
Opportunities and Challenges for Incorporating Runtime Ethical Constraints
into a Learning Agent

Lauren Naylor
lmnaylor@umich.edu

John Laird
laird@umich.edu

December 14, 2017

Abstract

As the capabilities and performance of learning agents
continue to improve, we must ensure that these agents
behave ethically. Existing approaches introduce a separate
component to filter agent behavior. We propose an alternative
framework, where the processing uses fixed knowledge
embedded in the agent. In this paper, we describe this
approach and our implementation, contrasting it with using a
separate component. The integration with the agent provides
additional capabilities beyond previous approaches so that
it can more efficiently evaluate actions and perform minor
re-planning when all actions violate its constraints. We
demonstrate an implementation of our approach in the
cognitive architecture Soar for a simple agent and show that
it effectively prevents the agent from executing actions that
would violate its constraints. We also discuss challenges that
arise from our implementation.
Keywords: trustable AI, cognitive architectures, ethical
governor, machine ethics, autonomous learning agents,
ethical constraints

Introduction
Autonomous agents are becoming increasingly prevalent
(Anderson and Anderson 2007) in cognitive assistants,
health-care settings (Shim and Arkin 2017), driver-less cars
(Waldrop and others 2015), and household cleaning robots
(Forlizzi and DiSalvo 2006). In addition to generating high-
quality performance, it is imperative that they obey ethi-
cal norms. This is especially difficult to ensure in learning
agents, where an agent’s behaviors cannot be pre-analyzed
through formal verification (Davis et al. 2016). As noted by
Amodei et al. (2016), a less than perfect choice of an ob-
jective function in reinforcement learning can lead to un-
expected and undesirable behavior. A recent and disturbing
example was Microsoft’s AI twitter bot that had to be shut
down after learning to generate racist and hateful comments
from interactions with human users (Kraft 2016).

In this paper, we focus on agents that learn completely
new knowledge and tasks from interacting with a human in-
structor, an approach called Interactive Task Learning (ITL)
(Laird et al. 2017). Existing ITL agents already learn games
and puzzles (Kirk and Laird 2014; Kirk, Mininger, and Laird
2016; Hinrichs and Forbus 2014), delivery and navigation
tasks (Mininger and Laird 2016; Talamadupula et al. 2013),

and new procedures for personal assistants (Allen et al.
2007; Azaria, Krishnamurthy, and Mitchell 2016). As the
space of tasks that are learned and performed expands, a
critical issue is ensuring that ITL agents (and other learning
agents) are not taught to violate their ethical norms. Off-line
external verification is impossible, so instead an approach is
needed that attempts to achieve the following, often conflict-
ing goals:

1. Prohibit the agent from executing actions that will violate
its ethical norms, directly or indirectly, while allowing ac-
tions that do not violate these norms;

2. Minimize the computational overhead associated with
monitoring and preventing unethical behaviors; and

3. Enable ethical norms to be easily encoded.
In this paper, we describe our approach, which builds on

Arkin’s Ethical Governor (Arkin, Ulam, and Duncan 2009)
and Winfield’s Consequence Engine (Winfield, Blum, and
Liu 2014). These approaches introduce components that at-
tempt to ensure that the behavior produced by an agent is
consistent with its norms. The Ethical Governor evaluates
proposed actions against a set of constraints that are ex-
pressed in a formal logic. If an action violates any con-
straints, the agent does not execute it and instead resumes
what it was previously doing. In the case where all pro-
posed actions violate constraints, the governor requests re-
planning. It is assumed that the governor can accurately de-
termine whether or not a constraint is violated using the in-
formation that is currently available to it.

The Consequence Engine simulates all possible actions
of an agent, and generates a model of the expected outcome
for each one. The safety outcome of each model is evalu-
ated according to a pre-defined function, and the agent se-
lects the action that leads to the highest safety outcome. The
agent can also be programmed with safety preferences; in
the example given, a robot is programmed to prefer actions
in which a human is safest, regardless of the robot’s safety.

Here we explore an alternative approach, where a single
agent, created in a general cognitive architecture (in our case
Soar (Laird 2012)), realizes the governor functionality as a
set of primitive knowledge that enforces norms using the ca-
pabilities engendered by the cognitive architecture. A crit-
ical difference between our approach and the others is that
Arkin and Winfield attempt to guarantee behavior of a black-



box agent, whose internal workings are suspect. In contrast,
we assume that the initial agent can be trusted (possibly
through some validation procedure), and what needs to be
“governed” is the tasks taught by a human instructor.

The purpose of this paper is to explore the trade-offs of
incorporating the governor functionality within an agent im-
plemented in a cognitive architecture instead of as a sep-
arate component. Below we describe our implementation,
evaluate its performance, and discuss the lessons we have
learned from this research. The focus is not on which ethical
norms are appropriate for such an agent (Allen, Wallach, and
Smit 2006; Wallach, Allen, and Smit 2008; Powers 2006;
Bello and Bringsjord 2013).

The Soar Cognitive Architecture

We implement our embedded ethical governor in the Soar
cognitive architecture (Laird 2012), which provides a frame-
work within which to build an intelligent agent. The ex-
ecution cycle in Soar begins by updating the current state
with perception, and then elaborating perception with back-
ground knowledge. Next, relevant operators are proposed.
These operators are evaluated, and a single operator is se-
lected and then applied to modify the current state, re-
trieve knowledge from a long-term memory (semantic or
episodic), and/or execute external motor actions. The knowl-
edge to perform these steps is encoded in production rules
that continually match against the current state to provide re-
active, context-dependent behavior. The state is a relational
graph structure that includes all the information relevant to
the agent’s current situation, including perception, elabora-
tions of perception, goals, reasoning results, and retrievals
from long-term memories.

If the agent’s knowledge to select an operator is incom-
plete or in conflict, a substate is created automatically in or-
der to attempt to resolve this impasse. In the substate, the
execution cycle recurs, with operators being proposed and
applied until the impasse is resolved.

Soar has multiple long-term memories, including proce-
dural memory for storing production rules, episodic memory
for storing the agent’s past experiences, and semantic mem-
ory, which stores declarative knowledge. Knowledge stored
in semantic memory is structured in the same relational
graph structure that is used in working memory. The agent
can store and retrieve information from semantic memory
by creating queries in working memory.

Soar offers a wide array of problem-solving capabilities,
making it a rich platform for designing agents. For the pur-
pose of enforcing ethical constraints on behavior, Soar di-
rectly supports the encoding of constraints in operator se-
lection rules that prohibit the selection of specific actions in
certain situations. However, this is limited to constraints on
the selection of operators independent of the consequences
of those operators in the specific situation. To date, there is
limited to no research on how to encode and enforce more
complex ethical constraints in cognitive architectures such
as Soar.

Possible Approaches
There are a few alternatives to implementing an ethical gov-
ernor in a cognitive architecture such as Soar. One option
(Figure 1) uses the approaches taken by Arkin and Winfield,
in which there is a separate module that evaluates and po-
tentially filters all motor actions. The disadvantage of that
approach is that a completely new reasoning engine must be
created to act as a governor, duplicating knowledge and ca-
pabilities already implemented for the agent. This structure
implies that there is a very limited conduit for information
to flow between those components, and in many cases, the
governor will be starved for information - being forced to
make a decision with only the information provided by the
performance component.

A second alternative (Figure 2) is to modify the under-
lying cognitive architecture so that it is directly monitoring
the reasoning and actions of an agent implemented in it. This
would potentially give the governor access to more informa-
tion about the reasoning of the agent, but it also requires
once again the creation of another reasoning engine within
the first to perform calculations that the cognitive architec-
ture is already designed to do, and it raises many issues as to
how it would efficiently access agent information and mod-
ify agent behavior. As will become evident as we describe
the necessary processing below, the feasibility of this ap-
proach is questionable when one considers all of the capa-
bilities we desire in an ethical governor. That said, one ad-
vantage of both of these approaches is that there is a strong
boundary between the agent and the governor, so there can
be assurances that changes in the agent do not in some way
invalidate the governor.

We take a third approach (Figure 3), where the processing
and knowledge for the governor is a part of the agent, imple-
mented using unalterable knowledge encoded in the cogni-
tive architecture framework (and replicated in all ethically-
minded agents). This knowledge performs the processing of
an ethical governor, invoked as needed to evaluate and pos-
sibly inhibit inappropriate agent behavior. One advantage is
that by using Soar, governor developers can take advantage
of Soar’s computational capabilities in developing the gov-
ernor functionality.

Figure 1: Ethical governor implemented as a separate mod-
ule.

Implementation
The governor is implemented as a set of rules in Soar that
interrupt the normal processing of an agent to evaluate pro-
posed operators by matching the ethical constraints to the
anticipated results of the operators’ actions. These rules are
fixed and not modifiable by any learning mechanism. The



Figure 2: Ethical governor implemented as part of the cog-
nitive architecture.

Figure 3: Ethical governor implemented as part of the agent
(our approach).

ethical constraints are stored in Soar’s long-term semantic
memory, represented as relational symbolic structures, and
retrieved into Soar’s working memory as needed. The con-
straint structures are also not modifiable by the agent.

Soar provides the computational mechanisms for inter-
rupting processing, evaluating actions, and so on, thereby
providing a much simpler and more natural solution to im-
plementing the governor than attempting to modify the inner
workings of the architecture and building everything from
scratch. This also gives us flexibility by allowing the agent
programmer to modify the ethical constraints and governor
rules to fit the needs of a specific application domain.

The basic steps of the governor are to

1. determine which operators must be evaluated;

2. evaluate those operators through internal simulation;

3. select an appropriate operator based on their evaluations
and other task knowledge.

Below we describe the processing for each of these steps,
but first describe how the ethical constraints are stored, rep-
resented and retrieved.

Constraint storage, representation and retrieval
The agent must have access to the constraints written by the
agent programmer in order to determine if any of the pro-
posed operators violate the norms. An important goal here
is to formulate constraints in such a way so that it is easy for
the programmer to write them. We also want constraints to
be flexible enough to represent any desired forbidden state.
Our approach uses declarative symbolic relation structures
that are matched to the agent’s state representations. Win-
field’s consequence engine requires a specified function to
describe the safety value of each possible state, which is
problematic given the fact that because of learning, the pos-
sible states that the agent might encounter is unknown ahead
of time. In our system, we can specify constraints on a sub-
set of the state structure while disregarding the rest; we may
set a constraint that a fired weapon may not hit an ally, no
matter what other state information is present. However, we

can also create context-dependent constraints that take into
account the complete state.

Specifically, we represent constraints in semantic mem-
ory in the same graph structure that is used to represent the
agent’s state in working memory (as shown in Figure 4). An
object we name “Constraints” serves as the parent node to
all of the present constraints. Each object connected to the
parent Constraints then represents one of the constraints and
serves as the analogous state parent node. The constraint
is then specified by including attributes and objects to this
analogous state node, and the constraint will be violated if
an operator causes the agent to be in a simulated state that
matches the state described by the constraint.

Figure 4: Our representation of constraints in a Soar agent.

Constraints can also specify that certain objects cannot be
equal to each other; otherwise, a constraint is able to match
a simulated state if it has multiple objects that all match
against a single object in the state.

Because this is implemented in a single system, it is
easy to add knowledge to compute state information that
is only needed to test constraint violations. For example,
if our agent should be constrained to remain a certain dis-
tance from an object (say, a dangerous explosive), and no
representation of distances to other objects is initially in-
cluded, this calculation is easily added to the agent. This
gives us our desired flexibility. Additionally, because the
constraint form is matched against the agent’s state represen-
tation, constraints can be easily encoded by the programmer,
who would already be familiar with how the state represen-
tation is structured.

The agent retrieves the ethical constraints that are relevant
to the current situation from long-term memory, and uses
these to evaluate operators (see below).

Determining which operators must be evaluated
When the agent proposes an operator, the governor must de-
termine if any of the operator’s external actions pose a risk



of violating the agent’s constraints. If so, then the operator
must be evaluated and its actions must be checked against
the constraints before it can be executed. We must ensure
that operators that might violate constraints are evaluated,
but we also want to avoid wasting time evaluating operators
that do not risk violating the constraints as this internal simu-
lation can be computationally expensive, potentially impact-
ing agent reactivity.

In our implementation, we assume that constraints per-
tain only to external actions, so the governor flags operators
with external actions for evaluation, but does not flag oper-
ators that involve only internal processing. Additionally, we
foresee situations in which the programmer has knowledge
that certain actions will never violate constraints. Thus, the
agent programmer can label specific external actions as al-
ways being acceptable, and the governor will skip the eval-
uation of operators with only those actions. To implement
this logic in Soar, there are general rules that reject all pro-
posed operators until all flagged operators are evaluated. If
no operators are flagged, the rules do not apply and no evalu-
ation is necessary. Rejecting all operators forces an impasse
in Soar, which results in the creation of a substate in which
the flagged operators can be evaluated. Once the operators
are evaluated, a decision is made, informed by those evalua-
tions.

Operator Evaluation
As described above, when there are operators to be eval-
uated, an impasse will be forced and a substate created.
In the substate, the agent evaluates each proposed opera-
tor against the constraints, which describe states that are in
violation of the ethical norms. To evaluate an operator, the
agent simulates the operators’ actions and compares the re-
sulting state against the constraints. The simulation is per-
formed internally, using knowledge (encoded as rules) that
models the dynamics of the actions and the environment. If
the state that results from the simulation matches any con-
straints, the operator is marked as a violation and the opera-
tor is rejected so it cannot be selected. This evaluation allows
not only the testing of the ethical constraints but also the
agent’s task-specific preferences, avoiding duplicate simula-
tions that might otherwise occur in other approaches.

If the operator is not found to violate any constraints, the
governor assesses if the agent has all the relevant informa-
tion to determine if a constraint is violated. If it does, the
operator is marked as successful. If it does not, then the
agent requests the necessary information. This is in contrast
to other approaches, which assume that all relevant infor-
mation is available to the governor for evaluation. Our al-
ternative approach allows the agent to request more infor-
mation when evaluating the constraints, which may require
information above and beyond what the agent has available,
both in terms of its perception of the environment and its
overall situational awareness involving information derived
through internal reasoning. For example, an agent might be
instructed to fire a weapon without any of its sensors active.
If there is an object or person in the line of fire that the agent
is not allowed to hit, the governor will be unable to detect
a constraint violation. Thus, the agent will make a decision

based on a lack of knowledge, assuming that if something
is unknown (the location of other objects) then it is not true
(there are not objects to be hit), when instead, it should make
its decisions based on positive knowledge that some fact is
not true. In our approach, the governor detects when it needs
more information to evaluate the outcome of an action, and
can request additional information about the environment,
which in this case is to activate its sensors.

Operator Selection
After all operators have been evaluated, the agent selects
and executes the best operator that passed the ethical con-
straints based on its available domain knowledge. However,
it may be that all operators failed the constraints, leaving
the agent with no feasible actions. In this case, we want our
agent to act sensibly, and select an acceptable operator as
efficiently as possible. In order to avoid costly re-planning,
our governor can alter and re-evaluate operators that initially
violated constraints without rejecting all operators’ actions
out of hand. In addition to labeling actions as ‘always ac-
ceptable’, the programmer can label actions as ‘potentially
problematic’. If the agent evaluates all of its proposed oper-
ators as failures, it will remove any actions that have been la-
beled as ‘potentially problematic’ from those operators and
re-evaluate them. If any of these newly modified operators
do not violate the constraints, the agent is able to select one
to apply.

It is still possible that these altered operators will vio-
late the constraints and the agent will need to re-plan to
generate new operators; however, giving the governor some
ability in re-planning can save significant time in situations
where small alterations in the actions can eliminate ethical
issues. Our model of the governor gives flexibility to the
programmers in deciding where re-planning should occur
for each action. Continuing the previous example, the agent
may have proposed only the operator to move forward and
fire, but the governor finds that this will hit an unacceptable
target. The governor can then modify the operator to only
include the action to move forward, and evaluate this. (Or
not, if moving forward has been labeled as safe).

Limitations
One limitation of our governor is that in some cases it can-
not overcome constraint violations that occur due to external
forces. While our agent is capable of modifying its proposed
operators if none are acceptable, it may still find itself in sit-
uations where all operators are prohibited and it is unable to
take actions that improve its situation. For instance, an agent
may have a constraint that it cannot be within a certain dis-
tance of an object. If that object is moved to be within that
distance of the agent by some other agent or force, the con-
straint is violated. If the agent cannot move far enough away
from that object with a single action, then all its proposed
operators will violate the constraint, and it cannot even se-
lect an action that takes it away from the object. Part of the
problem is that our system only considers constraint failures
that are all or none, whereas in many real-world cases there
can be degrees of constraint violation.



Our governor is also limited in the scope of its opera-
tor evaluation. It is not able to detect if an action has any
long-term ramifications that will lead to a constraint viola-
tion at some time in the future. Imagine an agent that has
been taught to move toward other agents and then fire its
weapon, but is constrained to not fire at allies. It will be al-
lowed to move toward an ally, even though it is only doing so
because it has the goal of firing at that agent. The governor
will kick in when the agent does attempt to fire, but it would
be preferable for our agent to not waste time taking actions
to achieve a goal that will ultimately violate a constraint.

Programmer Responsibilities
While we have tried to ensure that our ethical governor is
applicable to any agent, there are some specific details that
must be enacted by the agent’s programmer. Note that the
main use case we are considering is where the programmer
can be trusted, but through instruction by other users, the
agent may acquire questionable knowledge.

One important responsibility is that the agent can accu-
rately simulate the results of its actions; otherwise, the gov-
ernor’s evaluations will not be correct. As mentioned above,
the governor may find a constraint to not be violated be-
cause it does not have enough information, and is capable
of flagging a need for more information. The programmer
must implement rules that determine how the agent acts in
this situation. It may benefit the agent to create specific rules
of how to gather more information for different actions.

Evaluation
Although our goal is to implement this within an ITL agent,
we first evaluate a non-learning agent where we can delib-
erately manipulate its knowledge (simulating learning) and
then evaluate the ability of our approach to ensure norma-
tive behavior. We then demonstrate our ethical governor in-
tegrated with a learning agent called Rosie.

Tanksoar
To demonstrate some of the characteristics of our ethi-
cal governor, we use a simple simulated domain, called
Tanksoar. Tanksoar is a game with discrete time that takes
place on a two-dimensional grid filled with various objects.
A Tanksoar agent controls a tank object, which can move
around the grid, use radar to detect objects, and shoot mis-
siles to destroy other tanks (Figure 5).

Figure 5: A simple Tanksoar state.

Setup
We compare five different Tanksoar agents: one which has
no ethical governor, one with an ethical governor but no ac-
tion labels, one with the governor and only safe action labels,
one with the governor and only problematic action labels,
and one with the governor and both types of action labels.
In each scenario, all agents propose an operator to move for-
ward and fire, and an operator to turn left and fire, with the
exception of the agent with only safe labels. This agent pro-
poses an operator to move forward and fire and an opera-
tor to turn left only. The operator to move and fire is set to
be preferred over all other operators. All agents (except the
one with no governor) are given the constraint that they can-
not hit a missile-pack object with a fired missile. The agents
with safe labels have the turn action labeled as safe, and the
agents with problematic labels have the fire action labeled
as potentially problematic. We put our agents in three dif-
ferent scenarios: one in which there is a missile-pack three
squares in front and a missile-pack one square to the left,
one in which there is a missile-pack three squares in front,
and one in which there are no missile-packs surrounding the
agent.

To measure the overhead incurred by the ethical governor,
we examine the number of decision cycles it takes the agent
to apply one of its two proposed operators. This is a straight-
forward test that the governor does what it is designed to do
and that there are no unexpected interactions between the
different labels and constraints.

Figure 6: Three Tanksoar scenarios; from left to right: No
visible missile-packs, one visible missile-pack, and two vis-
ible missile-packs.

Results
Figure 7 shows the number of decision cycles used in each
agent and the actions taken by each agent are shown in Table
1. Without any ethical governor, the agent can perform ac-
tions that violate its constraints. We see that in all three situa-
tions, the Tanksoar agent without a governor moves forward
and fires, even when there is a missile-pack in front of it. The
different versions of ethical governors all require more de-
cision cycles to select an operator, but all prevent the agent
from violating its constraint and firing at the missile-pack.

The agent with safe action labels and both types of labels
avoids unnecessary action evaluations. In our evaluation, we
have the Tanksoar agent with safe action labels propose to
turn left only, rather than turn and fire, in order to demon-
strate that it is capable of selecting an operator with only la-
beled safe actions without evaluating it. When its two opera-



Figure 7: The number of decision cycles required for our Tanksoar agents to select an action.

No missile-packs One missile-pack Two missile-packs

No governor Move forward and fire Move forward and fire Move forward and fire

No labels Move forward and fire Turn left and fire Cannot act

Safe labels Move forward and fire Turn left Turn left

Problem labels Move forward and fire Turn left and fire Move forward

Both labels Move forward and fire Turn left and fire Move forward

Table 1: The actions taken by each Tanksoar agent in each scenario. Actions that are italicized violate the agent’s constraint.

tors are proposed, it does not flag turn left as needing evalua-
tion, and automatically labels it as a success. In the one- and
two-missile-pack scenarios, the agent evaluates move for-
ward + fire to violate its constraint, so it instead turns left.
In the two-missile-pack scenario, the agent with both types
of labels finds that all of its proposed operators evaluate as
failures, and removes the ‘fire’ action from each. Because
turning has been labeled as safe, it only evaluates the ‘move
forward’ operator, reducing the number of needed decision
cycles.

When evaluating the proposed operators, all versions of
the governor initially find that none of the actions violate
the constraints. However, instead of labeling all operators
as a success, the governor flags a need for more informa-
tion, because its radar is turned off. This results in the agent
turning on its radar. Now the agent detects the surrounding
missile-packs, and accurately evaluates its proposed opera-
tors against its constraint.

In the two-missile-pack scenario, the governor with no la-
bels cannot act because both of its proposed actions will fire
a missile at a missile-pack. (The governor with only safe ac-
tion labels would also be unable to act, if we had specified
that to should propose turn left + fire, instead of turn left
only.) The governors with problematic action labels are able
to modify the failed proposed operators. The ‘fire’ action
is labeled problematic, so the proposed operators are each

modified to ‘turn left’ and ‘move forward’. These opera-
tors are then re-evaluated (although the governor with ‘turn’
labeled as safe does not evaluate ‘turn left’), and both are
found to be successes. Because the original operator to move
forward and fire was preferred by the agent, it selects the
operator to move forward only. Despite its initial operators
violating the constraint, the Tanksoar agent can act sensibly
without requesting complete re-planning.

Rosie
To demonstrate how our ethical governor can be combined
with an ITL agent, we have integrated it with a learning
agent called Rosie. For this work, Rosie operates in a simu-
lated domain which contains four rooms and three hallways,
shown in figure 8. Rosie can be given commands to pick up
or put down an object or to go to a certain room, and it is
also capable of being taught to perform new tasks, such as
to deliver an object to a room. In this work, we focus on
using the ethical governor to constrain Rosie when given a
specific command, such as ”Pick up the red box” and ”Go to
the kitchen”.

When Rosie is given the command ”Go to the kitchen”
(Location 3 in figure 8), it creates an operator to execute
this task. While applying this operator, Rosie enters differ-
ent substates to determine how to execute the task ”Go to
the kitchen” - first it must go to Hallway 5, and then it can



go to the kitchen. Our ethical governor evaluates each of
these subactions, rather than the main action of going to the
kitchen. This allows it to determine if any constraints will
be violated during execution of the main action, instead of
merely checking the constraints against the final state. For
example, if Rosie is constrained to not enter Hallway 5, eval-
uating the subactions will allow the ethical governor to real-
ize that going to the kitchen will in fact cause a violation.

Our ethical governor is successful in prohibiting Rosie
from picking up objects, as well as entering specific loca-
tions. Given constraints that it should not hold the red box
and it should not enter Hallway 5, Rosie did not execute
commands to pick up the red box or go to the kitchen, but
was still able to execute a command to pick up the blue box.
By altering the second constraint to forbid entering Hallway
7, Rosie was then able to obey the command to go to the
kitchen.

Figure 8: The simulated environment used with Rosie.

Discussion
Our ethical governor extends the capabilities of Arkin’s Eth-
ical Governor and Winfield’s Consequence Engine in sev-
eral ways. Our constraints are easily written, taking the same
structure used to describe the agent’s state. Rather than as-
signing a function to describe each possible state’s safety
value, our constraints are directly expressible in terms of
states that should be avoided by the agent. Unlike Arkin’s
governor, our governor is capable of flagging a need for
more information, allowing it to more accurately determine
if a constraint is violated. It can also better handle situations
in which all constraints are violated by modifying its ex-
isting proposed operators to attempt to find one that is ac-
ceptable. While not guaranteed to provide a solution in all
cases, this provides the chance to select an acceptable op-

erator without needing to request re-planning from a sepa-
rate architecture component. Our safe action labels save the
governor time by skipping the evaluation of operators con-
taining only actions known by the programmer to always be
acceptable.

It should be noted that one decision cycle in Soar takes ap-
proximately 0.3 milliseconds.If we want our agent to have
ten interactions with the environment per second, then we
can allow it about 300 decision cycles for each external
action. As seen in Figure 7, even the slowest governor is
roughly ten times faster than this requirement. So although
our ethical governor significantly increases the number of
decision cycles to select an operator, the agent is still able to
maintain reactivity.

There still remain many areas for improvement in our em-
bedded ethical governor. Our governor’s capability to flag
a need for more information can be expanded and imple-
mented in a more sophisticated way. Currently, the governor
sets this flag if it finds a constraint is not matched, because
it may find that constraint to be matched if it had more in-
formation. (For example, our Tanksoar agent needed to turn
on its radar to see that firing a missile would hit a missile-
pack in its path). However, the agent cannot determine what
specific information would allow it to confirm a constraint
to be (un)violated. While it is currently left to the program-
mer to add specific rules for how to gather more information
when the flag is set, we hope to eventually shift more of this
responsibility to the ethical governor.

Our governor is incapable of acting if all proposed oper-
ators violate constraints (including any modified operators).
A future goal is to enable the governor in this situation to
propose operators that will put the agent in a state that is
‘less’ of a violation than its current state. The governor may
be able to give the agent the goal of achieving a state in
which the constraint is not violated, and temporarily allow
the agent to violate the constraint until it reaches its goal.
This could, however, introduce more issues: should the agent
be allowed to violate other constraints, if doing so would al-
low it to reach its goal much faster than not doing so? (Or
what if it cannot reach its goal without violating other con-
straints?) This suggests it may be necessary to include some
kind of ranking system that details which constraints may
be violated to avoid others, and which may not be violated
under any circumstances.

Although one of the advantages of our approach is
that the governor can actively gather more information in
knowledge-poor situations, such as by turning on the radar
in Tanksoar, it is possible for these actions to negatively in-
teract with other goals and desires of the agent. One reason
for having the radar off is to stay concealed (other tanks have
radar detectors), so turning the radar on can make the tank
more vulnerable. Thus, we need to expand that agent’s capa-
bilities to also include reasoning about the ramifications of
its sensor actions, so it avoids interference with the agent’s
goals.

While we aim to give the ethical governor as much re-
sponsibility as possible in evaluating constraints and deter-
mining alternative actions when necessary, our implementa-
tion allows the programmer to add their own specific rules.



By using the existing capabilities of the cognitive architec-
ture to create our governor, it is easy for the programmer to
make changes as they see fit. However, this also means that a
malicious programmer could alter the agent’s code and ren-
der the ethical governor ineffective. As we improve the eth-
ical governor’s capabilities, it may be necessary to explore
methods of directly altering the architecture in order to pre-
vent explicit attacks against the governor.

Despite these challenges, we have proposed a framework
for an ethical governor embedded in an agent’s knowledge
that can evaluate that agent’s actions at runtime, and demon-
strated a working implementation of this governor in the
Soar cognitive architecture. In the future, we aim to further
test our ethical governor in an ITL agent. Our goal is that
the governor would prevent the agent from executing actions
that violate its constraints, even if it has been taught to per-
form these actions to complete a task. Our approach offers
improvement over previous work and provides a method by
which an ethical governor can be embedded in an agent, har-
nessing the power of its cognitive architecture.

References
Allen, J.; Chambers, N.; Ferguson, G.; Galescu, L.; Jung,
H.; Swift, M.; and Taysom, W. 2007. Plow: A Collaborative
Task Learning Agent. In AAAI, 1514–1519.
Allen, C.; Wallach, W.; and Smit, I. 2006. Why Machine
Ethics? IEEE Intelligent Systems 21(4):12–17.
Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schul-
man, J.; and Mané, D. 2016. Concrete Problems in AI
Safety. arXiv preprint arXiv:1606.06565.
Anderson, M., and Anderson, S. L. 2007. Machine
Ethics: Creating an Ethical Intelligent Agent. AI Magazine
28(4):15.
Arkin, R. C.; Ulam, P.; and Duncan, B. 2009. An Ethical
Governor for Constraining Lethal Action in an Autonomous
System. Technical report, Georgia Inst Of Tech Atlanta Mo-
bile Robot Lab.
Azaria, A.; Krishnamurthy, J.; and Mitchell, T. M. 2016. In-
structable Intelligent Personal Agent. In AAAI, 2681–2689.
Bello, P., and Bringsjord, S. 2013. On How to Build a Moral
Machine. Topoi 32(2):251–266.
Davis, D.; Brutzman, D.; Blais, C.; and McGhee, R. 2016.
Ethical Mission Definition and Execution for Maritime
Robotic Vehicles: A Practical Approach. In OCEANS 2016
MTS/IEEE Monterey, 1–10. IEEE.
Forlizzi, J., and DiSalvo, C. 2006. Service Robots in the
Domestic Environment: A Study of the Roomba Vacuum in
the Home. In Proceedings of the 1st ACM SIGCHI/SIGART
Conference on Human-Robot Interaction, 258–265. ACM.
Hinrichs, T. R., and Forbus, K. D. 2014. X Goes First:
Teaching Simple Games Through Multimodal Interaction.
Advances in Cognitive Systems 3:31–46.
Kirk, J. R., and Laird, J. 2014. Interactive Task Learning for
Simple Games. Advances in Cognitive Systems 3:13–30.
Kirk, J.; Mininger, A.; and Laird, J. 2016. Learning Task

Goals Interactively With Visual Demonstrations. Biologi-
cally Inspired Cognitive Architectures 18:1–8.
Kraft, A. 2016. Microsoft Shuts Down AI Chatbot After it
Turned into a Nazi. CBS News.
Laird, J. E.; Gluck, K.; Anderson, J.; Forbus, K. D.; Jenkins,
O. C.; Lebiere, C.; Salvucci, D.; Scheutz, M.; Thomaz, A.;
Trafton, G.; et al. 2017. Interactive Task Learning. IEEE
Intelligent Systems 32(4):6–21.
Laird, J. E. 2012. The Soar Cognitive Architecture. MIT
press.
Mininger, A., and Laird, J. 2016. Interactively Learning
Strategies for Handling References to Unseen or Unknown
Objects. Adv. Cogn. Syst 5.
Powers, T. M. 2006. Prospects for a Kantian Machine. IEEE
Intelligent Systems 21(4):46–51.
Shim, J., and Arkin, R. C. 2017. An Intervening Ethical
Governor for a Robot Mediator in Patient-Caregiver Rela-
tionships. In A World with Robots. Springer. 77–91.
Talamadupula, K.; Briggs, G.; Scheutz, M.; and Kambham-
pati, S. 2013. Architectural Mechanisms for Handling
Human Instructions in Open-World Mixed-Initiative Team
Tasks. Advances in Cognitive Systems (ACS) 6.
Waldrop, M. M., et al. 2015. No Drivers Required. Nature
518(7537):20–20.
Wallach, W.; Allen, C.; and Smit, I. 2008. Machine Moral-
ity: Bottom-Up and Top-Down Approaches for Modelling
Human Moral Faculties. AI & Society 22(4):565–582.
Winfield, A. F.; Blum, C.; and Liu, W. 2014. Towards
an Ethical Robot: Internal Models, Consequences and Eth-
ical Action Selection. In Conference Towards Autonomous
Robotic Systems, 85–96. Springer.


