
Part VII: Soar-RL - Reinforcement Learning 
Let us quickly review the type of operator preferences you have used thus far in the 

tutorial.  First, acceptability (+): only acceptable operators are considered for application.  

Acceptable preferences must be further described as either relatively differentiated or 

indifferent.  Differentiated preferences (such as > and <) establish a relative ordering from 

which Soar will choose the most preferred operator.  If all preferences are labeled as 

indifferent (=), Soar’s random operator choice can be further affected by numerical 

indifferent parameters. 

Soar-RL implements reinforcement learning in Soar, allowing agents to alter behavior over 

time by dynamically changing numerical indifferent preferences in procedural memory in 

response to perceived reward.  This learning mechanism contrasts starkly with chunking.  

Whereas chunking is a one-shot form of learning that increases agent execution 

performance by summarizing sub-goal results, Soar-RL is an incremental form of learning 

that probabilistically alters agent behavior.    

1. Soar-RL in Action 

Before we get to the nuts and bolts of Soar-RL, consider first an example of its effects.  Left-

Right is a simple agent that can choose to move either left or right.  Unbeknownst to this 

agent, one direction is more preferable than the other.  After deciding its destination, the 

agent will receive a “reward,” or feedback regarding how good a decision it made.  In this 

case, it will receive a reward of -1 for moving left and +1 for moving right.  Using Soar-RL, 

the agent will learn quickly that moving right is preferable to moving left. 

1.1 The Left-Right Agent 

Given the description above, let’s begin creating the Left-Right agent.  This agent will have a 

move operator that will choose between moving left and right.  Because the agent does not 

know a priori which direction is better, the agent will be indifferent as to the preference 

between these actions. As you are unfamiliar with Soar-RL code, either type the following 

code into your favorite editor or open the VisualSoar left-right project in the Demos 

directory: 

Initialization 

The agent stores directions and associated reward on the state 

sp {propose*initialize-left-right 
   (state <s> ^superstate nil 
             -^name) 
--> 
   (<s> ^operator <o> +) 
   (<o> ^name initialize-left-right) 
} 
 
sp {apply*initialize-left-right 
   (state <s> ^operator <op>) 
   (<op> ^name initialize-left-right) 
--> 
   (<s> ^name left-right 
        ^direction <d1> <d2> 
        ^location start) 
   (<d1> ^name left ^reward -1) 
   (<d2> ^name right ^reward 1) 
} 

 



 

Move 

The agent can move in any available direction.  The chosen direction is stored on the state 

and the agent halts. 

sp {left-right*propose*move 
   (state <s> ^name left-right 
              ^direction.name <dir> 
              ^location start) 
--> 
   (<s> ^operator <op> +) 
   (<op> ^name move 
         ^dir <dir>) 
} 
 
sp {left-right*rl*left 
   (state <s> ^name left-right 
              ^operator <op> +) 
   (<op> ^name move 
         ^dir left) 
--> 
   (<s> ^operator <op> = 0) 
} 
 
sp {left-right*rl*right 
   (state <s> ^name left-right 
              ^operator <op> +) 
   (<op> ^name move 
         ^dir right) 
--> 
   (<s> ^operator <op> = 0) 
} 
 
sp {apply*move 
   (state <s> ^operator <op>) 
   (<op> ^name move 
         ^dir <dir>) 
--> 
   (<s> ^location <dir>) 
   (write (crlf) |Moved: | <dir>) 
   (halt) 
} 
 

Reward 

When an agent chooses a direction it is afforded the respective reward. 

sp {elaborate*reward 
   (state <s> ^name left-right 
              ^reward-link <r> 
              ^location <d-name> 
              ^direction <dir>) 
   (<dir> ^name <d-name> ^reward <d-reward>) 
--> 
   (<r> ^reward.value <d-reward>) 
} 
 

You will notice a number of unexpected elements in the code above, namely the rl rules for 

the move operator and the reward elaboration.  The reasons for these components will be 

made clear in later sections. 

1.2 Running the Left-Right Agent 

Start the Soar Debugger and load the source for the Left-Right agent.  By default, Soar-RL is 

disabled.  To enable this learning mechanism, enter the following command: 



rl --set learning on 
 

Note that this command has been added to the _firstload file of the included left-right 

project.   

Next, click the “Step" button. This will run Soar through the first cycle.  You will note 

initialization has been chosen, no surprise.  In the debugger, execute the following 

command: 

print --rl 
 

This command shows you the numerical indifferent preferences in procedural memory 

subject to Soar-RL updating.  The output is presented here: 

left-right*rl*right  0.  0  
left-right*rl*left  0.  0 
 

This result shows that the preference for the two operator instances after 0 updates have a 

value of 0.  Click “Step” two more times, then execute print --rl again, to see Soar-RL in 

action: 

left-right*rl*right  1.  0.3  
left-right*rl*left  0.  0 
 

After applying the move operator halting, the numerical indifference value for the rule 

associated with moving right has now been updated 1 time to a value of 0.3.  Note that 

since the move preferences are indifferent, and thus the decision process is made 

probabilistically, your agent may have decided to move left instead of right.  In this case the 

left-right*rl*left preference would have been updated 1 time with a value of -0.3. 

Now click the “Init-soar” button.  This will reinitialize the agent.  Execute print --rl.  Notice 

that the numeric indifferent values have not changed from the previous run.  Storing these 

values between runs is the method by which Soar-RL agents learn.  Run the agent 20 more 

times, clicking the “Init-soar” button after each halted execution.  You should notice the 

numeric indifference value for moving right increasing, while the value for moving left 

decreases.  Correspondingly, you should notice the agent choosing to move left less 

frequently. 

2. Building a Learning Agent 

Conversion of most agents to take advantage of Soar-RL features takes part in two stages: 

(1) use Soar-RL compatible preferences and (2) implement one or more reward rules.  As 

an example, we will update the basic Water-Jug agent from Tutorial Part I to take 

advantage of Soar-RL learning functionality.  The modified code can be found in the Demos 

directory. 

2.1 Soar-RL Compatible Preferences 

Operator preferences that are recognized as updateable by Soar-RL must be proposed in a 

special form: 

sp {my*proposal*rule 
   (state <s> ^operator <op> + 
              ^condition <c>) 
--> 
   (<s> ^operator <op> = 2.3) 
} 
 



The name of the rule can be anything and the left-hand side (LHS) of the rule, the 

conditions, may take any form.  However, the right-hand side (RHS) must take the 

following form: 

(<s> ^operator <op> = number) 
 

To be specific, the RHS can only have one statement and number must be a numeric 

constant value (such as 2.3 in the example above).  Any other proposal actions, including 

proposing acceptability of the operator, must take place in a separate rule.  

Recalling the Water Jug problem, our goal will be to have Soar-RL learn the best conditions 

under which to empty a jug (of particular volume), fill a jug (of particular volume), and 

pour one jug (of particular volume) to another.  Thus we will modify the empty, fill, and 

pour operators to afford them Soar-RL updatable preferences. 

Modifying the Water-Jug agent’s operators to make them compatible with the Soar-RL 

preference scheme will take two steps: (a) modify the existing proposal rules and (b) 

creating special-form rules.  Modification of the existing proposal rule is trivial: simply 

remove the “=” (equal) sign from the operator creation line on the RHS: 

sp {water-jug*propose*empty 
   (state <s> ^name water-jug 
              ^jug <j>) 
   (<j> ^contents > 0) 
--> 
   (<s> ^operator <o> +) 
   (<o> ^name empty 
        ^empty-jug <j>)} 
 
sp {water-jug*propose*fill 
   (state <s> ^name water-jug 
              ^jug <j>) 
   (<j> ^empty > 0) 
--> 
   (<s> ^operator <o> +) 
   (<o> ^name fill 
        ^fill-jug <j>)} 
 
sp {water-jug*propose*pour 
   (state <s> ^name water-jug 
              ^jug <i> { <><i><j> }) 
   (<i> ^contents > 0 ) 
   (<j> ^empty > 0) 
--> 
   (<s> ^operator <o> +) 
   (<o> ^name pour 
        ^empty-jug <i> 
        ^fill-jug <j>)} 
 

To be clear, these modified rules propose their respective operators with an acceptable 

preference.  Next, we will write Soar-RL rules whose conditions detect these acceptable 

preferences and compliment with numeric indifferent preferences. 

The second step of agent modification can be much more laborious.  In order for Soar-RL to 

provide feedback for each action in each state of the problem, it must have a Soar-RL 

proposal rule for state-action pair.  In the Water Jug problem, a state can be represented by 

the volume of each of the jugs and the action (empty, fill, or pour) with one of the two jugs.  

As an example, one Soar-RL proposal rule for the emptying the 3-unit jug (currently storing 

2 units) when the 5-unit jug has 4 units could be written as follows: 

sp {water-jug*empty*3*2*4 
   (state <s> ^name water-jug  



              ^operator <op> + 
              ^jug <j1> <j2>) 
   (<op> ^name empty  
         ^empty-jug.volume 3) 
   (<j1> ^volume 3  
         ^contents 2) 
   (<j2> ^volume 5  
         ^contents 4) 
--> 
   (<s> ^operator <op> = 0) 
} 
 

For simple agents, like the Left-Right agent above, enumerating all state-action pair as 

Soar-RL rules by hand is plausible.  However, the Water-Jug agent requires (3 * 2 * 4 * 6) = 

144 Soar-RL rules to fully represent this space.  Since we can express these rules as the 

output of a simple combinatorial pattern, we will use the Soar gp command to generate all 

the rules we need: 

gp {rl*water-jug*empty 
   (state <s> ^name water-jug 
              ^operator <op> + 
              ^jug <j1> <j2>) 
   (<op> ^name empty 
         ^empty-jug.volume [3 5]) 
   (<j1> ^volume 3 
         ^contents [0 1 2 3]) 
   (<j2> ^volume 5 
         ^contents [0 1 2 3 4 5]) 
--> 
   (<s> ^operator <op> = 0) 
} 
 
gp {rl*water-jug*fill 
   (state <s> ^name water-jug 
              ^operator <op> + 
              ^jug <j1> <j2>) 
   (<op> ^name fill 
         ^fill-jug.volume [3 5]) 
   (<j1> ^volume 3 
         ^contents [0 1 2 3]) 
   (<j2> ^volume 5 
         ^contents [0 1 2 3 4 5]) 
--> 
   (<s> ^operator <op> = 0) 
} 
 
 
 
gp {rl*water-jug*pour 
   (state <s> ^name water-jug 
              ^operator <op> + 
              ^jug <j1> <j2>) 
   (<op> ^name pour 
         ^empty-jug.volume [3 5]) 
   (<j1> ^volume 3 
         ^contents [0 1 2 3]) 
   (<j2> ^volume 5 
         ^contents [0 1 2 3 4 5]) 
--> 
   (<s> ^operator <op> = 0) 
} 
 

Note that had the rules required a more complex pattern for generation, or had we not 

known all required rules at agent design time, we would have made use of template rules 

(see the Soar-RL Manual for more details). 



2.2  Reward Rules 

Reward rules in Soar-RL are just like any other Soar rule, except that they modify the 

reward-link attribute of the state to reflect reward associated with the agent’s current 

operator decision.  Reward values must be stored on the value element of the reward 

attribute of the reward-link identifier (state.reward-link.reward.value). 

Of significant note, Soar-RL does not remove or modify structures within the reward-link, 

including old reward values.  It is your responsibility to maintain the reward-link structure 

to reflect proper feedback to Soar-RL.  In most cases, this means reward rules will be i-

supported, such as to create non-persistent reward values.  If an attribute remains on the 

reward-link structure, such as through an o-supported rule, the reward will count multiple 

times in the reinforcement learning. 

For the Water-Jug agent, we will provide reward only when the agent has achieved the goal.  

This entails making a minor modification to the goal-test rule: 

sp {water-jug*detect*goal*achieved 
   (state <s> ^name water-jug 
              ^jug <j> ^reward-link <rl>) 
   (<j> ^volume 3 ^contents 1) 
--> 
   (write (crlf) |The problem has been solved.|) 
   (<rl> ^reward.value 10) 
   (halt)} 
 

Now load this code into the debugger and run it a few times (if loading your own code, 

remember to enable Soar-RL).  After about five runs you should find that the agent has 

adopted a near optimal strategy.  At any point during the runs you can execute the print --rl 

command to see the numeric indifferent values of the Soar-RL rules generated by the 

template rules.  You can right-click and choose to print any of these rules to see their 

details. 

3. Further Exploration 

Consider the following output from a run (watch level 0) of the learning left-right agent 

from section 1: 

run 
Moved: right 
This Agent halted. 
An agent halted during the run. 
 
init-soar 
Agent reinitialized. 
 
run 
Moved: right 
This Agent halted. 
An agent halted during the run. 
 
init-soar 
Agent reinitialized. 
 
run 
Moved: left 
This Agent halted. 
An agent halted during the run. 
 

You should notice that at run 3 moving left is selected.  By this point moving right has an 

obvious advantage in numerical preference values, thus why is left chosen?  The answer 

lies with the Soar-RL exploration policy. 



There are times in learning when exploration of operations currently considered less-than-

preferred may lead you down a useful path.  Soar-RL allows you to tune your level of 

exploring these alternate paths using the indifferent-selection command. 

In the Soar Debugger, type “indifferent-selection --stat” (sans quotes).  The result should 

look like this: 

Exploration Policy: epsilon-greedy  
Automatic Policy Parameter Reduction: off   
 
epsilon: 0.1  
epsilon Reduction Policy: exponential  
epsilon Reduction Rate (exponential/linear): 1/0   
 
temperature: 25  
temperature Reduction Policy: exponential  
temperature Reduction Rate (exponential/linear): 1/0 
 

This command prints the current Soar-RL exploration policy as well as a number of tuning 

parameters.  There are five exploration policies: boltzmann, epsilon-greedy, softmax, first, 

and last.  You can change the exploration policy by issuing the following command (where 

“policy_name” should be replaced with one of the policies above): 

indifferent-selection --policy_name 
 

This tutorial will only discuss the epsilon-greedy policy.  For information on the other 

policies you are welcome to read the Soar-RL manual.  Epsilon greedy is a reinforcement 

learning policy to allow parameter-controlled exploration of operators not currently 

recognized as most preferred.  This policy is controlled by the epsilon parameter.  The 

policy is summarized as such: 

With ( 1 - epsilon ) probability, the most preferred operator is to be 
chosen.  With epsilon probability, a random selection of all indifferent 
operators is made. 
 

When Soar is first started, the default exploration policy is softmax.  However, the first time 

Soar-RL is enabled, the architecture automatically changes the exploration policy to 

epsilon-greedy, a policy more suitable for RL agents.  The default value of epsilon is 0.1, 

dictating that 90% of the time the operator with greatest numerical preference value is 

chosen, while the remaining 10% of the time a random selection is made from all 

acceptable proposed operators.  You can change the epsilon value by issuing the following 

command: 

indifferent-selection --epsilon <value> 
 

Acceptable values for epsilon are numbers between 0 and 1 (inclusive).  You may note, by 

the definition, that a value of 0 will eliminate the chance of exploration and a value of 1 will 

result in a uniformly random selection. 

With this explanation, you should experiment with different values of epsilon during 

different runs in the agents discussed in this tutorial. 

 


