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Abstract

We present a general cognitive architecture that tightly integrates symbolic, spatial, and visual

representations. A key means to achieving this integration is allowing cognition to move freely

between these modes, using mental imagery. The specific components and their integration are moti-

vated by results from psychology, as well as the need for developing a functional and efficient imple-

mentation. We discuss functional benefits that result from the combination of multiple content-based

representations and the specialized processing units associated with them. Instantiating this theory,

we then discuss the architectural components and processes, and illustrate the resulting functional

advantages in two spatially and visually rich domains. The theory is then compared to other

prominent approaches in the area.
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1. Introduction

Space and vision are prominent in our experiences as humans. We live in a richly visual

world and are constantly and acutely aware of our position in space and our surroundings.

In addition to this seemingly precise awareness, we are also able to reason abstractly, use

language, and construct arbitrary hypothetical scenarios. In this contrast, we see important

questions for cognitive science: How can information from different senses, at different

levels of abstraction, be fluidly used in decision making? What functional role does special-

ized spatial and visual processing play in cognition?
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This article presents a comprehensive account of an implemented cognitive architecture

tightly integrating spatial and visual processing with symbolic processing, making perceptu-

ally grounded information a first-class participant in higher-level cognition. This article

brings together two related lines of research (Lathrop & Laird, 2009; Wintermute & Laird,

2009) focusing on the design of the architecture, the capabilities gained by integrating

spatial and visual information with symbolic abstractions, and the relationship to existing

cognitive theories.

While this architecture is psychologically inspired, it is not a precise model of human

behavior. Rather, the goal is a functional explanation of visuospatial cognition, in terms of

what representations and processes can support human-level capabilities and performance.

To this end, we limit what we borrow from psychological theories to those aspects that pro-

vide a clear functional benefit and have not incorporated details that solely improve model

fidelity (the match to human data). This approach benefits the construction of AI systems;

however, we believe it has the potential to reflect back and provide novel insights to

psychology. Focus on functionality over fidelity allows us to provide clear arguments

for the core components of the system that are likely to be valid independently of what

commitments are made about the details required for a high-fidelity model.

That said, implementation is an important aspect of our approach, and many details must

be specified before the architecture can actually produce behavior. In the discussion here,

we try be clear about which choices we consider to be implementation details rather than

theoretical commitments.

To constrain the higher-level cognitive aspects to an established theory, our architecture

is designed as an extension of the Soar cognitive architecture (Laird, 2008; Laird, Newell, &

Rosenbloom, 1987). The extension is called the Spatial ⁄ Visual System, or SVS.1 One of our

key claims is that mental imagery is functionally essential to spatial and visual cognition.

Accordingly, previous research in mental imagery (Kosslyn, Thompson, & Ganis, 2006)

influences the multiplicity of representations in SVS: symbolic, quantitative spatial, and

visual depictive. Together these representations form a basis for spatial and visual processing

from which spatial and visual cognition emerge. Although psychologists have debated for

years over the types and details of mental imagery representations (Kosslyn, 1994; Kosslyn

et al., 2006; Pylyshyn, 1973, 1981, 2002), there has been less emphasis on the functional

value that mental imagery provides to human cognition and how such functionality can be

realized in a general computational system, which is the focus of this research.

In addition to cognitive functions, the architecture accounts for many higher-level aspects

of perception and action, because imagery, perception, and action share computational

machinery in our architecture. While a complete architecture capable of humanlike percep-

tion and action control is far beyond the state of the art, we argue that including perceptual

and motor processes in cognition can provide functional benefits, as has often been argued

by theorists studying ‘‘embodied,’’ or ‘‘grounded’’ cognition (Barsalou, 2008; Grush,

2004), even when those systems are incompletely implemented. There is a large body of

existing research from which we borrow in our work, and upon which our work can provide

an interesting perspective. Some of these connections are discussed as they come up, and

others are addressed in the discussion section.
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2. Spatial and visual representations in cognition

Our hypothesis is that three distinct representations support spatial and visual cognition:

amodal symbolic, quantitative spatial, and visual depictive, all of which are shown in Fig. 1.

The amodal symbolic representation is useful for general reasoning (Newell, 1990). From a

spatial and visual perspective, symbols may denote an object, visual properties of an object,

and spatial relationships between objects. In general, these symbols are qualitative proper-

ties, rather than quantities. They are sentential, in that their meaning is dependent on context

and interpretation rather than their spatial arrangement in memory. For example, the right-

hand column in the first row of Fig. 1 represents two objects, a tree and a house with

Representa�on Informa�on Processing Example
Symbolic � Object iden��es

� Qualita�ve spa�al and 
visual proper�es

� Non-perceptual 
informa�on 

Symbolic 
manipula�on

object (tree)
color (tree, green)

le�-of(tree, house)

Quan�ta�ve 
spa�al

� Object labels 
� 3D Spa�al Proper�es

(explicit)
o General shape
o Loca�on 
o Orienta�on

� 3D Spa�al Proper�es
(implicit)
o Size
o Topology
o Direc�on
o Distance

Mathema�cal 
manipula�on

tree:
loca�on <-2,4,0>
orienta�on 0
shape coordinates 

<1,3,1>;<2,8,1>;<1,3,0>..

house:
loca�on <9,4,0>
orienta�on 0
shape coordinates 

<8,3,1>;<2,3,1>;<4,3,0>..
Visual depic�ve � Object labels

� 2D Visual Proper�es
(explicit)
o Shape
o Texture
o Empty space

� 2D Spa�al Proper�es
(implicit)
o Loca�on
o Size
o Topology
o Direc�on

Mathema�cal 
manipula�on

Depic�ve 
manipula�on

Fig. 1. Multiple representations supported in Spatial ⁄ Visual System (SVS).
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symbols denoting visual (e.g., color(tree, green)) and spatial (e.g., left-of(tree, house)) prop-

erties. In addition to spatial and visual properties, symbols can represent nonspatial or non-

visual content, which is necessary for associating an object with other modalities and

concepts such as love, justice, or peace.

The quantitative spatial representation is also amodal but is perceptual-based in that it is

an interpretation of visual, auditory, proprioception, and kinesthesis senses asserting the

location, orientation,2 and rough shape of objects in space. Computationally, the structure

uses three-dimensional Euclidean space with symbols to label objects. Spatial processing is

accomplished with sentential, mathematical equations. Motion can be simulated through lin-

ear transformations (i.e., translating, rotating, and scaling) or with nonlinear dynamical sys-

tems (e.g., Wintermute, 2009a). The second example in Fig. 1 represents the metric

location, orientation, and rough shape of the tree and the house. Direction, distances

between objects, size, and rough topology can be inferred from this information.

In contrast to the symbolic and spatial representation, both of which are sentential struc-

tures, space, including empty space, is inherent in the visual depictive representation. The

depiction is from a privileged viewpoint, and the pattern structure resembles the objects in a

perceived or imagined scene. Computationally, the depiction is a bitmap where the process-

ing uses either mathematical manipulations (e.g., filters or affine transformations) or special-

ized processing that takes advantage of the topological structure. This imagery processing

can be used to extract cognitively useful visual features (e.g., lines, curves, enclosed spaces)

or for spatial reasoning where details of specific shapes are inherent to the problem. Similar

to spatial imagery, visual imagery can manipulate the depiction to simulate physical

processes.

Each representation has functional and computational trade-offs that specific tasks often

highlight. For example, given appropriate inference rules and the symbolic representation in

Fig. 1, one can infer that the green object (tree) is to the left of the blue object (house).

However, one cannot infer the distance between the tree and the house or that the top of the

house is shaped like a triangle. One can infer these properties from a symbolic representa-

tion only when the relevant property is encoded explicitly or when task knowledge supports

the inference (e.g., if three lines intersect, then there is a triangle). Even if equivalent infor-

mation is present in each representation, processing efficiency may vary across them.

Mental imagery theorists (Kosslyn et al., 2006) have made similar arguments. However,

their focus is primarily on the use of depictions, whereas we place equal emphasis on

quantitative spatial representations.

These trade-offs can be characterized on a scale between discretion and assimilability

(Norman, 2000) or scope and processing cost (Newell, 1990). The symbolic representation

is high in discretion, as it conveys just enough information required for general reasoning.

For example, the predicate description, on (apple, ground), is sufficient for general infer-

ences such as ‘‘if the apple is on the ground, then grasp it.’’ Symbols have greater scope

compared with the spatial and depictive representations in that they can represent in-

complete knowledge such as negation and uncertainty, as in the statement, ‘‘If the apple is

not in the tree but is on the ground or on the table, then grasp it.’’ Reasoning in this context

does not have to be concerned about the exact location or shape of the objects.
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At the other extreme, the spatial and depictive representations are low in terms of discre-

tion and scope, as they provide many details but are limited to spatial and visual informa-

tion. However, for spatial and visual properties, they have lower processing costs and are

easier to assimilate. For example, from the image in Fig. 1, information such that the roof of

the house looks like a triangle and overhangs the frame of the house is directly accessible.

What is lost in scope is gained in efficiency.

3. Spatial and visual domains

To motivate the architectural discussion, we will use examples from two domains,

Pegged Blocks World (Fig. 2; Wintermute & Laird, 2009) and Scout (Fig. 3; Lathrop &

Laird, 2009). Pegged Blocks World problems are very simple but require precise spatial

reasoning and broad generalization for success. The domain has been designed to be as sim-

ple as possible while still having sufficient complexity to demonstrate the usefulness of

imagery. In contrast, the Scout domain is relatively complex, allowing for comprehensive

agents to be created which demonstrate the broad capabilities of the architecture to include

the use of multiple (i.e., symbolic, spatial, and visual) representations. Agents using the

architecture have been developed for both of these domains and presented in previous work

(Lathrop & Laird, 2009; Wintermute & Laird, 2009). In this work, the focus is on how the

architecture supports the capabilities needed by these agents, rather than evaluating the per-

formance of the agents in their domains.3

An agent in the Pegged Blocks World domain (Fig. 2; Wintermute & Laird, 2009) per-

ceives blocks and can move them from place to place. Unlike similar domains, however,

the blocks cannot be placed freely on a table. Instead, there are two fixed pegs, and each

block must be aligned to one of the pegs—essentially, there can only be two towers, and

their positions are fixed. The agent is presented with a simple goal, for example, to stack A

on top of B on top of C on top of D, all on peg2. Blocks can be moved from the top of one

tower to the other; however, the blocks vary in size, and the pegs are close enough that

Fig. 2. A pegged blocks world state.
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blocks can collide, depending on the exact sizes of the other blocks in the towers. Blocks

can also be moved out of the way to a storage bin. The task of the agent is simply to build

its goal stack while avoiding collisions and using the bin as little as possible.

The agent must solve a series of these problems, where the exact shapes of the blocks

may vary, so the agent cannot perform well simply by memorizing an action sequence. The

key means by which our agent solves this problem is by imagining the consequences of its

actions in order to determine which actions would cause collisions.

The Scout domain (Fig. 3; Lathrop & Laird, 2009) is motivated by the U.S. Army’s

efforts in developing autonomous, robotic scouts for reconnaissance missions. A two mem-

ber scout team’s goal is to keep their higher command informed of the opposing force’s

movements by periodically sending observation reports (through the lead scout) of their best

assessment of the enemy’s location. To provide this information, the team must continually

improve their positions in order to gain and maintain visual observation of the approaching

enemy.

Consider the problems encountered by an agent performing the task of the lead scout.

The agent perceives a certain view of the world (Fig. 3A), and its teammate perceives

another (Fig. 3B). Both reflect some actual situation (Fig. 3C). The agent must combine

information it directly perceives, information communicated from its teammate, and back-

ground knowledge (e.g., enemy tactics) to form hypotheses about where the enemy is

(A) (B)

(C) (D)

Fig. 3. Army scout domain. (A) Lead (agent) scout’s view, (B) Teammate’s view, (C) Actual situation

(displayed on a map), (D) Agent’s perceived map ⁄ imagined situation.

S. D. Lathrop, S. Wintermute, J. E. Laird ⁄ Topics in Cognitive Science 3 (2011) 801



located. To help with this analysis, the agent can look at a terrain map of the area and use

this as a context in which to imagine these hypotheses (Fig. 3D).

Fig. 4 shows imagery supporting this processes in our system (the exact mechanisms will

be elaborated shortly). In Fig. 4(A), the agent recognizes a likely path between an enemy

location and a hypothetical destination. In Fig. 4(B), the agent determines what portion of

the hypothetical path it could view by generating a visual depiction of its view area (dark

blue) and overlaying it on the recognized path (orange). This reasoning, combined with sim-

ilar analysis of other likely enemy paths from both the agent’s current and simulated alterna-

tive perspectives and the teammate’s current and simulated alternative perspectives, enables

the agent to decide whether and where to reorient itself, its teammate, or both. Similar to

Pegged Blocked World, the agent solves these problems by imagining the situation and the

outcome of its actions before choosing an action to execute.

4. Architectural design

The overall design of SVS is shown in Fig. 5. Combined with the existing Soar architec-

ture, this results in a comprehensive cognitive architecture for spatial and visual processing.

A cognitive architecture is a set of fixed structures and mechanisms proposed to support

general cognition (Anderson, 2007; Langley, Laird, & Rogers, 2009). A model of human

behavior or an artificial agent is realized in such a system by adding task-specific

knowledge.

The existing Soar architecture is shown at the top of Fig. 5. Soar contains a symbolic

working memory, through which processes within Soar communicate. Connections to an

external environment flow through SVS, where input and output occurs via changes to

working memory. Other cognitive architectures, such as ACT-R (Anderson, 2007), use

similar structures to connect to an external environment; the concepts behind SVS could be

adapted to any system with such an interface.

Working memory serves as the locus of processing in Soar. Symbolic rules in long-term

procedural memory match and modify its contents, mediated by operators (deliberate

choices of internal or external actions) selected by a fixed decision procedure based on

(A) (B)

Fig. 4. Visual generation and recognition processes create visual depictions on a perceived map.
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working memory. Further details of symbolic Soar processing will not be covered here, but

they can be found in Laird (2008). Working memory fulfills the role of the amodal symbolic

representation in our theory (Fig. 1). SVS adds a quantitative spatial representation, in the

spatial scene (center of Fig. 5), and a visual depictive representation, in the visual buffer

(bottom of Fig. 5). In addition to the two short-term memories, there is a long-term memory

in SVS for visual, spatial, and motion data, called Perceptual LTM. To simplify the diagram,

this memory is not explicitly shown, but it is accessed by object retrieval, motion process-

ing, and recognition (discussed below).

Theoretically, all information in the system can be derived from depictive information

added to the visual buffer by low-level vision. Conceptually, processes in Soar ⁄ SVS

segment and recognize objects and estimate 3D spatial structure based on 2D visual infor-

mation. However, complete domain-independent computer vision is beyond the state of the

art. In practice, SVS is used in virtual environments without a complete visual system; many

simulated environments represent the world in structures that can be directly input to the

spatial scene. However, as will be explained, visual processing still plays a prominent role

Fig. 5. Soar ⁄ SVS architecture. Boxes are short-term memories; circles are processes. Gray circles involve

access to information in perceptual long-term memory (knowledge). There are implicit control lines (not shown)

between working memory and all of the processes shown.
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in our system. Visual imagery is cognitively useful, and it can be implemented without true

perception. In addition, some aspects of object recognition can be fruitfully implemented,

even though the broader problem remains unsolved.

In the following sections, each of the processes and memories inside SVS are briefly

discussed.4

4.1. Perceptual pointers

While the memories in SVS contain primarily nonsymbolic information, there are sym-

bols through which Soar can refer to elements within these memories. These identifying

symbols, called perceptual pointers, are similar to the visual indices described by Pylyshyn

(2001) for short-term visual memory, since the system ‘‘... picks out a small number of

individuals, keeps track of them, and provides a means by which the cognitive system can

further examine them in order to encode their properties... or to carry out a motor command

in relation to them’’ (p. 130). That theory limits the number of objects to four or five, a

limitation we do not model.

Fig. 6 shows pegged blocks world information represented in Soar ⁄ SVS. Soar’s working

memory is shown on the left. Structures in working memory are represented by a directed

graph of symbols, which are matched and manipulated by rules. A portion of this graph is

shown in the figure.

Fig. 6. Pegged blocks world information in working memory, perceptual LTM, and spatial scene. Working

memory structures in bold italics are created by Spatial ⁄ Visual System (SVS).
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Dotted arrows in the figure show perceptual pointers, represented in working memory as

symbols. Only those created by SVS have arrows in the figure, but other instances of the

same symbols also are pointers to the same objects. Note that the visual and spatial details

of the objects in SVS (e.g., their coordinates in space or their pixel values) are not repre-

sented in working memory. Working memory instead holds the perceptual pointers, along

with qualitative information available through the predicate extraction processes outlined

below. As discussed in detail later, this constraint is a key difference between this architec-

ture and other approaches (Larkin & Simon, 1987) where visual or spatial details are repre-

sented in the same symbolic working memory as abstract information.

4.2. Memory encodings

Internally, the spatial scene is a set of 3D objects grounded in continuous coordinates.

Symbolic perceptual pointers to the objects in the scene are represented in Soar’s working

memory, organized as a part of hierarchy tree of objects and their constituent parts. Only

the leaves of this tree correspond to primitive polyhedrons, but nodes at every level are

considered objects, enabling reasoning over the whole or individual parts. For example,

the house in Fig. 1 might be encoded as two polyhedrons, one each for the roof and the

frame, both as part of a ‘‘house’’ object. The agent can reason at either level, considering

the roof independently, or the house as a whole. Between each object node in the hierar-

chy is a transformation node. Each transformation node contains a perceptual pointer to

the relationship between the two objects, such as the way the roof is related to the house

as a whole. For simplicity, Fig. 6 only shows the object nodes at one level of the hierarchy

in working memory.

The internal encoding of the visual buffer is a set of bitmaps. Each bitmap in the buffer is

called a depiction, and there exists a perceptual pointer in working memory for each depic-

tion. Individual pixels in the depiction can be set to a color, or to a special value indicating

emptiness. Typically, there is at least one depiction in the set representing the perceived

scene from an egocentric viewpoint, but others may be created through imagery processing.

Having a set of depictions allows multiple objects to exist at the same visual location facili-

tating topological predicate extraction (discussed next).

The internal representation of perceptual LTM is more heterogeneous than the other parts

of SVS. It stores spatial objects and transformations, visual textures, and motion patterns.

Long-term perceptual pointers are available to Soar for all of these constructs.

4.3. Predicate extraction

The predicate extraction processes serve to provide symbolic processing in Soar with

qualitative properties of the contents of the spatial scene and visual buffer. These processes

are architectural; there is a fixed set of properties that can be extracted, which are not learn-

able by the agent. In contrast to perceptual pointers, qualitative predicates are created

in working memory only when requested by Soar. There is a substantial amount of qualita-

tive information implicit in the memories of SVS, each of which can take considerable
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computations to derive, so this top-down control is needed to determine which qualitative

structures are made explicit in order to make the system computationally tractable.

For the spatial system, there are three important kinds of relationships between objects

that can be queried for: topology, direction, and distance, as illustrated in Fig. 7. Topologi-

cal relationships describe how the surfaces of objects relate to one another. In the current

implementation of SVS, this is simply whether or not two objects intersect.

Distance is similarly simple. Currently the system can query for the distance between any

two objects in the scene, along the closest line connecting them. This information is non-

qualitative, although it is certainly ‘‘less quantitative’’ than the contents of the spatial scene,

as it reduces three-dimensional information to a scalar quantity. However, it is extremely

useful in practice. For example, the closest obstacle to the agent might be detected by

extracting the distance from the agent to all of the obstacles, and comparing to determine

the closest.

Direction queries are implemented following the approach of Hernández (1994). For each

object, a set of surrounding acceptance regions are defined, which roughly correspond to

concepts like left, right, etc. An object is in that direction if it lies within the acceptance

region. Every object has an associated ‘‘front’’ vector, defining an intrinsic frame of refer-

ence, upon which the regions are based; however, this could easily be extended to allow

queries based on frames of reference of other objects, or a global coordinate frame.

The visual system also supports predicate extraction. For example, there is a predicate

that reports whether or not a given depiction has any nonempty pixels. Typically, the result

of visual generation and top-down visual recognition processes (discussed below) is a depic-

tion that will have some pixels filled in if some property is true (e.g., an object exists), and

none if it is not.

Fig. 6 shows a simple example of predicate extraction in Pegged Blocks World. The

agent has created an image of block C on peg2 (a process which will be described in the

next section) and used predicate extraction to detect that this imagined block intersects

block B. To do this, rules created a query structure in working memory, which SVS process-

ing detects and responds. The working memory representation has been simplified in the

figure, but the essentials are the same.

Fig. 7. Information derivable through spatial predicate extraction.
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In the Scout domain (Fig. 4), visual predicate extraction is used, for example, to deter-

mine the distance of the orange path overlapping the agent’s blue view. Similar to spatial

predicate extraction, the symbolic query structure is created in working memory to direct

SVS with perceptual pointers referring to depictions and a corresponding color of interest

rather than objects in the spatial scene. Visual processing searches the pair of depictions

specified in the query for the overlapping orange (path) and blue (view) pixels. Working

memory is augmented with the resulting distance, which can then be used for subsequent

reasoning.

For both spatial and visual predicate extraction, our theory allows for a wider variety of

predicates than what is present in the current implementation. In particular, previous imple-

mentations have allowed for spatial predicates encoding size, orientation, and a larger vari-

ety of topological relations, and visual predicates encoding topological relationships, size,

and distance. The architectural commitment is that predicate extraction is a distinct, fixed

process in the system, not that the implemented set of predicates is complete. As examples

of the kinds of predicates an architecture might support, Table 1 lists some of the predicate

extraction types supported by SVS or its predecessor systems.

4.4. Image creation

The information provided to Soar through perceptual pointers and predicate extraction is

often not enough to allow general-purpose problem solving. In both example domains the

process of choosing an action involves determining the consequences. Those consequences

cannot be inferred solely with predicate extraction over perceived information. Instead,

imagery processes must be employed. While imagery has often been proposed in the past as

a means for problem solving (Helstrup, 1988), the exact means by which images are created

in a problem-independent manner have been rarely specified. One of the contributions of

this work is exploring this problem.

4.4.1. Predicate projection
Creating a new spatial image often involves transforming a qualitative description to a

quantitative representation in the scene. SVS incorporates a predicate projection process to

Table 1

Predicate extraction types

Type Example Properties

Direction Left-of, Right-of, Front-of, Behind, Above, Below, Between

Distance Scalar value

Topology Disconnected, Externally connected, Partially overlaps,

Tangential proper part, Nontangential proper part, Equals5

Size Smaller, Larger, Equal

Symmetry Horizontal-symmetry, Vertical-symmetry

Shape Point, line, curve, triangle, enclosed-space

Color Red, Green, Blue, White, Black
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allow this (Wintermute & Laird, 2007). Predicates supported by SVS include geometric

concepts like hull and intersection. A hull image is the convex hull of two or more objects

in the scene, and an intersection image is the region of intersection of two or more objects.

In addition, SVS supports predicates like on that specify qualitative information about spa-

tial relationships between objects, but not what its shape is. As with predicate extraction,

predicate projection is a fixed process, but there is no strong commitment that the current

library of available operations (more fully described in Wintermute, 2009b) is complete.

In Pegged Blocks World, predicate projection can be used to create images of blocks in

new positions. Fig. 6 shows this, as block C is imagined in the spatial scene. The figure omits

the symbolic predicate projection command: This is the location structure on the create-image

command in working memory. To arrive at the given image, this structure should encode that

the block (C in this case) is on the surface of the table, centered with respect to peg2.

4.4.2. Memory retrieval
In contrast to predicate projection, which describes the qualitative properties of the spa-

tial image, memory retrievals refer to specific objects and quantitative spatial relationships

in perceptual LTM via perceptual pointers. These relationships and objects are then instanti-

ated in a spatial image. This involves, for example, Soar requesting SVS to instantiate an

object of a known type, or at a known location in the spatial scene. Images can be created

by a combination of both memory retrieval and predicate projection processes, for example,

by imagining a specific object in long-term memory at a qualitatively described location.

The image of block C in Fig. 6 is an example of this, as the shape of the block is retrieved

from LTM. Memory retrieval is also used in the Scout domain. The agent imagines enemy

icons at specific locations on the perceived map in the spatial scene (Fig. 3D) based on

perceived information or symbolic knowledge of enemy tactics (e.g., vehicle formations).

4.4.3. Motion simulation (motor imagery)
While the previous approaches to image creation are powerful, they are insufficient to

solve problems involving nontrivial motion. For example, consider predicting if a turning

car will hit an obstacle (Fig. 8). In the figure, the agent must determine whether or not the

car can drive to the goal, via the waypoint, without colliding with an obstacle. The path of a

car steering toward the waypoint, then toward the goal is shown. An agent able to derive this

path can check if it intersects obstacles, solving the problem. For a general agent that is

capable of the same range of behavior as humans, there are many types of motion that the

system may need to predict: the outcome of its own actions, the motions of others, and of

objects not under the control of any agent, such as the path of a bouncing ball.

In SVS, information of this type is encoded in motion models (Wintermute & Laird,

2008). By transforming one continuous spatial state to another, motion models provide fine-

grained quantitative resolution needed for accurately representing motion. Motion models

are in perceptual LTM and can be applied to any object in the spatial scene, resulting in a

motion simulation. This simulation is a sequence of steps, controlled by Soar. The agent can

use predicate extraction between each time step, gaining information from the simulation,

such as whether the car intersects an obstacle in Fig. 8.
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Motion models can be used to simulate many kinds of motion, including the motion of

the agent’s own effectors. In a system incorporating real effectors, motion models should be

intimately tied to their control (Wintermute, 2009a). For this reason, the motion processing

module in Fig. 5 is connected to the output of the system.

4.4.4. Visual generation
If SVS were a more comprehensive model of human processing, perception would

directly create structures in the visual buffer, and internal processing would derive the spa-

tial scene from those structures. In imagery contexts, SVS supports modification of the

visual buffer derived from contents in the spatial scene and under the control of symbolic

structures. This process is called visual generation (Lathrop & Laird, 2007) and is useful in

the support of further visual processing, such as predicate extraction or recognition. Through

this process, the spatial imagery processes discussed previously are used indirectly to create

visual images.

To support visual generation, symbolic structures in working memory first specify the

object(s) in the spatial scene to generate and corresponding texture(s) from perceptual LTM

to render via their perceptual pointers. Since visual generation converts 3D spatial informa-

tion to 2D visual information, symbolic structures must also specify a particular perspective

in the spatial scene. In many cases, the perspective is simply the egocentric view of the

agent. However, from a computational standpoint, the viewpoint of the agent in the scene is

not privileged; it is just as easy to generate images from other viewpoints, such as from the

perspective of another agent or from a top-down view as in the Scout agent’s imagined

scenes (Figs. 3D and 4). In a precise model of human imagery, this aspect of the architecture

would likely need to be reconsidered, as it is not clear if a human can generate images from

any perspective.

Once specified, the symbolic object(s), texture(s), and perspective perceptual pointers are

transmitted to SVS’s visual generation process for generating the 2D scene in the visual

Fig. 8. An example motion problem.
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buffer using standard graphics rendering techniques. The result of this process is a new

depiction in the visual buffer. For example, in the scout domain, visual generation creates

the depictions of the imagined enemy vehicles and the agent’s imagined view illustrated in

Figs. 3D and 4B.6 More than one depiction may be created, which visual recognition pro-

cesses (discussed next) may use for predicate extraction.

4.5. Visual recognition

Although our theory specifies that implicit visual recognition processing occurs continu-

ously during perception, in implementation the focus has been on visual recognition during

imagery. Supporting visual recognition in general is a major challenge, but allowing simple

recognition processes in certain domains can be useful. After visual generation, the agent

explicitly ‘‘recognizes’’ the perceived or imagined objects in the depiction via perceptual

pointers (e.g., in Fig. 3D the agent knows the identity of the two imagined enemy vehicles,

the two imagined friendly icons, the perceived enemy vehicle, and the perceived map

because those are the objects it generated or is currently perceiving). Further processing is

required to recognize implicitly any resulting composite object(s).

The visual system in SVS enables visual recognition either with mathematical manipula-

tions (e.g., edge detectors, Hough transforms) or with manipulations that leverage properties

of a depiction such as its topological structure and explicit representation of space. The

implementation technique (not a theoretical commitment) we use for depictive manipula-

tions are pixel-level rewrite rules that encode pixel transformations required to create new

depictions (Furnas, Qu, Shrivastava, & Peters, 2000; Lathrop & Laird, 2009). As a simple

example, Fig. 9A illustrates two pixel-level rewrite rules. The top rule states, ‘‘if there is a

black pixel adjacent to a gray pixel then change the gray pixel to white.’’ Similarly, the bot-

tom rule states, ‘‘if there is a black pixel diagonal to a gray pixel then change the gray pixel

to white.’’ When a rule matches a region of the depiction, the right-hand side action rewrites

(A) (B)

Fig. 9. Pixel rewrites. (A) An example of two-pixel rewrite rules for manipulating a bitmap. (B) The output of

pixel-level rewrite rules to detect a likely path through terrain. There are two sets of rules used to produce the

path: (1) a set to produce a ‘‘distance field flood’’ in the region of interest, and (2) a set that uses the resulting

distance field flood to create a path from a source (enemy location) to a destination (enemy hypothesized goal

location).
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the appropriate pixel(s). The asterisk represents wildcard values and a pixel rewrite rule

may specify rotations (90, 180, 270�) to search for a match.

To control visual recognition, symbolic structures in Soar specify the pixel-rewrite rules,

depiction(s), and the order in which a set of pixel-rewrite rules or mathematical manipula-

tions are processed. For pixel-rewrite rules, each rule has a priority associated with it. SVS

processing iterates over the depiction while there are rules that still match the depiction(s).7

With appropriate rules, the result of this process can be meaningful depictions, such as an

outline of the enclosed space in an object (Lathrop & Laird, 2007) or a likely path on a map

(Fig. 9B, Lathrop & Laird, 2009). As these processes derive meaningful visual information

from undifferentiated pixels, we consider them recognition processes. Visual recognition

processing is typically followed by predicate extraction. For example, in the Scout domain,

predicate extraction determines the portion of the path that overlaps the agent’s view

(Fig. 4B).

5. Agents in spatial and visual domains

In our experiments in the Scout domain, we found that an agent using imagery provides

more information concerning the enemy than a comparable agent without mental imagery

(Lathrop, 2008; Lathrop & Laird, 2009). The SVS agent in this domain uses the comprehen-

sive capabilities of Soar ⁄ SVS, especially the capabilities of the visual system to manipulate

the depictive representations, recognize topology (e.g., what portion of a path is covered by

the agent’s view), and measure distance (what is the length of the observed portion of the

path). The agent with mental imagery provides more information to reason from as its

spatial and visual reasoning is more accurate than reasoning strictly with abstract symbols.

The computational advantage frees resources to perform other cognitive functions (e.g.,

observe, send, and receive reports), and using Soar for control allows the agent to maintain

reactivity (e.g., interrupting mental imagery when new perceptual information arrives).

In the pegged blocks world domain, our experiments have focused on providing evidence

that the capabilities provided by imagery can compensate for problems that arise when an

agent’s perception system is unable to capture all relevant properties of the problem state

necessary to choose an action. Given such a perception system, an agent is able to achieve

better performance with imagery than without it (Wintermute & Laird, 2009).

These agents use the spatial system of SVS. Soar requests primitive information about

the scene via predicate extraction, which it symbolically composes to form an abstract state.

Actions are imagined by using predicate projection, and the next state is inferred using the

same abstraction technique. For example, in Fig. 6, the agent has inferred that a collision

would occur. Given this information, the agent can decide on an action. While this domain

is simple, approaching it from a functional standpoint in a comprehensive architecture

allows us to investigate a previously underexplored aspect of imagery. In contrast to prior

‘‘imagery debate’’ arguments, which often pit perceptual and abstract representations

against each other, benefits here are gained through the simultaneous representation of infor-

mation in both systems.
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6. Discussion

With respect to other work in modeling visuospatial cognition, our work is distinguished

by three related foci: A focus on functionality rather than modeling fidelity, a focus on com-

prehensive architecture rather than isolated processes, and a focus on implementation rather

than theory. Of course, we do not strictly abide by these foci: We do aim for model fidelity

at some level, we address some areas of visuospatial cognition more than others, and there

are unimplemented aspects of our theory. However, due to the degree that we follow these

foci, our research provides an interesting perspective from which to examine several aspects

of the field. Here, we will briefly discuss these perspectives, roughly organized by research

areas.

6.1. Functional analyses of imagery-like processing

In recent years, mental imagery research has largely been empirical with focus shifting

from behavioral evidence to neurologic evidence of the brain structures activated during

mental imagery (Kosslyn et al., 2006; Pylyshyn, 2002). In the meantime, the core theoretical

arguments for the functionality of imagery have remained largely unchanged. These

arguments have tended to consider the benefits of particular representational formats inde-

pendently of a fully defined cognitive architecture. These benefits are present in our system.

Depictive productions manipulating the visual buffer are able to leverage the explicit encod-

ing of space for increased efficiency. Similarly, location, size, and orientation are explicit in

the spatial scene, enabling efficient extraction of related properties. Efficiency benefits of

this sort have been examined in many previous systems (e.g., Funt, 1976; Gelernter, 1959;

Glasgow & Papadias, 1992; Larkin & Simon, 1987; Tabachneck-Schijf, Leonardo, &

Simon, 1997), but not within the context of a cognitive architecture.

Larkin and Simon’s (1987) work has been particularly influential in this area, and, as

mentioned above, our system demonstrates the same efficiency benefits. However, our

architecture differs in several ways. Whereas the evaluation of their arguments were realized

in an entirely symbolic medium, we take their arguments one step further by taking the

representations literally and introducing the spatial and depictive representations con-

strained by cognitive architecture. In addition, where Larkin and Simon correctly point out

that diagrammatic and sentential representations can, in theory, represent the same informa-

tion, once a comprehensive architecture is fleshed out, this equivalence may not be present.

In our system, the visual buffer, spatial scene, and symbolic working memory are individ-

ually able to represent information that the constraints of the architecture do not allow to be

transformed into other representational formats. This inequivalency provides a different

functional argument for the use of imagery. In the pegged blocks world, the primary reason

that it is beneficial to imagine a block in a particular position (Fig. 6) is not efficiency, but

rather that the constraints of the architecture admit no other way of determining whether a

collision would result. Similarly, in the scout domain, acquiring the overlap of a scout’s

view of an irregular path is constrained to the visual buffer. While these results are partly

due to the particularities of our architecture, we are working toward related general principles.
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Regardless of implementation details, any architecture employing abstract symbolic repre-

sentations might demonstrate a similar need for imagery (Wintermute & Laird, 2009).

6.2. Theories of grounded cognition

Our architecture also provides perspective on ‘‘grounded’’ or ‘‘embodied’’ cognitive the-

ories (Barsalou, 2008). The system retains and uses perceptual-level information during

cognition, with the perception and action systems internally used in this process. In that

way, the system bears a resemblance to theories such as Barsalou’s (1999) proposal for a

perceptual symbol system and Grush’s (2004) emulation theory of representation. From this

point of view, the contents of Soar’s working memory can be considered as the symbolic

aspects of the underlying representation in the memories of SVS. While grounded theories

have often been pitched as alternatives to existing symbolic theories, our implementation

has shown that the existing symbolic Soar architecture is compatible with nonsymbolic pro-

cessing in SVS. This is because Soar is largely a theory of high-level decision making, com-

plementary to the processing in SVS, which identifies properties and makes inferences but

does not choose actions or control high-level processing.

6.3. Mental models

A large proportion of prior research in spatial and visual cognition has been pursued

under the broader theory of mental models (Johnson-Laird, 1989; Ragni & Steffenhagen,

2007; Zwaan & Radvansky, 1998). In mental model theory, the model is a concrete, situated

representation where the reasoning is not based on formal rules of inference but rather pro-

ceeds by comparing the imagined situation with predicates (‘‘Does block A intersect block

B?,’’ ‘‘Does the path overlap the view?’’). Our architecture’s imagery system can be viewed

as a realized form of mental models. The spatial and depictive representations in SVS are

the instantiation of a particular situation where the representations may have a combination

of perceived and imagined objects. SVS helps explain the details of one theory of how gen-

eration of these situated representations occur and how the resulting predicates are

extracted. The symbolic representations in Soar control the high-level processing, directing

SVS as to what objects should be placed in the imagined model through perceptual pointers.

The desired predicates are queried based on task knowledge so that the system focuses on

the task and its corresponding goals. These details provide clarification as to how mental

models are formed and inspected.

6.4. Egocentric ⁄ allocentric distinctions

A common issue discussed in the psychological literature is the distinction between ego-

and allocentric spatial representations (Klatzky, 1998). Strictly speaking, the spatial scene is

an allocentric representation, as it encodes absolute positions in space, not relative to the

agent’s location. As we are not aiming for precise model fidelity, however, this distinction

has not turned out to be important in our system, as egocentric information can be easily
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calculated from the representation. The behavior of the agent is unaffected by the details of

the underlying spatial encoding, since decisions are made based on qualitative properties of

objects relative to one another, properties that are preserved across translation, scaling, and

rotation. However, if the architecture were extended to precisely model humans in tasks

such as navigation through an environment, this distinction might play a more prominent

role.

A related issue is encountered in the Scout domain where the agent may be observing an

approaching enemy vehicle (Fig. 3A) and then decide to look at its map (Fig. 3D) to further

analyze the situation. Since the agent perceives the map, the map’s depiction is already in

the visual buffer. The agent must determine where on the map it is located, along with any

enemies it can see. This presents a problem where conversion from ego- to allocentric infor-

mation is needed. The Scout agent uses task knowledge for this, but it is an open question

what (if any) additional architectural mechanisms are necessary to support this form of

transformation in general.

6.5. Computational approaches

Previous unified computational theories of spatial and visual cognition exist, but many

focus on reasoning with abstract symbolic representations (Baylor, 1971; Carpenter, Just, &

Shell, 1990; Lyon, Gunzelmann, & Gluck, 2008; Moran, 1973). Such theories normally

assume perception is a transducer, where its primary purpose is to transform sensory data into

abstract symbolic representations that capture the relevant properties of salient objects. This

basic scheme is shared in many AI designs, which reason solely with symbolic representa-

tions while disregarding perceptual-level representations. In contrast, we have found that by

maintaining perceptual representations and manipulating them through imagery to be extre-

mely beneficial from a functional standpoint, making them essential parts of the theory.

A few architectures have moved toward perceptual-level representations. Two such

extensions to the ACT-R architecture have been proposed (Gunzelmann & Lyon, 2007; Har-

rison & Schunn, 2002). Reflecting differing research goals, however, the designs have

focused more on high-fidelity modeling, and less on broad functionality. While these sys-

tems are more precise at modeling the tasks they cover, neither addresses aspects that we

find are important in our system, such as general-purpose predicate extraction and projec-

tion, motion simulation, visual generation, and visual recognition. Unifying these

approaches into a comprehensive, implemented architecture capable of precise modeling is

certainly a fertile direction for future research.

Other systems integrate symbolic reasoning with spatial and visual representations

(Barkowsky, 2007; Glasgow & Papadias, 1992; Tabachneck-Schijf et al., 1997). These

architectures have been examined chiefly in terms of particular problem domains, such as

geographic reasoning (Barkowsky, 2007), molecular scene analysis (Glasgow & Papadias,

1992), or modeling supply and demand (Tabachneck-Schijf et al., 1997), so it is difficult to

compare these architecture’s generality with SVS, which has been used across multiple

domains. Other comprehensive theories for this integration have also been put forth

(Barsalou, 2008; Grush, 2004) but not in the form of implemented architectures.
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The closest parallel to our work is that of Kurup and Chandrasekaran (2006), which com-

bines the Soar cognitive architecture with a diagrammatic reasoning system. They, like us,

are motivated by how a task-independent architecture gains functionality by combining

symbolic and perceptual representations during reasoning. Although their work focuses on

diagrammatic reasoning tasks, overall they strive for general implementation and function-

ality. There are a few key theoretical differences between our approaches. First, their theory

constrains the type of imaginable objects to points, curves, and regions while we leave the

type of imaginable object open-ended to any object experienced through perception, imag-

ined by composing known objects, or emerging from imagery processing. Second, we are

committed to the three representations (symbolic, spatial, and visual depictive), while Kurup

and Chandrasekaran are noncommittal as to the form of diagrammatic representations. Their

previous implementations use sentential, mathematical representations and manipulations.

We make a clear distinction between the spatial and visual representations, as there are

different types of reasoning that can be performed with each.

In summary, our core theoretical commitments that, taken together, distinguish this work

from previous research are the following:

• The use of three representational formats: abstract symbolic, quantitative spatial, and

visual depictive

• Simultaneous representation of abstract and concrete information across the three

short-term memories mapped via perceptual pointers

• A perceptual long-term memory for the encoding of spatial objects and transforma-

tions, visual textures, and motion patterns

• Use of abstract symbols for control, decision making, focus of processing, and modifi-

cation of spatial and visual representations

• A fixed set of predicate extraction processes for topology, direction, and distance

driven by top-down, symbolic queries

• Imagery processing through predicate projection, memory retrieval, and motion simu-

lation, driven by top-down, symbolic commands

• Use of visual recognition processes that take advantage of the explicit representation

of space

• Integration with the constraints of a comprehensive cognitive architecture

7. Conclusion

We have presented a comprehensive implementation of a general-purpose cognitive

architecture for spatial and visual reasoning. In designing this system, we are motivated by

psychological findings, specifically in mental imagery. We focused on the functionality

gains that such a system provides, rather than precise human modeling. Our approach is

grounded within an established symbolic cognitive architecture, Soar. The resulting archi-

tecture has been used to create comprehensive agents to solve complex tasks, such as in the
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Scout domain (Lathrop & Laird, 2009), as well as to explore basic principles of visuospatial

cognition, such as the use of imagery to recognize visual features (Lathrop & Laird, 2007),

the use of imagery-based predictions as a means to improve problem state representation

(Wintermute, 2010; Wintermute & Laird, 2009) and the connection between cognition and

action (Wintermute, 2009a). Our approach allows the system to achieve the accuracy and

efficiency inherent with perceptual reasoning, while allowing central cognitive processes to

retain control. Processing emerges from the fluid combination of different representations,

leveraging the particular efficiencies and capabilities of each.

Notes

1. SVS is a component of Soar; however, for simplicity in this article, we will

use ‘‘Soar’’ to refer to the previously existing symbolic components of the architec-

ture.

2. We are using the term ‘‘orientation’’ to refer to precise information about which

way an object is facing (e.g., the front is toward <1.45,0.2,0>), and the term ‘‘direc-

tion’’ to refer to qualitative information about how objects relate: ‘‘the tree is to the

left of the house,’’ ‘‘the house is North of the city,’’ etc.

3. The Scout agent is implemented in a predecessor to the version of the architecture

presented here. However, the general architecture remains the same, with only

minor differences in the capabilities used.

4. Further details of SVS, focusing on spatial processes, can be found in Wintermute

(2009b).

5. These are a subset of the RCC-8 Topological Relationships (Cohn, Bennett, Gooday,

& Gotts, 1997). Some of the RCC-8 relationships were not implemented in SVS or

its predecessors.

6. In Fig. 4B, the agent’s imagined view (blue) is a visually generated depiction. The

path (orange) is another depiction created through visual recognition processing

(Fig. 4A).

7. Rules may match more than one depiction if there are multiple depictions in the

visual buffer.
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