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Abstract—The goal of Interactive Task Learning (ITL) is
to build robots that can be trained in new tasks by human
instructors. In this paper, we approach the ITL research problem
from a human instructor perspective. The research question
that we address here is how do we understand and leverage
the intentionality of the instructors to enable natural and flexible
ITL. We propose a taxonomy based on Collaborative Discourse
Theory that organizes human teaching intentions in a human
robot teaching interaction. This taxonomy will provide guidance
for ITL robot design that leverages a human’s natural teaching
skills, and reduces the cognitive burden of non-expert instructors.
We propose human participant studies to validate this taxonomy
and gain a comprehensive understanding of teaching interactions
in ITL.

I. INTRODUCTION

We envision a future where robots can help people with
a myriad set of tasks in diverse and dynamic environments
such as homes, offices, shopping centers, etc. The diversity in
environments and tasks requires that people can teach robots
new tasks and relevant information about their environments
on the fly. Interactive Task Learning (ITL) [12] aims to
contribute to this future. The research goal of ITL is to build
robots that can be trained in new tasks by a human instructor
through a combination of natural language and demonstration.

ITL relies on the fact that people naturally engage in
interactive teaching and learning with other people, and there-
fore can apply this skill to teach a robot as well. A crucial
aspect of teaching is the instructor’s mental model of the
learner - understanding what the learner knows and does
not know and how they apply their knowledge to perform
various tasks in the environment. An instructor may apply
various interactive strategies to develop this understanding
about the learner. A human parent (instructor) may ask the
child (learner) to demonstrate a skill (bring your teddy bear),
to identify concepts (where is your head?), to generate a
concept (can you show me what angry looks like?), compare
objects (what is bigger, an orca or a beluga?) etc. Responses to
these prompts aid the instructor in adapting their instructions.
Without reasonable estimates of a learner’s capabilities, it is
challenging for a human teacher to teach effectively. An ideal
learner, then, must be able to provide appropriate responses
to an instructor’s prompts and integrate new information
incrementally. yellow This instruction process is challenging
to implement in an ITL scenario for two reasons. First, as

ITL robots continuously acquire new knowledge and adapt
their behavior, the instructor needs to appropriately update
their mental model of the robot’s capabilities. Second, human
instructors are used to engaging in more flexible linguistic
teaching strategies than current ITL robots are capable of
performing.

Our research goal is to enable ITL robots to engage in
teaching interactions that are natural for humans. In ITL, the
instructor guides the robot using a task teaching process. This
process includes providing examples of task-relevant concepts,
evaluating the knowledge the robot already has, designing
lessons to teach concepts and tasks of varying difficulty, etc.
Each instruction that the instructor provides has a specific in-
tention to which the robot must respond. The research question
here is how do we understand and leverage the intentionality
of the instructors to enable flexible and natural ITL. To answer
this question, we look to collaborative discourse theory in
which Grosz and Sidner [10] posit that human task-oriented,
collaborative conversations can be understood as a sequence
of intentional exchanges where each partner intends the other
to update their beliefs based on the scenario, to act according
to a goal etc. Rich et al. [23] demonstrate how collaborative
discourse theory is used to design natural and flexible human-
computer interaction. Previous work [19] leveraged the collab-
orative discourse theory to develop a computational model to
manage ITL interactions. While this approach enabled flexible
and mixed-initiative interactive behavior, it is robot-centred.
Interactions are largely driven by the robot’s learning needs
with very little understanding of how humans teach.

In this paper, we take a human-centred approach to under-
stand teaching interactions in ITL. We propose a taxonomy to
organize human teaching intentions in a human-robot teach-
ing interaction. The purpose of this taxonomy is to provide
guidance for robot design that leverages a human’s natural
ability to teach. This human-centred design will reduce the
cognitive burden of non-expert instructors. To validate and
extend this taxonomy, we propose a set of human participant
studies. The goal of these studies is to ensure this taxonomy
is informed by actual non-expert instructor expectations and
experiences. The taxonomy that we propose is by no means
exhaustive. We expect the proposed studies to validate aspects
of the taxonomy and uncover gaps that must be accounted for
to create a comprehensive picture of teaching interactions.



II. ITL AGENTS

Our research studies and develops interaction mechanisms
for ITL robots such as ROSIE [18] and AILEEN [20] that
learn novel concepts and tasks through situated instruction.
They are built in the Soar cognitive architecture [13] which
has been augmented with computer vision and concrete action
planning modules to enable operation in robotic domains.
Research with Rosie has demonstrated that it can be taught
over 60 games and puzzles [11] and several mobile delivery
and navigation tasks [17] through a combination of situated
natural language commands and demonstrations. AILEEN is a
variation of ROSIE that focuses on learning novel concepts that
provide grounding to embodied language processing, structure
scene understanding, and organize action execution. For the
purposes of this paper, we will be focusing on AILEEN.

One of the goals of research in AILEEN is to create an
interaction model that enables a human teacher (who is not
a robot expert) to teach diverse types of concepts relevant to
tasks. The interaction patterns should be natural for human
teachers. To focus our experiment design, data gathering, and
analyses, we use concrete learning scenarios that AILEEN is
expected to learn from. AILEEN lives in a simulated robotic
world which has a table on which various simple objects can
be placed (shown in Figure 1). AILEEN perceives its world
through a simulated camera placed above the table providing
a top-down perspective. It can act by picking up objects and
placing them in desired locations on the table.

The goal of the instructor is to introduce AILEEN to novel
visual concepts such as colors (red) and shapes (box); spatial
concepts such as configurations (yellow box is to the right
of the red cylinder); and action concepts (move the red box
to the right of the yellow box). Visual and spatial concepts
support scene understanding in AILEEN while spatial and
action concepts support task execution. AILEEN learns through
guided participation - conjoint stimuli with a demonstration
accompanied with a linguistic description. The instructor gen-
erates static scenes by setting up objects to demonstrate visual
and spatial concepts. A sequence of scenes that show temporal
changes in the configuration of objects is used to demonstrate
an action. AILEEN jointly learns concepts and the language
to describe them. AILEEN employs analogical reasoning and
generalization to learn concepts and we have demonstrated that
learned concept definitions enable language understanding as
well as task execution [20]. AILEEN implements an interaction
model (composed of an interaction state and a heuristics-
driven policy) based on collaborative discourse theory [19]
that supports mixed-initiative interactions with an instructor
and seamlessly integrates with learning and task execution.
Findings from the human participant studies proposed below
will be integrated into AILEEN’s interaction model to enable
flexible and robust ITL.

III. RELATED WORK

Previous research has looked at how a robot can provide
information about itself, its understanding, and knowledge to
help a human collaborator build a mental model. This research

explores multiple modalities of interaction including language
[7, 16, 21, 22, 24, 25, 27], gaze [5, 21, 26], gestures [5, 8, 21]
and visualization [14, 21, 22]. Our research contributes to this
line of research by analyzing interactions at the intentional
level whereas previous work focuses on low-level, concrete
interactions.

There has been some work in the domain of machine teach-
ing where researchers have explored and incorporated human
teaching perspective in a robot learning setting [2, 6, 15, 26].
Cakmak and Thomaz [6] study how non-experts naturally
teach machine learners and propose providing guidance to
them to leverage human intelligence and flexibility. Our work
is along similar lines, where we want to look at this problem
from a top-down human teaching perspective so that we can
design robots that leverage natural human teaching behaviors.
MacLellan et al. [15] propose a framework to describe cog-
nitive system training interactions and how it can be used
to enable people to naturally train cognitive systems using
language. They describe a list of types of interactions that
humans and robots can engage in, in the course of a teaching
interaction. Our taxonomy shares some similarities with the
list, however, we are proposing an approach to look at these
interactions from a more abstract intentional level as it relates
to the complete task.

IV. A TAXONOMY OF TEACHING INTENTIONS

We propose a taxonomy based on the CDT model to orga-
nize intentions that are observed in a human-robot teaching
interaction. The CDT model assumes a goal-driven agent that
makes decisions over a joint space of interaction, action,
and learning. The information captured in the current state
of this model influences the robot’s decision making in this
joint space. Each instruction that an instructor provides adds
information to the current interaction state. This information
is provided by the instructor in an intentional manner for
the purposes of teaching, verifying, or revising the robot’s
knowledge. We propose a framework that organizes intentions
inherent in teaching interactions. The framework will be used
to extend AILEEN’s interaction model so that it is faithful to
typical human teaching interactions. Let us look at a grounded
example in Aileen in order to develop this taxonomy.

Let us assume that AILEEN starts with no knowledge of any
visual, spatial, or action concepts. We have a human instructor
who wants to to teach AILEEN to move the red box to the
right of the blue cylinder as seen in Figure 1e. Teaching this
action concept is challenging as several visual and spatial
concepts must be taught as well. We expect a human instructor
to correctly assess AILEEN’s ignorance and create a lesson
to teach a sequence of individual concepts. The instructor
would first teach AILEEN the visual concepts of color (red,
blue) and shape (box, cylinder). Then they would teach the
spatial concept right of using the configurations presented
in Figures 1b and 1c. The instructor can inform the robot
that the blue cylinder is to the right-of the red box in Figure
1c. Assuming that the instructor has successfully taught these
visual and spatial concepts, they will teach the move action



(a) A robot is shown a red box. (b) A robot is shown that a red box is to the right of a red cone.

(c) Initial state: A blue cylinder is to the right
of a red box.

(d) The instructor guides the robot to move the
red box.

(e) Goal state: The red box is to the right of
the blue cylinder.

Figure

Fig. 1: After learning concepts such as ‘red’, ‘box’, and ‘right of’ through configurations such as Figure 1a and 1b, the
instructor demonstrates a move action as presented in Figure 1c, 1d, and 1e so that AILEEN can learn the move action.

by demonstrating a move action in the environment. After
learning all the information required to follow the instruction,
AILEEN can now move the red box to the right of the blue
cylinder successfully in arbitrary initial situations.

All the interactions described below occur within the con-
text of situated interaction i.e., all concepts and knowledge
are linked to the shared environment. While this framework
focuses on the instructor’s intentions and utterances, it operates
under the assumption that the robot will provide positive
evidence of processing the instructions. This evidence can take
the form of acknowledgments, relevant next turns as well as
continued attention towards the interaction [9].

1) Inform: Using the inform intention, the human instructor
introduces new concepts to the robot. Teaching a new
concept can include providing examples and demonstrations
[1, 20] as well as more complicated instructions such as task
descriptions [11].
AILEEN learns through examples and demonstrations. For
example, the instructor can use the scenario in Figure 1a
to inform AILEEN that the object on the table is of shape
box and whose color is red. The instructor can also use
the inform intention to teach AILEEN task execution by
demonstrating an action as shown in Figure 1.

2) Evaluate: Using the evaluate intention, the instructor learns
to what extent the robot can correctly apply concepts. We
can further divide the evaluate intention into two sub-
intentions based on the specific knowledge the instructor
would like to access.
• Instantiate: When the instructor asks the robot to identify

examples of known concepts in the environment, the
instructor’s intention is to learn the extent of its conceptual
knowledge in understanding the scene and executing tasks.
In Figure 1c, the instructor can ask AILEEN to identify
the blue cylinder in the setup. AILEEN could respond

by highlighting the blue cylinder or pointing at it. By
introducing various shades of blue and asking AILEEN
to identify blue objects, the instructor can develop an
understanding of the generality of AILEEN’s conceptual
knowledge of blue. In order to verify the robot’s task
execution knowledge, the instructor can ask the robot to
perform an action or a set of actions in the environment in
various setups. For example, the instructor can ask AILEEN
to move the red box to the right of the blue cylinder
in various initial states (an example is shown in the
configuration presented in Figure 1c). If AILEEN achieves
the configuration in Figure 1e, it confirms that AILEEN
learned the action and the related concepts successfully.

• Describe: In the describe intention, the instructor evalu-
ates if the robot can retrospect on its experience and use
its conceptual knowledge to summarize it. For example,
in Figure 1c, the instructor can ask AILEEN to describe
the scenario, in order to learn whether it has accurately
learned the visual and spatial concepts. The instructor can
also request the robot to provide a linguistic description
of the actions that it performed in the environment. This
description illuminates AILEEN’s understanding of the task
structure to the instructor. For example, a move action done
by AILEEN comprises primitive actions pick-up and place.
AILEEN should look back at its last instruction to provide a
complete description of picking the red box up and placing
it on a location (identified by (x,y,z) coordinates) that is
to the right of the blue cylinder.

3) Elaborate: The elaborate intention allows the instructor to
gain a deeper understanding of the robot’s knowledge when
there is a failure. Failures can occur when the concept
definitions are not appropriate (either are over-general or
over-specific) to support correct scene understanding or task
execution. In this intention, when the robot either stops



arbitrarily or indicates that it is unable to do any further,
the instructor requests specifics about why and where the
failure occurred. For example, AILEEN can fail when asked
to move the red box to the right of the blue cylinder because
it doesn’t know how to recognize box. In this scenario, the
instructor may ask for an elaboration about where the failure
occurred. If AILEEN can identify that the failure occurred
because it doesn’t understand box, the instructor can help it
learn by providing more examples.

4) Revise: The revise intention allows the instructor to pro-
vide feedback to the robot so that it can revise its scene
understanding or task execution knowledge. The instructor
would typically revise the robot’s knowledge after they have
evaluated that the robot has learned this knowledge. For
example, let us assume that instructor believes that Figure
1e does not accurately reflect the relation right of after
AILEEN moves the red box to that location. The instructor
would revise the co-ordinates of the red box or provide more
examples of right of, so that AILEEN can reformulate the
plan for future move actions.
The instructor should be able to provide both online and
offline feedback. Thomaz and Breazeal [26] demonstrate
that people tend to provide online feedback by providing
guidance while the agent is doing the task. In case of offline
feedback, the instructor should be able to provide feedback
or suggest changes for specific steps, either once the task is
completed or when the robot finishes formulating its plan
for the task.

V. STUDY PLAN

We are designing a set of human participant studies to
understand how human teachers teach robots and what they
expect from the learner robot. We have two goals: a) generate
evidence that human teachers have intentions delineated in
the taxonomy, and identify how they express these intentions,
b) discover intentions expressed by the human teachers but
are not covered in the taxonomy. We plan to use the recom-
mendations specified in [3] to design the study to validate
our proposed taxonomy. Our data collection will include self-
assessments, behavioral observations as well as task perfor-
mance metrics. We will be using examples from AILEEN [20]
to structure our studies.

Given the qualitative nature of the taxonomy of intentions,
we will begin with semi-structured interviews with non-
expert participants. We will provide participants with basic
knowledge about interacting with the robot, in terms of its
current capabilities. AILEEN learns visual and spatial concepts
as well as actions. The participants will be asked to begin
by teaching simple concepts (such as shape, color or size),
followed by actions and tasks that comprise multiple actions.
We will present a typical robot learning environment (such
as in Figure 1) with a limited set of objects. We will ask
them to provide their instructions, and also ask them to
detail how they would manipulate the environment during
teaching. For the next iteration of this study, in addition
to requesting these instructions, we will create a predefined

list of counterfactual questions based on the limitations of
AILEEN’s abilities. We will also create a codebook to map
these questions to expected predetermined instructions. Based
on the participant’s individual instructions, the interviewer will
ask these counterfactual questions and collect responses to
these questions. For example, let us take a scenario where
the instruction is “Pick up the blue cylinder.” An example of
a counterfactual question would be “Aileen responds with I
don’t know what a cylinder is. What will you do next?”

We plan to conduct an inductive thematic analysis (which
will include open and axial coding) [4] of these interactions,
to build a taxonomy of intentions that were observed in the
study. Our proposed taxonomy will act as an initial coding of
turn-based interactions that we will expand upon, based on our
findings. In the following study, we will provide participants
with the updated list of intentions identified in the analysis.
These intentions will have placeholders that participants can
use to refer to specific concepts, objects or verbs. The goal
of this study will be to validate the result of the explicit use
of this intention framework in a teaching interaction. In order
to focus on the instructor’s teaching process, we will conduct
this study using the Wizard-of-Oz method.

We have currently implemented reasoning mechanisms to
process inform and evaluate intentions in AILEEN. We will
use the results of this study to implement additional reasoning
mechanisms that allow it to respond to new intentions that
show up in these studies. In addition to identifying new
intentions that are not presented here, we also want to learn the
contexts under which we observe different intentions and the
order in which they appear. For example, does the instructor
intend to pick up or point to a block (inform) before providing
the next instruction? When does the instructor use the evaluate
intention? Is the inform intention always followed by an
evaluate intention?

This study design is still in its initial stages. We expect to
have a more concrete design once we conduct our first set
of pilot interviews. We look forward to feedback from the
community to help scope these studies to achieve our goals.

VI. CONCLUSION

In this paper, we approach the design of Interactive Task
Learning robots from a human-centred perspective. Effec-
tive ITL robots must implement mechanisms that facilitate
smoother interactions with non-expert instructors. Flexible
interaction mechanisms enable people to teach robot tasks
without the need of extensive reprogramming. In pursuit of this
goal, we propose a taxonomy of intentions that are observed in
a human-robot teaching scenario. This taxonomy will organize
intentions that human teachers typically have when teaching
a robot, and provide guidance for ITL robot design. Our goal
is to validate and extend this taxonomy by conducting human
participant studies with non-expert instructors and learn how
these intentions appear in ITL scenarios. Our analyses will be
useful in characterizing the state-action space of the interaction
model and in developing heuristics to advance the interaction
model.
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