
 1

Soar-EpMem Manual
Version 0.3

16 December 2009

Contributors

Jakub Czyz

Nate Derbinsky

Nicholas Gorski

John Laird

Bob Marinier

Andy Nuxoll

Joseph Xu

 2

Table of Contents

Document History .. 3

1. Soar-EpMem Motivation ... 4

2. Working Memory Structure .. 5

3. Storing Episodes ... 6

3.1. New Episode Creation .. 6

3.2. Episode Contents .. 6

3.3. Working Memory Activation .. 6

3.3.1. The wma Command .. 7

3.3.2. WMA Parameters .. 7

3.4. Soar-EpMem Storage .. 7

4. Retrieving Episodes ... 8

4.1. Soar-EpMem Commands .. 8

4.2. Non-Cue-Based Retrievals ... 8

4.2.1. Absolute NCB Retrievals ... 8

4.2.2. Relative NCB Retrievals .. 9

4.3. Cue-Based Retrievals .. 9

4.4. Retrieval Meta-Data .. 10

5. Soar-EpMem Parameters ... 13

5.1. Parameter Configuration .. 13

5.2. Parameter Descriptions .. 13

5.2.1. General .. 13

5.2.2. Encoding ... 13

5.2.3. Storage .. 14

5.2.4. Retrieval .. 15

5.2.5. Performance ... 15

5.3. Full Parameter Configuration .. 16

5.4. Parameter Behavior .. 16

6. Soar-EpMem Statistics .. 17

7. Soar-EpMem Timers .. 19

8. Trace Information .. 23

9. Soar-EpMem Performance ... 24

9.1. Sources of Performance Degradation .. 24

9.2. Performance Tweaking ... 24

10. Soar-EpMem Programmer Reference .. 26

10.1. Soar-EpMem ... 26

10.1.1. Useful Commands .. 26

10.1.2. Parameters ... 26

10.1.3. Retrieval Agent Commands ... 28

10.1.4. Retrieval Agent Meta-Data ... 28

10.2. Working Memory Activation ... 29

10.2.1. Useful Commands .. 29

10.2.2. Parameters ... 29

 3

Document History

Version 0.3

Integration with Soar-SMem (long-term identifiers).

Version 0.2

Second release.

Version 0.1

Initial specification.

 4

1. Soar-EpMem Motivation
Soar-EpMem is a task-independent, architectural integration of an artificial episodic

memory (EpMem) with Soar. The EpMem mechanism will automatically record episodes

as a Soar agent executes. These episodes can later be queried and retrieved in order to

improve performance on future tasks.

 5

2. Working Memory Structure
Upon creation of a new state within working memory, the architecture will automatically

create a structure in working memory called epmem. Within this structure, agents issue

requests to Soar-EpMem (see Section 4.1) by populating the command identifier with

working memory elements (WMEs) and process Soar-EpMem generated WMEs in the

result identifier (see Section 4.4).

 6

3. Storing Episodes
This section details Soar-EpMem storage of episodes, including new episode triggering,

what is stored, interactions with Working Memory Activation (WMA), as well as where and

in what format the episodes are stored.

3.1. New Episode Creation

One functional requirement of an artificial episodic memory is that recording new episodes

does not require deliberate action/consideration by the agent. Soar-EpMem provides

automatic storage of new episodes as dictated by the phase and trigger parameters. The

phase parameter sets the phase in the decision cycle (default: end of Output phase) during

which Soar-EpMem stores episodes and processes commands. The value of the trigger

parameter indicates to the architecture the event for automatic storage: adding a new

command to the output-link (default) or each decision cycle.

For debugging purposes, the force parameter allows the user to manually request that an

episode be recorded (or not) during the current decision cycle. Behavior is as follows:

• The value of the force parameter is initialized to off every decision cycle.

• During the new episode consideration where the force parameter has a value other

than of off, Soar-EpMem follows the forced policy irrespective of the value of the

trigger parameter.

3.2. Episode Contents

For an artificial episodic memory to be task-independent it must record most, if not all,

information available to the agent at the time of episode creation. By default, when Soar-

EpMem records a new episode, it stores the entire contents of the top state of Working

Memory.

There are classes of WMEs that Soar agents may encounter that provide no benefit in

context of EpMem. For instance, the “random” WME on the TankSoar input-link structure

provides a different random number on each update; this value is potentially useful to an

agent designer, but most likely will not contribute to effective episodic learning. Moreover,

excluding WMEs from storage can provide performance benefits (reduced memory

consumption and storage/retrieval time). The exclusions parameter allows run-time

management of a list of attribute names that will be ignored during Soar-EpMem storage.

3.3. Working Memory Activation

During the episodic retrieval process (discussed in detail later), multiple episodes may

match an agent’s query. Nuxoll has produced data that demonstrates improved retrieval

quality when using Working Memory Activation (WMA) of WMEs as a form of feature

weighting. Thus, Soar-EpMem supports integration with WMA in Soar. For a theoretical

discussion of the Soar implementation of WMA, consider reading Comprehensive Working

Memory Activation in Soar (Nuxoll, A., Laird, J., James, M., ICCM 2004).

The following sections detail configuration of WMA, including the wma command and

WMA parameters.

 7

3.3.1. The wma Command

Management of WMA within Soar makes use of the wma command. Executing the

command with no options will print a table of current parameter information. The wma

command has getter (-g or --get) and setter (-s or --set) options for retrieving/

manipulating parameter values (discussed in the next section).

3.3.2. WMA Parameters

The following table briefly describes the parameters available for manipulation using the

wma command’s get/set options. Further text below provides more information regarding

specific parameters.

Parameter Name Acceptable Values Default Description

activation on

off

off Turns on/off WMA

decay-rate [0,1] 0.8 Specifies the speed at which

WMEs are decayed

forgetting on

off

off Turns on/off removal of WMEs

with low activation values

activation

If activation is on, printing working memory elements with the –i or --internal option will

print the current activation value in brackets. For example, after starting Soar:

>print --internal <s>
(4: S1 ^epmem E1 [1])
(10: S1 ^io I1 [1])
(3: S1 ^reward-link R1 [1])
(7: S1 ^smem S2 [1])
(2: S1 ^superstate nil [1])
(1: S1 ^type state [1])

As shown above, architectural WMEs carry a permanent activation of 1.

decay-rate

The decay-rate parameter controls the speed at which WMEs are decayed. A value of 0

will decay WMEs instantly, where 1 will not reduce initial activation level. Note that the

value is internally multiplied by -1 (which is reflected upon retrieving the parameter

value).

3.4. Soar-EpMem Storage

EpMem currently uses SQLite to facilitate efficient and standardized storage and querying

of episodes. The episodic store can be maintained in memory or on disk (per the database

and path parameters). If the store is located on disk, users can use any standard SQLite

programs/components to access/query its contents.

 8

4. Retrieving Episodes
This section details the agent interface to Soar-EpMem retrievals, including command

protocol, non-cue-based (NCB) retrievals, cue-based (CB) retrievals, and retrieval meta-

data.

4.1. Soar-EpMem Commands

An agent issues a command to the Soar-EpMem system by populating appropriate WMEs

on the command identifier of a state’s epmem structure. During command processing

(per the phase parameter), which comes after creating a new episode is considered (and

possibly recorded), Soar-EpMem processes each state’s EpMem command structure.

Results, meta-data, and errors are placed on the result identifier of that state’s epmem

structure (discussed in Section 4.4).

Only one type of command (which may consist of multiple WMEs) can be issued in a single

decision cycle (though multiple states may issue commands). Malformed commands

(including attempts at multiple commands) will result in an error.

After a command has been processed, Soar-EpMem will ignore it until some aspect of the

command structure changes (via addition/removal of WMEs). When this occurs, the

result structure is cleared and the new command (if one exists) is processed.

4.2. Non-Cue-Based Retrievals

The following sections discuss issuing absolute and relative NCB retrieval commands.

4.2.1. Absolute NCB Retrievals

At time of storage, each episode is attributed a unique temporal id. This id is the current

value of time statistic (see Section 6) and is provided as the memory-id meta-data item of

retrieved episodes (see Section 4.4). An absolute NCB retrieval is one that requests an

episode by temporal id. An agent issues an absolute NCB retrieval by placing a WME on the

command structure with name retrieve and value equal to the desired temporal id:

state.epmem.command.retrieve temporal-id

Supplying an invalid value for the retrieve command will result in an error.

The temporal id of the first episode in an episodic store will have value 1 and each

subsequent episode’s temporal id will increase by 1. Thus the desired temporal id may be

the mathematical result of operations performed on a known episode’s temporal id.

This implementation of Soar-EpMem does not implement any episode dynamics, including

forgetting. Thus any integer temporal id greater than 0 and less than the current value of

the time statistic will be valid. However, if forgetting is implemented in future versions, no

such guarantee will be made.

 9

4.2.2. Relative NCB Retrievals

One interesting characteristic of episodic memory is the empirical ability to “play forward”

episodes through time. Soar-EpMem implements this functionality through relative NCB

retrievals.

The system stores the temporal id of the last successful retrieval (NCB or CB). Agents can

indirectly make use of this information by issuing next or previous commands. Soar-

EpMem executes these commands by attempt to retrieve the episode immediately

proceeding/preceding the last successful retrieval (respectively). To issue one of these

commands, the agent must create a new identifier with the appropriate command name on

the command structure:

state.epmem.command.next <n>
state.epmem.command.previous <p>

If no such episode exists then an error is returned.

In this implementation of Soar-EpMem, if the temporal id of the last successfully retrieved

episode is known to the agent (as could be the case by accessing result meta-data), these

commands are identical to performing an absolute NCB after adding/subtracting 1 to the

last temporal id (respectively). However, if an episode dynamic like forgetting is

implemented, these relative commands are guaranteed to return the next/previous valid

episode (assuming one exists).

4.3. Cue-Based Retrievals

CB retrieval commands are used to search for an episode in the store that “best” matches

an agent-supplied cue, while potentially adhering to optional modifiers. A cue is composed

of WMEs that partially describe a top state of Working Memory in the retrieved episode.

All CB retrieval requests must contain a single query cue and, optionally, a single neg-

query cue. A query cue describes structures desired in the retrieved episode, whereas a

neg-query cue describes non-desired structures. For example, the following Soar

production creates a query cue consisting of a particular state name and a copy of a

current value on the input link structure:

sp {sample*query
 (state <s> ^epmem.command <ec>
 ^io.input-link.foo <bar>)
-->
 (<ec> ^query <q>)
 (<q> ^name my-state-name
 ^io.input-link.foo <bar>)
}

CB retrievals can be thought of as a nearest-neighbor search. First, all candidate episodes,

(defined as episodes containing at least one leaf WME in at least one cue) are identified.

Two quantities are calculated for each candidate episode, with respect to the supplied

cue(s): the cardinality of the match (defined as the number of matching leaf WMEs) and

the activation of the match (defined as the sum of the WMA decay values of each matching

leaf WME). Note that each of these values is negated when applied to a neg-query. To

 10

form each candidate episode’s match score, these quantities are combined with respect to

the balance parameter as follows:

Match Score = (balance)*(cardinality) + (1 - balance)*(activation)

An episode with perfect cardinality is considered a perfect surface match and, per the

graph-match parameter, is subjected to further structural matching. Whereas surface

matching efficiently determines if all paths to leaf WMEs exist in a candidate episode, graph

matching indicates whether or not the cue can be unified with the candidate episode

(paying special regard to the structural constraints imposed by shared identifiers). Cue-

based matching will return the most recent structural match, or the most recent candidate

episode with the largest match score.

A special note should be made with respect to how short- vs. long-term identifiers are

interpreted in a cue. Short-term identifiers are processed much as they are in working

memory – transient structures. Cue matching will try to find any identifier in an episode

(with respect to incoming/outgoing edges) that can apply. Long-term identifiers, however,

are treated as constants. Thus, when analyzing the cue, episodic memory will not consider

outgoing structures from the long-term identifier, and will only match with the same long-

term identifier (in the same context) in an episode.

The CB retrieval process can be further tempered using optional modifiers:

• The before command requires that the retrieved episode come relatively before a

supplied temporal id:

state.epmem.command.before temporal-id

• The after command requires that the retrieved episode come relatively after a

supplied temporal id:

state.epmem.command.after temporal-id

• The prohibit command requires that the temporal id of the retrieved episode is not

equal to a supplied temporal id:

state.epmem.command.prohibit temporal-id

Multiple prohibit command WMEs may be issued as modifiers to a single CB

retrieval.

If no episode satisfies the cue(s) and optional modifiers an error is returned.

4.4. Retrieval Meta-Data

The following list details the WMEs Soar-EpMem populates in the result identifier of the

epmem structure wherein a command was issued:

• retrieved <episode>

If Soar-EpMem retrieves an episodic memory, that memory is placed here. This

WME is an identifier that is treated as the root of the state that was used to create

 11

the episodic memory. If the retrieve command was issued with an invalid temporal

id, the value of retrieved will be no-memory.

• status

This WME provides information about the result of a retrieval command:

o success – the CB retrieval command resulted in a successful match

o failure – the CB retrieval was legitimate but no matching episode was found

o bad-cmd – the command was malformed or more than one command was

issued

If the CB retrieval was well-formed, the WME will have the status as the attribute

and the value of the identifier of the query (and neg-query, if applicable).

• match-score

This WME is created whenever an episode is successfully retrieved from a CB

retrieval command. The WME value is a decimal indicating the raw match score for

that episode with respect to the cue(s).

• cue-size

This WME is created whenever an episode is successfully retrieved from a CB

retrieval command. The WME value is an integer indicating the number of leaf

WMEs in the cue(s).

• normalized-match-score

This WME is created whenever an episode is successfully retrieved from a CB

retrieval command. The WME value is the decimal result of dividing the raw match

score by the cue size. It can hypothetically be used as a measure of Soar-EpMem’s

relative confidence in the retrieval.

• match-cardinality

This WME is created whenever an episode is successfully retrieved from a CB

retrieval command. The WME value is an integer indicating the number of leaf

WMEs matched in the query cue minus those matched in the neg-query cue.

• memory-id

This WME is created whenever an episode is successfully retrieved from a CB

retrieval command. The WME value is an integer indicating the temporal id of the

retrieved episode.

• present-id

This WME is created whenever an episode is successfully retrieved from a CB

retrieval command. The WME value is an integer indicating the current temporal id,

such as to provide a sense of “now” in EpMem terms. By comparing this value to the

memory-id value, the agent can gain a sense of the relative time that has passed

since the retrieved episode was recorded.

• graph-match

This WME is created whenever an episode is successfully retrieved from a CB

retrieval command and the graph-match parameter was on. The value is an integer

with value 1 if graph-match was run and successful and 0 otherwise.

• mapping

This WME is created whenever an episode is successfully retrieved from a CB

retrieval command, the graph-match parameter was on, and structural match was

successful on the retrieved episode. This WME provides a mapping between

 12

identifiers in the cue and in the retrieved episode. For each identifier in the cue,

there is a node WME as a child to the mapping WME. The node has a cue child

WME (whose value is an identifier in the cue) and a retrieved child WME (whose

value is an identifier in the retrieved episode. In a graph match it is possible to have

multiple identifier mappings – this map represents the “first” unified mapping.

 13

5. Soar-EpMem Parameters
The following sections discuss how to configure the Soar-EpMem parameters discussed in

previous sections.

5.1. Parameter Configuration

Individual configuration parameters are retrieved and manipulated using the get and set

switches of the epmem command:

epmem [-g|--get] <parameter>
epmem [-s|--set] <parameter> <value>

Agents can retrieve and change parameters in the actions of rules using the cmd function.

5.2. Parameter Descriptions

All Soar-EpMem parameters are organized below. The Protected field is discussed in

Section 5.4).

5.2.1. General

Purpose Enable or disable Soar-EpMem

Parameter learning

Values off Disable Soar-EpMem

on Enable Soar-EpMem

Default off

Protected no

5.2.2. Encoding

Purpose Specifies the phase during which new episode storage is considered and

commands are processed

Parameter phase

Values output At the end of output phase

selection At the end of selection phase

Default output

Protected no

Purpose Specifies what triggers new episode creation

Parameter trigger

Values dc Episodes are recorded every decision cycle

none Episodes are not automatically recorded

output Episodes are recorded decision cycles when there is an

addition to the output-link identifier

Default output

Protected no

 14

Purpose Forces recording/non-recording of an episode during the current decision

cycle

Parameter force

Values ignore No episode is recorded this decision cycle

remember An episode will be recorded this decision cycle

off Episode recording is dependent upon the current trigger

Default off

Protected no

Purpose Specifies a list of WME attribute names that are ignored during episode

creation

Parameter exclusions

Values <any string> If the supplied value does not currently exist within the

exclusion list it is added, otherwise it is removed from the

list.

Default {epmem,smem}

Protected No

5.2.3. Storage

Purpose Specifies whether the episodic store will be maintained in memory or on disk

Parameter database

Values file Episodic store is maintained on disk

memory Episodic store is maintained in memory

Default memory

Protected yes

Purpose Specifies where on disk the episodic store will be saved

Parameter path

Values <empty> Soar-EpMem will create a temporary database file on disk

during execution (and delete it after use)

<valid path> Soar-EpMem will use the specified path for its database file

on disk - if the file doesn’t exist, it will be created

Default <empty>

Protected yes

Purpose Specifies the number of episodes between committing episodic store changes

to disk.

Parameter commit

Values Integer, >=1

Default 1

Protected no

 15

5.2.4. Retrieval

Purpose Specifies the degree to which cardinality and WMA are weighted in query

processing to calculate a candidate match score

Parameter balance

Values Numeric, [0,1]

Default 0.5

Protected no

Purpose Specifies whether structural matching is to be run after surface match

Parameter graph-match

Values off Cue-based episode retrieval is made based upon surface

match alone

on Structure match supplements surface match

Default on

Protected no

5.2.5. Performance

Purpose Specifies the maximum amount of memory used for SQLite cache

Parameter cache

Values large 100MB

medium 20MB

small 5MB

Default large

Protected yes

Purpose Specifies architectural focus in data safety vs. epmem performance

Parameter optimization

Values performance Data store on disk is left vulnerable to corruption the case

of application/OS/hardware malfunction

safety Data store on disk is guaranteed to be consistent

Default performance

Protected yes

Purpose Declares the level of Soar-EpMem timers that are enabled (like watch levels)

Parameter timers

Values off Timers are disabled

one Only total Soar-EpMem time is recorded

two High-level timers are enabled (epmem_*)

three Low-level operations are timed

Default off

Protected no

 16

5.3. Full Parameter Configuration

Entering simply the epmem command (with no switches) will return full parameter

configuration information. For example, assuming default configuration, the result of

executing epmem is as follows:

>epmem

EpMem learning: off

Encoding

phase: output
trigger: output
force: off
exclusions: epmem, smem

Storage

database: memory
commit: 1
path:

Retrieval

balance: 0.5
graph-match: on

Performance

cache: large
optimization: performance
timers: off

5.4. Parameter Behavior

Upon attempting to set a Soar-EpMem parameter, the new value is validated. If the value is

found to be invalid, the system will use the previous value.

The set of parameters listed above that have a “yes” in the Protected field cannot be

changed once the Soar-EpMem system has been “initialized.” The Soar-EpMem system

initializes during recording of the first episode since starting Soar or issuing the close

switch of the epmem command (see Section 10.1.1).

 17

6. Soar-EpMem Statistics
Feedback from the Soar-EpMem system is retrieved using the stats switch of the epmem

command:

epmem [-S|--stats] <statistic>

If a statistic argument is provided, the command returns the value of a specific statistic.

The valid statistic arguments are listed below.

Statistic time

Description Current episode id (starts at 1 upon store initialization, increases)

Label Time

Statistic mem_usage

Description Current SQLite memory usage in bytes

Label Memory Usage

Statistic mem_high

Description Greatest SQLite memory usage in bytes since last database initialization

Label Memory Highwater

Statistic ncb_wmes

Description Number of WMEs added to Working Memory in the last reconstruction

Label Last Retrieval WMEs

Statistic qry-pos

Description Number of leaf WMEs in the query cue of the last CB query

Label Last Query Positive

Statistic qry-neg

Description Number of leaf WMEs in the neg-query cue of the last CB query

Label Last Query Negative

Statistic qry-ret

Description Temporal ID of the last retrieved episode

Label Last Query Retrieved

Statistic qry-card

Description Cardinality of the last CB query retrieval

Label Last Query Cardinality

 18

Statistic qry-lits

Description Number of literals in the DNF graph of the last CB query

Label Last Query Literals

The following additional statistics may be requested for debugging performance issues in

the Relational Interval Tree: rit-offset-1, rit-left-root-1, rit-right-root-1, rit-min-step-1,

rit-offset-2, rit-left-root-2, rit-right-root-2, rit-min-step-2.

Agents can retrieve specific statistics in rule actions using the cmd function.

Entering the epmem --stats command with no statistic, or an invalid statistic, will return

all statistics. A sample execution may look as follows:

>epmem --stats
Time: 0
Memory Usage: 0
Memory Highwater: 0
Last Retrieval WMEs: 0
Last Query Positive: 0
Last Query Negative: 0
Last Query Retrieved: 0
Last Query Cardinality: 0
Last Query Literals: 0

 19

7. Soar-EpMem Timers
Time spent on Soar-EpMem operations is retrieved using the timers switch of the epmem

command:

epmem [-t|--timers] <timer>

If a timer argument is provided, the command returns the value of a specific timer. The

valid statistic arguments are listed below (with their associated level, respecting the

timers parameter).

Timer _total

Description Total time spent by Soar-EpMem

Level one

Timer epmem_api

Description Time spent validating agent commands

Level two

Timer epmem_hash

Description Time spent hashing symbols

Level two

Timer epmem_init

Description Time spent initializing the episodic store

Level two

Timer epmem_ncb_retrieval

Description Time spent reconstructing episodes

Level two

Timer epmem_next

Description Time spent determining the next episode

Level two

Timer epmem_prev

Description Time spent determining the previous episode

Level two

 20

Timer epmem_query

Description Time spent performing a cue-based query

Level two

Timer epmem_storage

Description Time spent storing new episodes

Level two

Timer epmem_trigger

Description Time spent determining if a new episode is to be stored

Level two

Timer ncb_edge

Description Time spent collecting edges during reconstruction

Level three

Timer ncb_edge_rit

Description Time spent collecting edges from the relational interval tree

Level three

Timer ncb_node

Description Time spent collecting nodes during reconstruction

Level three

Timer ncb_node_rit

Description Time spent collecting nodes from the relational interval tree

Level three

Timer query_dnf

Description Time spent constructing the DNF graph

Level three

Timer query_graph_match

Description Time spent performing graph match

Level three

Timer query_neg_end_ep

Description Time spent in interval search: negative cue, end point, ranges

Level three

 21

Timer query_neg_end_now

Description Time spent in interval search: negative cue, end point, now

Level three

Timer query_neg_end_point

Description Time spent in interval search: negative cue, end point, points

Level three

Timer query_neg_start_ep

Description Time spent in interval search: negative cue, start point, ranges

Level three

Timer query_neg_start_now

Description Time spent in interval search: negative cue, start point, now

Level three

Timer query_neg_start_point

Description Time spent in interval search: negative cue, start point, points

Level three

Timer query_pos_end_ep

Description Time spent in interval search: positive cue, end point, ranges

Level three

Timer query_pos_end_now

Description Time spent in interval search: positive cue, end point, now

Level three

Timer query_pos_end_point

Description Time spent in interval search: positive cue, end point, points

Level three

Timer query_pos_start_ep

Description Time spent in interval search: positive cue, start point, ranges

Level three

 22

Timer query_pos_start_now

Description Time spent in interval search: positive cue, start point, now

Level three

Timer query_pos_start_point

Description Time spent in interval search: positive cue, start point, points

Level three

Agents can retrieve specific timer values in rule actions using the cmd function. Timer

values are re-initialized at the same time points as Soar timers.

Entering the epmem --timers command with no timer will return all timers. A sample

execution may look as follows:

>epmem --timers
_total: 0
epmem_api: 0
epmem_hash: 0
epmem_init: 0
epmem_ncb_retrieval: 0
epmem_next: 0
epmem_prev: 0
epmem_query: 0
epmem_storage: 0
epmem_trigger: 0
ncb_edge: 0
ncb_edge_rit: 0
ncb_node: 0
ncb_node_rit: 0
query_dnf: 0
query_graph_match: 0
query_neg_end_ep: 0
query_neg_end_now: 0
query_neg_end_point: 0
query_neg_start_ep: 0
query_neg_start_now: 0
query_neg_start_point: 0
query_pos_end_ep: 0
query_pos_end_now: 0
query_pos_end_point: 0
query_pos_start_ep: 0
query_pos_start_now: 0
query_pos_start_point: 0

 23

8. Trace Information
To view Soar-EpMem debugging information, use the following watch switch:

watch [-e|--epmem]

This function is not enabled by default or through any watch level. At present, this watch

level generates a message when an episode is recorded as well as interval search data

during every evaluated candidate episode of a cue-based query.

 24

9. Soar-EpMem Performance
This section discusses performance concerns regarding Soar-EpMem use.

9.1. Sources of Performance Degradation

There are currently two sources of “unbounded” computation: graph matching and cue-

based queries. Graph matching is combinatorial in the worst case. Thus, if an episode

presents a perfect surface match, but imperfect structural match (i.e. there is no way to

unify the cue with the candidate episode), there is the potential for exhaustive search. Each

identifier in the cue can be assigned one of any historically consistent identifiers (with

respect to the sequence of attributes that leads to the identifier from the root), termed a

literal. If the identifier is a multi-valued attribute, there will be more than one candidate

literals and this situation can lead to a very expensive search process. Currently there are

no heuristics in place to attempt to combat the expensive backtracking. Worst-case

performance will be combinatorial in the total number of literals for each cue identifier

(with respect to cue-structure).

The cue-based query algorithm begins with the most recent candidate episode and will

stop search as soon as a match is found (since this episode must be the most recent). Given

this procedure, it is trivial to create a two-WME cue that forces a linear search of the

episodic store. Soar-EpMem combats linear scan by only searching candidate episodes, i.e.

only those that contain a change in at least one of the cue WMEs. However, a cue that has

no match and contains WMEs relevant to all episodes will force inspection of all episodes.

Thus, worst-case performance will be linear in the number of episodes.

9.2. Performance Tweaking

When using a database stored to disk, several parameters become crucial to performance.

The first is commit which controls the number of episodes that occur between writes to

disk. If the total number of episodes (or a range) is known ahead of time, setting this value

to a greater number will result in greatest performance (due to decreased I/O).

The next parameter is cache. Greater settings afford SQLite greater amounts of memory in

which to store B-Tree nodes, thus reducing disk I/O for searches. This memory is not pre-

allocated, so short/small runs will not automatically make use of this space. Some

situations may benefit from smaller cache allocation, to reduce memory allocation calls.

The next parameter is optimization. The safety parameter setting will use SQLite default

settings. If data integrity is of importance, this setting is ideal. The performance setting

will make use of lesser data consistency guarantees for significantly greater performance.

First, writes are no longer synchronous with the OS (synchronous pragma), thus Soar-

EpMem won’t wait for writes to complete before continuing execution. Second, transaction

journaling is turned off (journal_mode pragma), thus groups of modifications to the

episodic store are not atomic (and thus interruptions due to application/os/hardware

failure could lead to inconsistent database state). Finally, upon initialization, Soar-EpMem

maintains an continuous exclusive lock to the database (locking_mode pragma), thus other

 25

applications/agents cannot make simultaneous read/write calls to the database (thereby

reducing the need for potentially expensive system calls to secure/release file locks).

Finally, timers are currently very expensive in Soar. The Soar-EpMem timers use Soar

timer code. Thus, these should be enabled with caution and understanding of their

limitations. First, they will affect performance, depending on the level (set via the timers

parameter). A level of three, for instance, times every step of every query in the interval

search. Furthermore, because these iterations are relatively cheap (typically a single step

in the linked-list of a b-tree), timer values are typically unreliable (depending upon the

system, resolution is 1 microsecond more).

 26

10. Soar-EpMem Programmer Reference
The following tables list basic information about each of the Soar-EpMem related

commands. It is not intended to substitute for this document, but a quick reference for

commonly used commands and options.

10.1. Soar-EpMem

10.1.1. Useful Commands

Command Description
epmem Summary table of parameter settings
epmem [-g|--get] <parameter> Retrieve a Soar-EpMem parameter value
epmem [-s|--set] <parameter> <value> Set a Soar-EpMem parameter value
epmem [-S|--stats] <statistic> Access Soar-EpMem statistics
epmem [-t|--timers] <timer> Access to Soar-EpMem timers
epmem [-c|--close] Close the current Soar-EpMem database

watch [-e|--epmem] Soar-EpMem debugging trace

10.1.2. Parameters

Parameters noted with a * are protected.

General
Parameter Name Acceptable Values Default
learning on

off
 on

Encoding
Parameter Name Acceptable Values Default
phase output

selection
 output

trigger dc

output
none

 output

force ignore

remember
off

 off

exclusions <any string> epmem, smem

Storage
Parameter Name Acceptable Values Default
database* file

memory
 file

commit* Integer, >= 1 1

path* <empty>

<system path>
 <empty>

 27

Retrieval
Parameter Name Acceptable Values Default
balance [0,1] 0.5

graph-match off

on
 on

Performance
Parameter Name Acceptable Values Default
cache* large

medium
small

 large

optimization performance

safety
 performance

timers off

one
two
three

 off

 28

10.1.3. Retrieval Agent Commands

Absolute NCB Retrieval

state.epmem.command.retrieve temporal-id

Relative NCB Retrieval

state.epmem.command.next
state.epmem.command.previous

CB Retrieval

state.epmem.command.query <cue>

and (optionally)

state.epmem.command.neg-query <cue>

CB Retrieval Optional Modifiers

state.epmem.command.before temporal-id
state.epmem.command.after temporal-id

state.epmem.command.prohibit temporal-id

10.1.4. Retrieval Agent Meta-Data
state.epmem.result

 ^retrieved <episode>
^status << bad-cmd >>
^<< success failure >> <query> <neg-query>
^match-score double
^cue-size integer
^normalized-match-score double
^match-cardinality integer
^memory-id temporal-id
^present-id temporal-id
^graph-match << 0 1 >>
^mapping
 ^node
 ^cue <id-in-cue>
 ^retrieved <id-in-retrieval>

 29

10.2. Working Memory Activation

10.2.1. Useful Commands

Command Description
wma Summary table of parameter settings
wma [-g|--get] <parameter> Retrieve a WMA parameter value
wma [-s|--set] <parameter> <value> Set a WMA parameter value

10.2.2. Parameters

Parameter Name Acceptable Values Default
activation on

off
 off

decay-rate [0,1] 0.8

forgetting off

on
 off

