.g. in a worse condition than those of its solicitor), the
system might deny collaboration and System 1 orders should prevail.

4.2. Designing the perception system

After the Behavioral System is designed, there comes the time to
design the Perceptual System, preparing the information necessary for
the Behavioral System to perform its decision-making. Usually, the in-
formation coming from Sensory Codelets refers to Quality Dimensions
collected from sensors, and related to physical properties of environ-
mental objects. In some situations, these Quality Dimensions are enough
for supporting decision-making by the Behavioral Codelets. In this case,
there is no requirement for further abstractions. This data can be di-
rectly used by Behavioral Codelets as they come. But in more complex
cases, like those requiring human understanding of complex situations,
further abstractions are necessary. The Perception System is the sub-
system within a Cognitive Architecture responsible for performing
further abstractions, creating more elaborated representations which
better describe the environmental situation.

The CM designer might evaluate which concepts might be required,
analyzing the requirements of the Behavioral Codelets, and create
Perceptual Codelets responsible for creating the representational enti-
ties required for further processing. Special care should be dedicated to
the entities required by System 2 to make decisions. It is important to
remember that MECA uses SOAR (Laird, 2012) as a planning system in
System 2. In this sense, the many concepts generated by the Perceptual
System will be converted to WMEs in order to be processed by SOAR,
and after SOAR makes a decision, the resulting WMEs might be turned
into appropriate Memory Objects in order to affect System 1 behaviors.

Also, it is important to define the Attention Codelets, and how these
Attention Codelets select important concepts in the Perceptual Memory
and copy them to the Working Memory, so that they can be used in
System 2.

Depending on the situation, some effort might be necessary in
constructing Episodes from Current Perception and storing them at the
Episodic Memory. In this case, the designer might have also to de-
termine how the Episodic Memory is supposed to be cued and how the
episodes recalled from the Episodic Memory might be used in the de-
liberative process.Fig. 3. Value of Eval while in normal or urgency mode.
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4.3. Designing the Working and Procedural Memories

In MECA, the design of both the Working Memory and the
Procedural Memory are tied together. This occurs because MECA uses
SOAR as its planning and execution system. This design starts with
defining the format of the Next Action which is sent down to System 1 to
interfere with the Behavior Codelets. Next, the designer must define the
required input collected from System 1 Perceptual Memory and trans-
formed into WMEs within SOAR’s input link. Finally, the designer must
develop the rules in the Procedural Memory.

5. CMs for urban mobility

The general concept of a Cognitive Manager presented in Section 3
is illustrated now in the context of urban mobility in a smart city.

We already pointed out in Section 3 that a smart city infrastructure
can be seen as the construction of an SoS, where different services can
be provided by the virtualization of physical objects from the real world
(through cyber-physical systems) and their possible interaction in ma-
shes forming CVOs which can be locally controlled by a CVO manager.
We already argued that it might be interesting to give cognitive abilities
to these managers, turning them into Cognitive Managers, and that
these cognitive abilities might be constructed with the aid of cognitive
architectures. In our case, we are using MECA as the cognitive archi-
tecture to construct these cognitive managers.

To exemplify all these steps, we provide, in this chapter, a simple
but quite illustrative case where a set of cognitive managers, con-
structed with MECA, are put to interact and solve a common problem in
urban traffic control, under the general scenario of a Smart City SoS.

5.1. The urban traffic control problem

In the overall SoS scenario, we consider the virtualization of phy-
sical assets from the real world into VOs and their management by a
CM. We said that some VOs might occupy a fixed location in the real
world, like e.g. traffic lights or induction loops, and other VOs might
move around, like e.g. cars traveling into the urban environment or
people carrying their smartphones. As a general rule, even though the
communication of two VOs is possible, in order to provide more flex-
ibility we might assume that only CMs are supposed to interoperate,
asking for collaboration and receiving requests for service to be dele-
gated to their VOs. In some particular situations, we might have a CM
managing just one single VO. The role of the CM, in this case, is to
enhance the VO with cognitive abilities (e.g., with the ability to dialog,
integrating it into the SoS scenario of a Smart City).

We are assuming that one major CVO, integrates a controlled
junction at an urban topology. In this case, the junction might have
multiple traffic lights (each of them having its own VO), and sensors
capable of providing information regarding the traffic running on the
many lanes crossing the junction. A unique CM, the Junction Manager,
controls the junction, operating the traffic lights and joining the junc-
tion in the Smart City SoS. An example of such a junction can be seen in
Fig. 4.

The junction depicted in Fig. 4 has 16 lanes in 4 different edges,
being L2–L4, L6–L8, L10–L12 and L14–L16 controlled lanes (because
the traffic lights might command a stop on their flow), and L1, L5, L9
and L13 are uncontrolled lanes (because they just receive the flow
coming from the other lanes - they do not generate traffic in them-
selves).

The situation described in Fig. 4 also shows a particular phase in the
traffic lights, where L6 and L14 are open to traffic, and all the other
lanes are closed. The traffic coming from L6 can either go to L1 or to L5.
The traffic coming from L14 can either go to L9 or L13.

The design of just a single junction like this can be quite compli-
cated, where a set of phases must be precisely defined in order to not
allow the crossing of traffic flows, and each junction has its specific set

of phases and a typical sequence of phases, which must usually be en-
forced by law. This means that the CM controlling the junction cannot
arbitrarily assign traffic lights, or choose random phases at any time.
There is also a minimum and maximum time that each phase must
attend. Fig. 5 shows a little more elaborated case, with 2 junctions:
West and East. Junction West has 4 different phases (as indicated in the
figure) and junction East has only 3. The sequence of phases, in each
case, must be obeyed.

In our case scenario, a junction cognitive manager locally controls
each junction in a given topology, based on sensed information of
traffic conditions in all the controlled lanes of the junction, and at each
instant of time, decides if the junction should maintain its current phase
or change to the next one in the prescribed sequence of phases for the
junction, respected the minimum and maximum times allowed for each
phase.

Our case also includes a second CM, the SmartCar Cognitive
Manager, possibly an ambulance or a police car, which given its ur-
gency in passing through the traffic lights, requests the collaboration of
the Junction CM in changing its phase such that it might wait the
minimum amount of time for crossing the junction. As soon as the
SmartCar CM joins the Smart City SoS, it starts collaborating with a
Localization CM, passing to it its current position, and if this position is
close enough to the position of a junction controlled by a Junction CM,
the Localization CM returns the Junction CM address to the SmartCar,
and the SmartCar starts sending its position directly to the Junction CM.

5.2. The Junction Cognitive Manager

The architecture of a Cognitive Manager for a junction CVO,

Fig. 4. An example of a junction.

Fig. 5. A signalized small network and its phases.
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constructed with the aid of MECA can be seen in Fig. 6.
The role of the Junction CM is to decide, at each time instant, if the

junction should maintain its current traffic lights phase or change to the
next phase. The junction CM is constructed with the aid of MECA, even
though not all MECA modules were used. Basically, System 1 is used to
provide a decision under normal conditions, where the junction wants
to locally minimize the average travel time of all the cars crossing it.
For that purpose, we developed a motivational system with two drives:
the change drive and the maintaining drive, which from their per-
spective might evaluate, at each time, the pressure to maintain or to
change the current phase, based on the statistics they collect. In our
Junction CM, the role of System 2 is to analyze requests from SmartCars
and if it is the case, to take the decision to collaborate with the
SmartCar CM and change its behavior in order to minimize its travel
time. It is important to emphasize that this has a cost, and will most
likely make average travel time worse for all other vehicles. System 2
needs to decide what is feasible or not. If it has margins for that, i.e., it
is not detecting a critical condition in the traffic flow, it will be more
open to collaborate, but if the traffic conditions are critic, then it might
decide not to collaborate. This policy, of course, is configurable, so it is
possible, in principle, to always honor the request of a SmartCar (what
we effectively did in our experiments).

In next subsections, we depict the details of the Junction CM. We
follow the design guidelines detailed in Section 4, such that the reader
might get an example of these guidelines being instantiated.

5.3. Sensor and actuator codelets

In this work, real world traffic is simulated with SUMO urban traffic
simulator (Krajzewicz, Erdmann, Behrisch, & Bieker, 2012). For this
purpose, sensor and actuator codelets are socket connections to SUMO
using the TraCI protocol to interact with SUMO, acquire the required

information and send the control signals to change the traffic lights
phases. Depending on the simulation scenario, we will be running many
junction CMs, one for each controlled junction in the scenario.

Because our purpose with this case was to generate a proof-of-
concept, we decided to use some facilities from SUMO which might
provide a better illustration for the potentiality of the approach. In a
realistic case scenario, we should be using only input information from
inductive loops installed in the junction. This would, however, restrict
too much the possibilities of decision-making. In SUMO, we have the
possibility of knowing the position of each car in each of the lanes. Even
though it is not fully realistic to have this information in a real case (at
least while cars are not enforced to provide this information by law), it
is not unfeasible to have this information sometime in a near future.
Therefore, the following information is collected by each junction:

Occupation: Average of the occupation of all lanes in the junction,
ranging from 0% to 100%. The occupation of each lane depends on
the length of the lane, the number of cars waiting in the queue and
the size of the cars.
Phase Time: The amount of time since the last phase change.
Number of Vehicles: The number of vehicles in all lanes
Average Speed: The average speed of all vehicles crossing the
junction.
Smart Car Info: This input receives messages from Smart Cars, in-
forming their current position. If there is no Smart Car in the system,
this input remains silent all the time.

There is just one Motor Codelet in the Junction CM. It receives in-
formation from a boolean Memory Object commanding the junction to
maintain the current phase or to switch to the next phase. The
Maintain/Change boolean Memory Object is modeled by a Memory
Container (represented in Fig. 6 by a circle with a double line). This is

Fig. 6. The junction cognitive manager architecture.
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necessary because many different behaviors might propose different
actuations. A Memory Container is a special resource provided in CST to
allow the Dynamic Subsumption mechanism to choose the proposal
with the highest evaluation to be considered and commanded to SUMO.
This is performed by the associated Motor Codelet.

5.4. The Behavioral Subsystem

After the definition of sensors and actuators, the next step is to
define the many behaviors comprising the Behavioral Subsystem. The
repertoire of behaviors in System 1 can be seen in Fig. 7.

The behavioral subsystem provides 4 different behaviors proposing
a maintain/change decision for the next phase, which might compete
with each other:

• 2 Motivational Behaviors: Change Phase and Maintain Phase.

• 1 Reactive Behavior: React To Lanes Situation.

• 1 Random Behavior: Random Change.

5.4.1. Random Behavioral Codelet
In our Junction CM, the role of the Random Behavioral Codelet is to

provide a measure of randomness to the decision-making process.

Definition 5.1. The activation Arand of the Random Behavioral Codelet
is calculated according to the following criteria:

= ⎧
⎨⎩

⩾A random next1 if . () 0.999,
0 otherwise.rand

(2)

Definition 5.2. The recommendation Rrand given by the Random
Behavioral Codelet deciding if the Motor Codelet should change or
not the current phase is based on its activation according to the
following rule:

= ⎧
⎨⎩

=R True A
False

if 1.0,
otherwise.rand

rand

(3)

The practical effect is that in only 0.1% of the cycles the Random
Behavioral Codelet will write to the Motor Codelet determining the
change of the current phase. This value was completely arbitrary, and
included just to insert some level of randomness in the system.

5.4.2. Reactive Behavioral Codelet
The logic behind the Reactive Behavioral Codelet is that, based on a

Traffic Situation Index used as input, it should determine a change in the

phase.

Definition 5.3. The Reactive Behavioral Codelet’s activation is always
determined by the traffic situation index TSI (see Definition 5.7)
coming from the Situation Perceptual Codelet:

=A TSI{ .react (4)

Definition 5.4. The recomendation given by the Reactive Behavioral
Codelet deciding if Motor Codelet should change or not the current
phase is based on the following rule:

= ⎧
⎨⎩

⩾R True A
False

if 0.5,
otherwise.react

react

(5)

The practical effect is that everytime the traffic situation index is
greater than 0.5, the Reactive Behavioral Codelet will prescribe the
Motor Codelet to change the current phase.

5.4.3. Motivational Behavioral Codelets
Our Junction CM uses two Motivational Behavioral Codelets: the

Change Traffic Lights, which always propose a change in the phase, and
the Maintain Traffic Lights, which always propose to maintain the
current phase. The activation of these codelets is determined by the
Drives which are used as input to them, given by the Motivational
Subsystem.

5.5. The Motivational Subsystem

The main role of the Motivational Subsystem is to calculate the
drives to be sent to the Motivational Behavioral Codelets. Our Junction
CM uses two drives: the Changing Drive and the Maintaining Drive.
This is shown on the top of Fig. 8.

In order to calculate those Drives, our Junction CM has basically
two motivational codelets: the Changing Motivational Codelet and the
Maintaining Motivational Codelet. These codelets receive the many
parameters affecting the junction situation and integrate them into two
drives: The Changing Drive and the Maintaining Drive. The definition
of a drive implies in the determination of the following parameters

Fig. 7. The behavioral subsystem.

Fig. 8. Motivational and perceptual subsystems.
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associated to the drive:

• Activation.

• Urgency Threshold.

• Priority.

In order to compute the drives activation, our motivational codelets
employ an heuristics using both the Phase Time (θ), the time since the
last change in phase and the OΔ , the difference between the average
occupancy in all the lanes of the joint, computed in intervals of 8 s. If
the Phase Time is less than the minimum phase time specified for the
junction, the phase must be maintained (by specification). If OΔ is
negative (or zero), this means that the traffic conditions are well ba-
lanced, and then the Maintaining Drive should be high, such that the
phase should be maintained as is. If OΔ is positive, though, this means
that the traffic conditions are becoming worse, and there is less and less
indications that the phase should be maintained, and so the
Maintaining Drive activation should decrease as long as time passes.
Finally, if the phase time is greater than the maximum phase time
specified for the junction, there is no more reason to maintain the
phase, and then the drive should be set to 0. Definition 5.5 below for-
malizes this.

Definition 5.5. The activation Am of the drive generated by the
Maintaining Motivational Codelet is calculated by:

=

⎧

⎨

⎪

⎩
⎪

⩽
⩽ ⩽ ⩽

− ⩽ ⩽ >

>

∗

∗
∗

∗
∗

∗

∗( )A

θ θ
θ θ θ O

θ θ θ O

θ θ

1 if ,
1 if and Δ 0,

1 if and Δ 0,

0 if

m θ
θ

4

(6)

where θ is the current Phase Time, ∗θ is a constant that defines the
Minimum Phase Time of the junction (8 s), ∗θ is a constant that defines
the junction’s Maximum Phase Time (120 s), and OΔ is the difference
between the average occupancy over all lanes in the junction, computed
on intervals of 8 s.

The activation of the Changing Drive follows the same basic prin-
ciples, formalized in Definition 5.6.

Definition 5.6. The activation Ac of the drive generated by the Changing
Motivational Codelet is calculated by:

=
⎧

⎨
⎪

⎩
⎪

>
⩽ ⩽ >
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⩽

∗

∗
∗

∗
∗

∗

A

θ θ
θ θ θ O
θ θ θ O
θ θ

1 if ,
1 if and Δ 0,
0 if and Δ 0,
0 if

c

(7)

The Priority and Urgency Threshold of both drives are specified in
Table 1.

5.6. The perception subsystem

Perception systems have the role of computing abstractions on the
input sensory information, creating derivate knowledge which might be
necessary for further processing in the cognitive system. In our Junction
CM, we have two different Perceptual Codelets. The first one is the
Situation Perceptual Codelet, which was already seen in Fig. 8. This
Perception Codelet uses as input the occupation of all the lanes in the
junction, the current phase time, the number of vehicles in all the lanes

and the average speed in all the lanes and calculates a Traffic Situation
Index for the junction. Even though all this information is available, the
current implementation uses only the average speed of all the cars
crossing the junction. The logic behind that is that the faster the cars are
in the controlled lanes, the lower is the traffic situation index, signa-
lizing a low traffic, a situation opposite to a traffic situation with an
index closer to 1.0, where traffic is heavy.

Definition 5.7. The Situation Perceptual Codelet calculates the traffic
situation index TSI based on the following rule:

= −
∗

∗{TSI 1.0 min S S
S
( , )

(8)

where S is the average speed of all the vehicles running in the
controlled lanes of the junction and ∗S is the maximum speed,
arbitrated as 16.66m/s.

The other Perceptual Codelet is responsible for preparing informa-
tion to be used by System 2, as shown in the bottom of Fig. 8. It creates
a representation for a Smart Car, if one is present.

5.7. The System 2 subsystem

The role of System 2 in our Junction CM is to evaluate collaboration
requests from Smart Cars and decide if the CM is able or not to colla-
borate with the Smart Car and change the traffic lights in a way that
could minimize the travel time for the Smart Car, without disturbing
too much the other vehicles. From an operational point of view, we are
delegating this task to SOAR, as pointed out in Fig. 9.

In the simple scenario we started exploring, we will be dealing with
just one situation: the Smart Car is an exceptional situation that must
always be attended. The only restrictions, which must be followed,
though are related to the minimum and maximum times for staying in a
given phase. If the Smart Car arrives before the minimum time in the
phase is reached, it will have to wait until this minimum time before it
can be switched to the next one. This includes the minimum time
holding for all the phases with a red light before one with a green light
can be set. Figs. 10–14 present schematic situations being encoded into
rules for addressing this situation.

Fig. 10 illustrates the situation covered in Rule 1, in which the
Smart Car (drew as an ambulance in the figures) is arriving in a lane
where the current phase is enforcing a red light, and the expected time
of arrival (given the current Smart Car velocity) in the junction is less
than the maximum phase time. Then the rule proposes the phase to
change the phase, in order to switch the lane to a green light.

Fig. 11 illustrates the situation covered by Rule 2, in which the
Smart Car is arriving in a lane where the current phase is enforcing a
red light, but the expected time of arrival is greater than the maximum
phase time. In this case, the system proposes to maintain the junction in
its current phase.

Fig. 12 illustrates the situation covered by Rule 3, in which the
Smart Car is arriving in a lane where the current phase is enforcing now
a green light, and the expected time of arrival is less than the maximum
phase time. In this case, the rule suggests the system to maintain in the

Table 1
Drives’ parameters.

Drive Priority Urgency threshold

Maintaining 0.5 0.967
Changing 0.45 0.3

Fig. 9. The System 2 subsystem.
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current phase.
Fig. 13 illustrates the situation covered by Rule 4, in which the

Smart Car is arriving in a lane where the current phase is enforcing a
green light, but the expected time of arrival is greater than the max-
imum phase time. In this case, the rule suggests the system to change to
the next phase.

Finally, Fig. 14 deals with the case of no Smart Car present in the
scenario. In this case, the rule suggests a 〈null〉 command to be

generated. A 〈null〉 command signalizes the Behavior codelets in
System 1 to follow System 1 prescriptions instead of System 2 com-
mands.

5.8. The Smart Car Cognitive Manager

In our simulation studies, the Smart Car Cognitive Manager was not
implemented using a Cognitive Architecture, but this condition was

Fig. 10. Schematic situation being covered by Rule 1.

Fig. 11. Schematic situation being covered by Rule 2.

Fig. 12. Schematic situation being covered by Rule 3.

Fig. 13. Schematic situation being covered by Rule 4.
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simulated using SUMO’s features. In a SUMO simulation, we have labels
for all the cars entering and leaving the simulation, information that
can be consulted at every time using JTraCI. In order to simulate the
Smart Car condition, we analyze the file *.rou.xml which lists all the
vehicles supposed to enter into the simulation, and choose arbitrarily
one of them to be a Smart Car, noting its ID parameter and providing
this ID to the application managing the simulation.

Then, during the simulation run, the application managing the si-
mulation detects if the smart car is already within the simulation, and in
the case the car location is under a specific distance to a junction
controlled by a Junction CM, it starts sending messages to the Junction
CM, simulating the Smart Car sending this message. From the point of
view of the Junction CM, it is as if the own Smart Car was sending the
message. This message basically informs the car position, and the
Junction CM calculates the expected time for the Smart Car to reach the
junction. In a real implementation of this concept, the Smart Car CM
might contact a Location CM, with the knowledge of all Junctions in the
city able to receive a collaboration message, and if the Smart Car is
within a range from Junction CM, it gives this information to the Smart
Car and the Smart Car starts to send its position to the Junction CM,
such that the collaboration is suitable to happen.

6. Simulation results

We made a series of simulations using our Junction CM, in many
different scenarios and situations. Basically, the following 3 topologies
where simulated:

• Simple T.

• Twin T.

• Corridor.

For each topology, 4 different traffic loads were tested, and each
traffic load was run in 10 different simulations. We performed tests
with and without a Smart Car. The simulation results are in the next
subsections.

6.1. The Simple T topology

The Simple T topology is illustrated in Fig. 15. It is the simplest case
we simulated.

Fig. 16 presents the results for a set of simulations without Smart
Car, in 4 different traffic loads, where vehicles were supposed to appear
in the simulation, using a Poisson distribution with the following time
constants: =λ 0.1, 0.4, 0.7 and 1.0 s.

Each graphic shows two different cases: a curve in red showing the
average of 10 simulations using the fixed controller (without our CM,
and using SUMO heuristics), and a curve in green showing the average
of 10 simulations using our Junction CM. Both the red and green curves
are plotted with a shadow showing the interval from minimum to
maximum values obtained within the 10 cases. For this situation, the
Junction CM obtained better results than the fixed controller in all the
tested traffic patterns, providing an average travel time which is smaller
than the one provided by the fixed controller.

We tested different situations with Smart Cars. For each traffic
pattern, we randomly selected different cars to promote as Smart Cars
and simulated the same traffic again, now considering the chosen car as
a Smart Car. The simulations with Smart Cars didn’t showed a sig-
nificant decrease in overall performance due to giving priority to the
Smart Cars. In situations of heavy traffic, this priority didn’t really
improved too much the travel time of these cars, in some cases, as even
though the Junction Manager is doing its best in giving priority to the
Smart Cars, there are some boundary conditions which cannot be
avoided (a minimum and maximum time in each phase). But by

Fig. 14. Schematic situation being covered by Rule 5.

Fig. 15. SimpleT model.
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Fig. 16. Simulation results for the Simple T Scenario: The results show the
average travel time along time during the simulation for different loads of
traffic. For each case, 10 different simulations were performed. The graphics
show the standard deviation among these 10 simulations. The simulation was
performed using a fixed controller (red curve) and the Junction CM without any
SmartCar (green curve).
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selecting the cars in worst condition and promoting them to Smart Cars
really improved their travel time. In lighter traffic conditions, the Smart
Cars were able to improve their travel time due to our preference policy
in most of the cases.

6.2. The Twin T topology

The Twin T is a topology slightly enhanced while compared to the
Simple T. This topology can be viewed in Fig. 17.

Fig. 18 presents the results for a set of simulations without Smart
Car, in 4 different traffic loads, similarly to those for the Simple T.

The results for the Twin T are somewhat equivalent of those for the
Simple T. For a more heavy traffic situation, the Junction CM was able
to provide a substantial decrease in the average travel time. For more
light traffic, though, both the Fixed controller and the Junction CM
obtained very similar results.

Again, no significant change in performance was detected while
running simulations with SmartCars.

6.3. The Corridor topology

The Corridor topology provides a further complex scenario, where
now 4 controlled junctions are considered. The Corridor topology can
be viewed in Fig. 19.

Fig. 20 presents the results for a set of simulations without Smart
Car, in 4 different traffic loads, similarly to those for the Simple T and
Twin T. And again, no decrease in performance was detected due to the
introduction of Smart Cars.

7. Conclusion

As a proof-of-concept, the results of our simulations show that the
Junction CM is able to provide a fair service, providing the collabora-
tion with Smart Cars when this is necessary. The current implementa-
tion, though, does not adequately address the interference between
neighbor junctions, a topic which requires a further study. Fortunately,
our choice of MECA as the cognitive architecture to implement cogni-
tive abilities allows the scalability of our problem solving strategy. It is
just a matter of obtaining more inputs (e.g. information from neighbor
junctions), followed by further behaviors, either in System 1 or in
System 2, in order to enhance the Junction CM abilities.

Even though our simulation cases are very simple, they allow us to
validate MECA as a viable cognitive architecture. The next steps in our
research might require more complicated topologies and a better study
of more sophisticated traffic patterns, which might require some en-
hancement in our control strategies.

As future work, we also intend to implement learning mechanisms,
as e.g. using reinforcement learning techniques (like deep learning), to
evaluate different control strategies and allow the system to test dif-
ferent strategies and learn the performance of them.

In the sense of applying MECA to build other kinds of Cognitive
Managers, we are currently planning its application to an Industry 4.0
use case: a warehouse automation scenario. Also, its use on Cognitive
Networks is being considered.
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Fig. 17. Twin T model.

Fig. 18. Simulation results for the Twin T scenario.

Fig. 19. Corridor model.
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