
The Soar User’s Manual

Version 9.1

John E. Laird and Clare Bates Congdon
User interface sections by Karen J. Coulter

Electrical Engineering and Computer Science Department
University of Michigan

Draft of: June 3, 2009

Errors may be reported to John E. Laird (laird@umich.edu)

Copyright c© 1998 - 2008, The Regents of the University of Michigan

Development of earlier versions of this manual were supported under contract N00014-92-
K-2015 from the Advanced Systems Technology Office of the Advanced Research Projects
Agency and the Naval Research Laboratory, and contract N66001-95-C-6013 from the Ad-
vanced Systems Technology Office of the Advanced Research Projects Agency and the Naval
Command and Ocean Surveillance Center, RDT&E division.

2

Contents

Contents v

1 Introduction 1
1.1 Using this Manual . 1
1.2 Contacting the Soar Group . 3
1.3 A Note on Different Platforms and Operating Systems 3

2 The Soar Architecture 5
2.1 An Overview of Soar . 5

2.1.1 Problem-Solving Functions in Soar 6
2.1.2 An Example Task: The Blocks-World 7
2.1.3 Representation of States, Operators, and Goals 8
2.1.4 Proposing candidate operators . 10
2.1.5 Comparing candidate operators: Preferences 10
2.1.6 Selecting a single operator . 10
2.1.7 Applying the operator . 11
2.1.8 Making inferences about the state . 12
2.1.9 Problem Spaces . 12

2.2 Working memory: The Current Situation . 13
2.3 Production Memory: Long-term Knowledge 16

2.3.1 The structure of a production . 16
2.3.2 Architectural roles of productions . 17
2.3.3 Production Actions and Persistence 18

2.4 Preference memory: Selection Knowledge . 19
2.4.1 Preference semantics . 19

2.5 Soar’s Execution Cycle: Without Substates 21
2.6 Impasses and Substates . 23

2.6.1 Impasse Types . 24
2.6.2 Creating New States . 24
2.6.3 Results . 25
2.6.4 Removal of Substates: Impasse Resolution 28
2.6.5 Soar’s Cycle: With Substates . 30

2.7 Learning . 30
2.8 Input and Output . 31

3 The Syntax of Soar Programs 33

i

ii CONTENTS

3.1 Working Memory . 33
3.1.1 Symbols . 34
3.1.2 Objects . 34
3.1.3 Timetags . 35
3.1.4 Acceptable preferences in working memory 36
3.1.5 Working Memory as a Graph . 36

3.2 Preference Memory . 38
3.3 Production Memory . 38

3.3.1 Production Names . 39
3.3.2 Documentation string (optional) . 40
3.3.3 Production type (optional) . 40
3.3.4 Comments (optional) . 40
3.3.5 The condition side of productions (or LHS) 41
3.3.6 The action side of productions (or RHS) 56

3.4 Impasses in Working Memory and in Productions 66
3.4.1 Impasses in working memory . 66
3.4.2 Testing for impasses in productions 67

3.5 Soar I/O: Input and Output in Soar . 68
3.5.1 Overview of Soar I/O . 68
3.5.2 Input and output in working memory 69
3.5.3 Input and output in production memory 71

4 Learning 73
4.1 Chunk Creation . 73
4.2 Determining Conditions and Actions . 74

4.2.1 Determining a chunk’s actions . 75
4.2.2 Tracing the creation and reference of working memory elements . . . 75
4.2.3 Determining a chunk’s conditions . 76

4.3 Variablizing Identifiers . 77
4.4 Ordering Conditions . 77
4.5 Inhibition of Chunks . 77
4.6 Problems that May Arise with Chunking . 78

4.6.1 Using search control to determine correctness 78
4.6.2 Testing for local negated conditions 78
4.6.3 Testing for the substate . 79
4.6.4 Mapping multiple superstate WMEs to one local WME 79
4.6.5 Revising the substructure of a previous result 80

5 The Soar User Interface 81
5.1 Basic Commands for Running Soar . 82

5.1.1 excise . 83
5.1.2 gp . 84
5.1.3 help . 85
5.1.4 init-soar . 86
5.1.5 quit . 87
5.1.6 run . 88

CONTENTS iii

5.1.7 sp . 90
5.1.8 stop-soar . 92

5.2 Examining Memory . 93
5.2.1 default-wme-depth . 94
5.2.2 gds-print . 95
5.2.3 internal-symbols . 96
5.2.4 matches . 97
5.2.5 memories . 99
5.2.6 preferences . 100
5.2.7 print . 102
5.2.8 production-find . 105

5.3 Configuring Trace Information and Debugging 106
5.3.1 chunk-name-format . 107
5.3.2 firing-counts . 108
5.3.3 pwatch . 109
5.3.4 stats . 110
5.3.5 verbose . 113
5.3.6 warnings . 113
5.3.7 watch . 114
5.3.8 watch-wmes . 119

5.4 Configuring Soar’s Runtime Parameters . 121
5.4.1 explain-backtraces . 122
5.4.2 indifferent-selection . 124
5.4.3 learn . 126
5.4.4 max-chunks . 128
5.4.5 max-elaborations . 129
5.4.6 max-memory-usage . 130
5.4.7 max-nil-output-cycles . 131
5.4.8 multi-attributes . 132
5.4.9 numeric-indifferent-mode . 132
5.4.10 o-support-mode . 133
5.4.11 predict . 134
5.4.12 rl . 135
5.4.13 save-backtraces . 136
5.4.14 select . 137
5.4.15 set-stop-phase . 138
5.4.16 timers . 139
5.4.17 waitsnc . 140

5.5 File System I/O Commands . 140
5.5.1 cd . 141
5.5.2 clog . 142
5.5.3 command-to-file . 143
5.5.4 dirs . 144
5.5.5 echo . 145
5.5.6 ls . 145
5.5.7 popd . 146

iv CONTENTS

5.5.8 pushd . 146
5.5.9 pwd . 147
5.5.10 rete-net . 148
5.5.11 set-library-location . 149
5.5.12 source . 149

5.6 Soar I/O Commands . 151
5.6.1 add-wme . 151
5.6.2 remove-wme . 153

5.7 Miscellaneous . 154
5.7.1 alias . 154
5.7.2 edit-production . 156
5.7.3 srand . 156
5.7.4 soarnews . 157
5.7.5 time . 157
5.7.6 unalias . 158
5.7.7 version . 159

Appendices 161

A The Blocks-World Program 161

B Grammars for production syntax 167
B.1 Grammar of Soar productions . 167

B.1.1 Grammar for Condition Side . 167
B.1.2 Grammar for Action Side . 168

C The Calculation of O-Support 169

D The Resolution of Operator Preferences 171

E A Goal Dependency Set Primer 175

Index 185

Summary of Soar Aliases, Variables, and Functions 189

List of Figures

2.1 Soar is continually trying to select and apply operators. 5
2.2 The initial state and goal of the “blocks-world” task. 8
2.3 An abstract illustration of the initial state of the blocks world as working memory

objects. At this stage of problem solving, no operators have been proposed or selected. 8
2.4 An abstract illustration of working memory in the blocks world after the first op-

erator has been selected. 9
2.5 The six operators proposed for the initial state of the blocks world each move one

block to a new location. 10
2.6 The problem space in the blocks-world includes all operators that move blocks from

one location to another and all possible configurations of the three blocks. 13
2.7 An abstract view of production memory. The productions are not related to one

another. 16
2.8 A detailed illustration of Soar’s decision cycle: out of date 22
2.9 A simplified version of the Soar algorithm. 23
2.10 A simplified illustration of a subgoal stack. 26

3.1 A semantic net illustration of four objects in working memory. 37
3.2 An example production from the example blocks-world task. 39
3.3 An example portion of the input link for the blocks-world task. 69
3.4 An example portion of the output link for the blocks-world task. 70

D.1 An illustration of the preference resolution process. There are eight steps; only five
of these provide exits from the resolution process. 172

E.1 Simplified Representation of the context dependencies (above the line), lo-
cal os-upported WMEs (below the line), and the generation of a result. In
Soar 7, this situation led to non-contemporaneous constraints in the chunk
that generates 3. 177

E.2 The Dependency Set in Soar 8. 179
E.3 The algorithm for determining members of the GDS. 182
E.4 The GDS and WME data structures . 183

v

vi LIST OF FIGURES

Chapter 1

Introduction

Soar has been developed to be an architecture for constructing general intelligent systems.
It has been in use since 1983, and has evolved through many different versions. This manual
documents the most current of these: Soar, version 9.0.

Our goals for Soar include that it is to be an architecture that can:

• be used to build systems that work on the full range of tasks expected of an
intelligent agent, from highly routine to extremely difficult, open-ended problems;

• represent and use appropriate forms of knowledge, such as procedural, declarative,
episodic, and possibly iconic;

• employ the full range of problem solving methods;

• interact with the outside world; and

• learn about all aspects of the tasks and its performance on those tasks.

In other words, our intention is for Soar to support all the capabilities required of a general
intelligent agent. Below are the major principles that are the cornerstones of Soar’s design:

1. The number of distinct architectural mechanisms should be minimized. In Soar there is
a single representation of permanent knowledge (productions), a single representation
of temporary knowledge (objects with attributes and values), a single mechanism for
generating goals (automatic subgoaling), and a single learning mechanism (chunking).

2. All decisions are made through the combination of relevant knowledge at run-time.
In Soar, every decision is based on the current interpretation of sensory data and any
relevant knowledge retrieved from permanent memory. Decisions are never precompiled
into uninterruptible sequences.

1.1 Using this Manual

We expect that novice Soar users will read the manual in the order it is presented:

1

2 CHAPTER 1. INTRODUCTION

Chapter 2 and Chapter 3 describe Soar from different perspectives: Chapter 2 de-
scribes the Soar architecture, but avoids issues of syntax, while Chapter 3 describes
the syntax of Soar, including the specific conditions and actions allowed in Soar pro-
ductions.

Chapter 4 describes chunking, Soar’s learning mechanism. Not all users will make use of
chunking, but it is important to know that this capability exists.

Chapter 5 describes the Soar user interface — how the user interacts with Soar. The
chapter is a catalog of user-interface commands, grouped by functionality. The most
accurate and up-to-date information on the syntax of the Soar User Interface is found
online, on the Soar Wiki, at

http://winter.eecs.umich.edu/soarwiki.

Advanced users will refer most often to Chapter 5, flipping back to Chapters 2 and 3 to
answer specific questions.

There are several appendices included with this manual:

Appendix A contains an example Soar program for a simple version of the blocks world.
This blocks-world program is used as an example throughout the manual.

Appendix B provides a grammar for Soar productions.

Appendix C describes the determination of o-support.

Appendix D provides a detailed explanation of the preference resolution process.

Appendix E provides an explanation of the Goal Dependency Set.

Additional Back Matter

The appendices are followed by an index; the last pages of this manual contain a summary
and index of the user-interface functions for quick reference.

Not Described in This Manual

Some of the more advanced features of Soar are not described in this manual, such as how
to interface with a simulator, or how to create Soar applications using multiple interacting
agents. A discussion of these topics is provided in a separate document, the SML Quick
Start Guide.

For novice Soar users, try The Soar 9 Tutorial, which guides the reader through several
example tasks and exercises.

See Section 1.2 for information about obtaining Soar documentation.

1.2. CONTACTING THE SOAR GROUP 3

1.2 Contacting the Soar Group

Resources on the Internet

The primary website for Soar is:

http://sitemaker.umich.edu/soar.

Look here for the latest downloads, documentation, and Soar-related announcements, as well
as links to information about specific Soar research projects and researchers and a FAQ (list
of frequently asked questions) about Soar.

For questions about Soar, you may write to the Soar e-mail list at:

soar-group@lists.sourceforge.net.

If you would like to be on this list yourself, visit:

http://lists.sourceforge.net/lists/listinfo/soar-group.

To report Soar bugs, to check whether a bug has been reported, or to check the status of a
previously reported bug, visit:

https://winter.eecs.umich.edu/soar-bugzilla/.

For Those Without Internet Access

If you cannot reach us on the internet, please write to us at the following address:

The Soar Group
Artificial Intelligence Laboratory
University of Michigan
2260 Hayward Street
Ann Arbor, MI 48109-2110
USA

1.3 A Note on Different Platforms and Operating Sys-

tems

Soar runs on a wide variety of computers, including Unix (and Linux) machines, Macintoshes
running OSX, and PCs running the Windows XP (and probably 2000 and NT) operating
system.

This manual documents Soar generally, although all references to files and directories use
Unix format conventions rather than Windows-style folders.

4 CHAPTER 1. INTRODUCTION

Chapter 2

The Soar Architecture

This chapter describes the Soar architecture. It covers all aspects of Soar except for the
specific syntax of Soar’s memories and descriptions of the Soar user-interface commands.

This chapter gives an abstract description of Soar. It starts by giving an overview of Soar and
then goes into more detail for each of Soar’s main memories (working memory, production
memory, and preference memory) and processes (the decision procedure, learning, and input
and output).

2.1 An Overview of Soar

The design of Soar is based on the hypothesis that all deliberate goal -oriented behavior can
be cast as the selection and application of operators to a state. A state is a representation
of the current problem-solving situation; an operator transforms a state (makes changes to
the representation); and a goal is a desired outcome of the problem-solving activity.

As Soar runs, it is continually trying to apply the current operator and select the next
operator (a state can have only one operator at a time), until the goal has been achieved.
The selection and application of operators is illustrated in Figure 2.1.

Soar has separate memories (and different representations) for descriptions of its current

select apply select apply select apply

Soar execution

. . .

Figure 2.1: Soar is continually trying to select and apply operators.

5

6 CHAPTER 2. THE SOAR ARCHITECTURE

situation and its long-term knowledge. In Soar, the current situation, including data from
sensors, results of intermediate inferences, active goals, and active operators is held in working
memory. Working memory is organized as objects. Objects are described in terms of their
attributes ; the values of the attributes may correspond to sub-objects, so the description
of the state can have a hierarchical organization. (This need not be a strict hierarchy; for
example, there’s nothing to prevent two objects from being “substructure” of each other.)

The long-term knowledge, which specifies how to respond to different situations in working
memory, can be thought of as the program for Soar. The Soar architecture cannot solve any
problems without the addition of long-term knowledge. (Note the distinction between the
“Soar architecture” and the “Soar program”: The former refers to the system described in
this manual, common to all users, and the latter refers to knowledge added to the architec-
ture.)

A Soar program contains the knowledge to be used for solving a specific task (or set of tasks),
including information about how to select and apply operators to transform the states of the
problem, and a means of recognizing that the goal has been achieved.

2.1.1 Problem-Solving Functions in Soar

All of Soar’s long-term knowledge is organized around the functions of operator selection
and operator application, which are organized into four distinct types of knowledge:

Knowledge to select an operator

1. Operator Proposal: Knowledge that an operator is appropriate for the current
situation.

2. Operator Comparison: Knowledge to compare candidate operators.

3. Operator Selection: Knowledge to select a single operator, based on the compar-
isons.

Knowledge to apply an operator

4. Operator Application: Knowledge of how a specific operator modifies the state.

In addition, there is a fifth type of knowledge in Soar that is indirectly connected to both
operator selection and operator application:

5. Knowledge of monotonic inferences that can be made about the state (state elab-
oration).

State elaborations indirectly affect operator selection and application by creating new de-
scriptions of the current situation that can cue the selection and application of operators.

These problem-solving functions are the primitives for generating behavior in Soar. Four of
the functions require retrieving long-term knowledge that is relevant to the current situa-
tion: elaborating the state, proposing candidate operators, comparing the candidates, and
applying the operator by modifying the state. These functions are driven by the knowledge

2.1. AN OVERVIEW OF SOAR 7

encoded in a Soar program. Soar represents that knowledge as production rules. Produc-
tion rules are similar to “if-then” statements in conventional programming languages. (For
example, a production might say something like “if there are two blocks on the table, then
suggest an operator to move one block ontop of the other block”). The “if” part of the
production is called its conditions and the “then” part of the production is called its actions.
When the conditions are met in the current situation as defined by working memory, the
production is matched and it will fire, which means that its actions are executed, making
changes to working memory.

The other function, selecting the current operator, involves making a decision once sufficient
knowledge has been retrieved. This is performed by Soar’s decision procedure, which is a fixed
procedure that interprets preferences that have been created by the retrieval functions. The
knowledge-retrieval and decision-making functions combine to form Soar’s decision cycle.

When the knowledge to perform the problem-solving functions is not directly available in
productions, Soar is unable to make progress and reaches an impasse. There are three types
of possible impasses in Soar:

1. An operator cannot be selected because none are proposed.

2. An operator cannot be selected because multiple operators are proposed and the com-
parisons are insufficient to determine which one should be selected.

3. An operator has been selected, but there is insufficient knowledge to apply it.

In response to an impasse, the Soar architecture creates a substate in which operators can be
selected and applied to generate or deliberately retrieve the knowledge that was not directly
available; the goal in the substate is to resolve the impasse. For example, in a substate,
a Soar program may do a lookahead search to compare candidate operators if comparison
knowledge is not directly available. Impasses and substates are described in more detail in
Section 2.6.

2.1.2 An Example Task: The Blocks-World

We will use a task called the blocks-world as an example throughout this manual. In the
blocks-world task, the initial state has three blocks named A, B, and C on a table; the
operators move one block at a time to another location (on top of another block or onto the
table); and the goal is to build a tower with A on top, B in the middle, and C on the bottom.
The initial state and the goal are illustrated in Figure 2.2.

The Soar code for this task is included in Appendix A. You do not need to look at the code
at this point.

The operators in this task move a single block from its current location to a new location;
each operator is represented with the following information:

• the name of the block being moved

• the current location of the block (the “thing” it is on top of)

• the destination of the block (the “thing” it will be on top of)

8 CHAPTER 2. THE SOAR ARCHITECTURE

C

Goal

C

Initial State

A B

B

A

Figure 2.2: The initial state and goal of the “blocks-world” task.

B1
B1 is a block
B1 is named A
B1 is clear

B2
B2 is a block
B2 is named B
B2 is clear

B3
B3 is a block
B3 is named C
B3 is clear

T1
T1 is a table
T1 is named table
T1 is clearS1

S1 is a state
S1 has a problem−space blocks
S1 has a thing B1
S1 has a thing B2
S1 has a thing B3
S1 has a thing T1
S1 has an ontop O1
S1 has an ontop O2
S1 has an ontop O3
(S1 has no operator)

O1 has a top−block B1
O1 has a bottom−block T1O1

O2 O2 has a top−block B2
O2 has a bottom−block T1

O3 O3 has a top−block B3
O3 has a bottom−block T1

An Abstract View of Working Memory

Figure 2.3: An abstract illustration of the initial state of the blocks world as working memory
objects. At this stage of problem solving, no operators have been proposed or selected.

The goal in this task is to stack the blocks so that C is on the table, with block B on block
C, and block A on top of block B.

2.1.3 Representation of States, Operators, and Goals

The initial state in our blocks-world task — before any operators have been proposed or
selected — is illustrated in Figure 2.3.

A state can have only one operator at a time, and the operator is represented as substructure
of the state. A state may also have as substructure a number of potential operators that

2.1. AN OVERVIEW OF SOAR 9

B1
B1 is a block
B1 is named A
B1 is clear

B2
B2 is a block
B2 is named B
B2 is clear

B3
B3 is a block
B3 is named C
B3 is clear

T1
T1 is a table
T1 is named table
T1 is clearS1

O1 has a top−block B1
O1 has a bottom−block T1O1

O2 O2 has a top−block B2
O2 has a bottom−block T1

O3 O3 has a top−block B3
O3 has a bottom−block T1

O7 O7 is named move−block
O7 has moving−block B3
O7 has destination B2

+O4

+O5

+O6

+O8

+O9

+O7

S1 is a state
S1 has a problem−space blocks
S1 has a thing B1
S1 has a thing B2
S1 has a thing B3
S1 has a thing T1
S1 has an ontop O1
S1 has an ontop O2
S1 has an ontop O3
S1 has operator O7
S1 has six proposed operators

O4 is named move−block
O4 has moving−block B2
O4 has destination B1
O5 is named move−block
O5 has moving−block B3
O5 has destination B1
O6 is named move−block
O6 has moving−block B1
O6 has destination B2

O8 is named move−block
O8 has moving−block B1
O8 has destination B3
O9 is named move−block
O9 has moving−block B2
O9 has destination B3

(links from operators to blocks
are omitted for simplicity)

An Abstract View of Working Memory

Figure 2.4: An abstract illustration of working memory in the blocks world after the first operator
has been selected.

are in consideration; however, these suggested operators should not be confused with the
current operator.

Figure 2.4 illustrates working memory after the first operator has been selected. There are
six operators proposed, and only one of these is actually selected.

Goals are either represented explicitly as substructure of the state with general rules that
recognize when the goal is achieved, or are implicitly represented in the Soar program by
goal-specific rules that test the state for specific features and recognize when the goal is
achieved. The point is that sometimes a description of the goal will be available in the state
for focusing the problem solving, whereas other times it may not. Although representing a
goal explicitly has many advantages, some goals are difficult to explicitly represent on the
state.

The goal in our blocks-world task is represented implicitly in the Soar program. A single
production rule monitors the state for completion of the goal and halts Soar when the goal
is achieved.

10 CHAPTER 2. THE SOAR ARCHITECTURE

C

Initial State

A B

CB

A
move A
on top
of B

CB

A
move A
on top
of C

CA

B
move B
 on top
 of A

CA

B
move B
on top
of C

A

C

B

move C
 on top
 of A

A

C

B

move C
 on top
 of B

Figure 2.5: The six operators proposed for the initial state of the blocks world each move one
block to a new location.

2.1.4 Proposing candidate operators

As a first step in selecting an operator, one or more candidate operators are proposed.
Operators are proposed by rules that test features of the current state. When the blocks-
world task is run, the Soar program will propose six distinct (but similar) operators for
the initial state as illustrated in Figure 2.5. These operators correspond to the six different
actions that are possible given the initial state.

2.1.5 Comparing candidate operators: Preferences

The second step Soar takes in selecting an operator is to evaluate or compare the candidate
operators. In Soar, this is done via rules that test the proposed operators and the current
state, and then create preferences. Preferences assert the relative or absolute merits of the
candidate operators. For example, a preference may say that operator A is a “better” choice
than operator B at this particular time, or a preference may say that operator A is the “best”
thing to do at this particular time.

2.1.6 Selecting a single operator

Soar attempts to select a single operator based on the preferences available for the candidate
operators. There are four different situations that may arise:

1. The available preferences unambiguously prefer a single operator.

2. The available preferences suggest multiple operators, and prefer a subset that can be
selected from randomly.

3. The available preferences suggest multiple operators,but neither case 1 or 2 above hold.

4. The available preferences do not suggest any operators.

2.1. AN OVERVIEW OF SOAR 11

In the first case, the preferred operator is selected. In the second case, one of the subset is
selected randomly. In the third and fourth cases, Soar has reached an “impasse” in problem
solving, and a new substate is created. Impasses are discussed in Section 2.6.

In our blocks-world example, the second case holds, and Soar can select one of the operators
randomly.

2.1.7 Applying the operator

An operator applies by making changes to the state; the specific changes that are appropriate
depend on the operator and the current state.

There are two primary approaches to modifying the state: indirect and direct. Indirect
changes are used in Soar programs that interact with an external environment: The Soar
program sends motor commands to the external environment and monitors the external
environment for changes. The changes are reflected in an updated state description, garnered
from sensors. Soar may also make direct changes to the state; these correspond to Soar
doing problem solving “in its head”. Soar programs that do not interact with an external
environment can make only direct changes to the state.

Internal and external problem solving should not be viewed as mutually exclusive activities in
Soar. Soar programs that interact with an external environment will generally have operators
that make direct and indirect changes to the state: The motor command is represented as
substructure of the state and it is a command to the environment. Also, a Soar program may
maintain an internal model of how it expects an external operator will modify the world; if
so, the operator must update the internal model (which is substructure of the state).

When Soar is doing internal problem solving, it must know how to modify the state descrip-
tions appropriately when an operator is being applied. If it is solving the problem in an
external environment, it must know what possible motor commands it can issue in order to
affect its environment.

The example blocks-world task described here does not interact with an external environ-
ment. Therefore, the Soar program directly makes changes to the state when operators are
applied. There are four changes that may need to be made when a block is moved in our
task:

1. The block that is being moved is no longer where it was (it is no longer “on top” of
the same thing).

2. The block that is being moved is now in a new location (it is “on top” of a new thing).

3. The place that the block used to be is now clear.

4. The place that the block is moving to is no longer clear — unless it is the table, which
is always considered “clear”1.

1In this blocks-world task, the table always has room for another block, so it is represented as always
being “clear”.

12 CHAPTER 2. THE SOAR ARCHITECTURE

The blocks-world task could also be implemented using an external simulator. In this case,
the Soar program does not update all the “on top” and “clear” relations; the updated state
description comes from the simulator.

2.1.8 Making inferences about the state

Making monotonic inferences about the state is the other role that Soar long-term knowledge
may fulfill. Such elaboration knowledge can simplify the encoding of operators because
entailments of a set of core features of a state do not have to be explicitly included in
application of the operator. In Soar, these inferences will be automatically retracted when
the situation changes such that the inference no longer holds.

For instance, our example blocks-world task uses an elaboration to keep track of whether
or not a block is “clear”. The elaboration tests for the absence of a block that is “on top”
of a particular block; if there is no such “on top”, the block is “clear”. When an operator
application creates a new “on top”, the corresponding elaboration retracts, and the block is
no longer “clear”.

2.1.9 Problem Spaces

If we were to construct a Soar system that worked on a large number of different types of
problems, we would need to include large numbers of operators in our Soar program. For
a specific problem and a particular stage in problem solving, only a subset of all possible
operators are actually relevant. For example, if our goal is to count the blocks on the table,
operators having to do with moving blocks are probably not important, although they may
still be “legal”. The operators that are relevant to current problem-solving activity define
the space of possible states that might be considered in solving a problem, that is, they
define the problem space.

Soar programs are implicitly organized in terms of problem spaces because the conditions
for proposing operators will restrict an operator to be considered only when it is relevant.
The complete problem space for the blocks world is show in Figure 2.6. Typically, when
Soar solves a problem in this problem space, it does not explicitly generate all of the states,
examine them, and then create a path. Instead, Soar is in a specific state at a given time
(represented in working memory), attempting to select an operator that will move it to a
new state. It uses whatever knowledge it has about selecting operators given the current
situation, and if its knowledge is sufficient, it will move toward its goal. The same problem
could be recast in Soar as a planning problem, where the goal is to develop a plan to solve
the problem, instead of just solving the problem. In that case, a state in Soar would consist
of a plan, which in turn would have representations of Blocks World states and operators
from the original space. The operators would perform editing operations on the plan, such
as adding new Blocks World operators, simulating those operators, etc. In both formulations
of the problem, Soar is still applying operators to generate new states, it is just that the
states and operators have different content.

2.2. WORKING MEMORY: THE CURRENT SITUATION 13

(move−block
 C B)

A B C

A
B C

A
B C

A
B

C A
B
C

A B
C

A B
C

A
B

C
A
B

C

A
B
C A

B
C

A

B
C

A

B
C

= operators

A B C = states

(move−block
B A)

(move−block
B T)

(move−block C T)(move−block
B A)

(move−block
 A T)

(move−
 block
 A C)

(move−block
 A B)

(move−block
 C A)

(move−block
B C)

(move−block
 B T)

(move−block
 C T)

(move−
 block
 A C)

(move−block
 A T)

(move−
 block
 C B) (move−

 block
 C T)

(move−
 block
 A T)

(move−block
 A B)

(move−
 block
 C A)

(move−
 block
 C T)

(move−
 block
 A T)

(move−block
 B T)

(move−
 block
 B T) (move−

 block
 B C)

Figure 2.6: The problem space in the blocks-world includes all operators that move blocks from
one location to another and all possible configurations of the three blocks.

The remaining sections in this chapter describe the memories and processes of Soar: work-
ing memory, production memory, preference memory, Soar’s execution cycle (the decision
procedure), learning, and how input and output fit in.

2.2 Working memory: The Current Situation

Soar represents the current problem-solving situation in its working memory. Thus, working
memory holds the current state and operator and is Soar’s “short-term” knowledge, reflecting
the current knowledge of the world and the status in problem solving.

Working memory contains elements called working memory elements, or WME’s for short.
Each WME contains a very specific piece of information; for example, a WME might say
that “B1 is a block”. Several WME’s collectively may provide more information about the
same object, for example, “B1 is a block”, “B1 is named A”, “B1 is on the table”, etc. These
WME’s are related because they are all contributing to the description of something that
is internally known to Soar as “B1”. B1 is called an identifier ; the group of WME’s that

14 CHAPTER 2. THE SOAR ARCHITECTURE

share this identifier are referred to as an object in working memory. Each WME describes a
different attribute of the object, for example, its name or type or location; each attribute has
a value associated with it, for example, the name is A, the type is block, and the position
is on the table. Therefore, each WME is an identifier-attribute-value triple, and all WME’s
with the same identifier are part of the same object.

Objects in working memory are linked to other objects: The value of one WME may be an
identifier of another object. For example, a WME might say that “B1 is ontop of T1”, and
another collection of WME’s might describe the object T1: “T1 is a table”, “T1 is brown”,
and “T1 is ontop of F1”. And still another collection of WME’s might describe the object
F1: “F1 is a floor”, etc. All objects in working memory must be linked to a state, either
directly or indirectly (through other objects). Objects that are not linked to a state will be
automatically removed from working memory by the Soar architecture.

WME’s are also often called augmentations because they “augment” the object, providing
more detail about it. While these two terms are somewhat redundant, WME is a term that
is used more often to refer to the contents of working memory, while augmentation is a
term that is used more often to refer to the description of an object. Working memory is
illustrated at an abstract level in Figure 2.3 on page 8.

The attribute of an augmentation is usually a constant, such as name or type, because in
a sense, the attribute is just a label used to distinguish one link in working memory from
another.2

The value of an augmentation may be either a constant, such as red, or an identifier, such
as 06. When the value is an identifier, it refers to an object in working memory that may
have additional substructure. In semantic net terms, if a value is a constant, then it is a
terminal node with no links; if it is an identifier it is a nonterminal node.

One key concept of Soar is that working memory is a set, which means that there can never
be two elements in working memory at the same time that have the same identifier-attribute-
value triple (this is prevented by the architecture). However, it is possible to have multiple
working memory elements that have the same identifier and attribute, but that each have
different values. When this happens, we say the attribute is a multi-valued attribute, which
is often shortened to be multi-attribute.

An object is defined by its augmentations and not by its identifier. An identifier is simply a
label or pointer to the object. On subsequent runs of the same Soar program, there may be
an object with exactly the same augmentations, but a different identifier, and the program
will still reason about the object appropriately. Identifiers are internal markers for Soar;
they can appear in working memory, but they never appear in a production.

There is no predefined relationship between objects in working memory and “real objects”
in the outside world. Objects in working memory may refer to real objects, such as block

A; features of an object, such as the color red or shape cube; a relation between objects,
such as ontop; classes of objects, such as blocks; etc. The actual names of attributes and

2In order to allow these links to have some substructure, the attribute name may be an identifier, which
means that the attribute may itself have attributes and values, as specified by additional working memory
elements.

2.3. PRODUCTION MEMORY: LONG-TERM KNOWLEDGE 15

values have no meaning to the Soar architecture (aside from a few WME’s created by the
architecture itself). For example, Soar doesn’t care whether the things in the blocks world
are called “blocks” or “cubes” or “chandeliers”. It is up to the Soar programmer to pick
suitable labels and to use them consistently.

The elements in working memory arise from one of four sources:

1. The actions of productions create most working memory elements.

2. The decision procedure automatically creates some special state augmentations (type,
superstate, impasse, ...) whenever a state is created. States are created during initial-
ization (the first state) or because of an impasse (a substate).

3. The decision procedure creates the operator augmentation of the state based on pref-
erences. This records the selection of the current operator.

4. External I/O systems create working memory elements on the input-link for sensory
data.

The elements in working memory are removed in six different ways:

1. The decision procedure automatically removes all state augmentations it creates when
the impasse that led to their creation is resolved.

2. The decision procedure removes the operator augmentation of the state when that
operator is no longer selected as the current operator.

3. Production actions that use reject preferences remove working memory elements that
were created by other productions.

4. The architecture automatically removes i-supported WMEs when the productions that
created them no longer match.

5. The I/O system removes sensory data from the input-link when it is no longer valid.

6. The architecture automatically removes WME’s that are no longer linked to a state
(because some other WME has been removed).

For the most part, the user is free to use any attributes and values that are appropriate for the
task. However, states have special augmentations that cannot be directly created, removed,
or modified by rules. These include the augmentations created when a state is created, and
the state’s operator augmentation that signifies the current operator (and is created based
on preferences). The specific attributes that the Soar architecture automatically creates are
listed in Section 3.4. Productions may create any other attributes for states.

Preferences are held in a separate preference memory where they cannot be tested by produc-
tions; however, acceptable preferences are held in both preference memory and in working
memory. By making the acceptable preferences available in working memory, the accept-
able preferences can be tested for in productions allowing the candidates operators to be
compared before they are selected.

16 CHAPTER 2. THE SOAR ARCHITECTURE

condition1

(maybe some more conditions)

production−name

C A

C A

C A

C A

C A C AC A

C A

C A

C AC A

C A

C A

C A

C A

C A

C AC A

C A

action1

(Maybe some more actions)

An Abstract View of Production Memory

Figure 2.7: An abstract view of production memory. The productions are not related to one
another.

2.3 Production Memory: Long-term Knowledge

Soar represents long-term knowledge as productions that are stored in production memory,
illustrated in Figure 2.7. Each production has a set of conditions and a set of actions. If the
conditions of a production match working memory, the production fires, and the actions are
performed.

2.3.1 The structure of a production

In the simplest form of a production, conditions and actions refer directly to the presence
(or absence) of objects in working memory. For example, a production might say:

CONDITIONS: block A is clear

block B is clear

ACTIONS: suggest an operator to move block A ontop of block B

This is not the literal syntax of productions, but a simplification. The actual syntax is
presented in Chapter 3.

The conditions of a production may also specify the absence of patterns in working memory.
For example, the conditions could also specify that “block A is not red” or “there are no red
blocks on the table”. But since these are not needed for our example production, there are
no examples of negated conditions for now.

2.3. PRODUCTION MEMORY: LONG-TERM KNOWLEDGE 17

The order of the conditions of a production do not matter to Soar except that the first
condition must directly test the state. Internally, Soar will reorder the conditions so that the
matching process can be more efficient. This is a mechanical detail that need not concern
most users. However, you may print your productions to the screen or save them in a file; if
they are not in the order that you expected them to be, it is likely that the conditions have
been reordered by Soar.

2.3.1.1 Variables in productions and multiple instantiations

In the example production above, the names of the blocks are “hardcoded”, that is, they are
named specifically. In Soar productions, variables are used so that a production can apply
to a wider range of situations.

The variables are bound to specific symbols in working memory elements by Soar’s matching
process. A production along with a specific and consistent set of variable bindings is called an
instantiation. A production instantiation is consistent only if every occurrence of a variable
is bound to the same value. Since the same production may match multiple times, each
with different variable bindings, several instantiations of the same production may match
at the same time and, therefore, fire at the same time. If blocks A and B are clear, the
first production (without variables) will suggest one operator. However, if a production was
created that used variables to test the names, this second production will be instantiated
twice and therefore suggest two operators: one operator to move block A ontop of block B

and a second operator to move block B ontop of block A.

Because the identifiers of objects are determined at runtime, literal identifiers cannot appear
in productions. Since identifiers occur in every working memory element, variables must be
used to test for identifiers, and using the same variables across multiple occurrences is what
links conditions together.

Just as the elements of working memory must be linked to a state in working memory, so
must the objects referred to in a production’s conditions. That is, one condition must test
a state object and all other conditions must test that same state or objects that are linked
to that state.

2.3.2 Architectural roles of productions

Soar productions can fulfill four different roles: the three knowledge-retrieval problem-solving
functions, and the state elaboration function, all described on page 6:

1. Operator proposal
2. Operator comparison
3. (Operator selection is not an act of knowledge retrieval)
4. Operator application
5. State elaboration

18 CHAPTER 2. THE SOAR ARCHITECTURE

A single production should not fulfill more than one of these roles (except for proposing an
operator and creating an absolute preference for it). Although productions are not declared
to be of one type or the other, Soar examines the structure of each production and classi-
fies the rules automatically based on whether they propose and compare operators, apply
operators, or elaborate the state.

2.3.3 Production Actions and Persistence

Generally, actions of a production either create preferences for operator selection, or cre-
ate/remove working memory elements. For operator proposal and comparison, a production
creates preferences for operator selection. These preferences should persist only as long as
the production instantiation that created them continues to match. When the production
instantiation no longer matches, the situation has changed, making the preference no longer
relevant. Soar automatically removes the preferences in such cases. These preferences are
said to have I-support (for “instantiation support”). Similarly, state elaborations are simple
inferences that are valid only so long as the production matches. Working memory elements
created as state elaborations also have I-support and remain in working memory only as
long as the production instantiation that created them continues to match working memory.
For example, the set of relevant operators changes as the state changes, thus the proposal
of operators is done with I-supported preferences. This way, the operator proposals will be
retracted when they no longer apply to the current situation.

However, the actions of productions that apply an operator, either by adding or removing
elements from working memory, need to persist even after the operator is no longer selected
and operator application production instantiation no longer matches. For example, in placing
a block on another block, a condition is that the second block be clear. However, the action
of placing the first block removes the fact that the second block is clear, so the condition
will no longer be satisfied.

Thus, operator application productions do not retract their actions, even if they no longer
match working memory. This is called O-support (for “operator support”). Working memory
elements that participate in the application of operators are maintained throughout the
existence of the state in which the operator is applied, unless explicitly removed (or if they
become unlinked). Working memory elements are removed by a reject action of a operator-
application rule.

Whether a working memory element receives O-support or I-support is determined by the
structure of the production instantiation that creates the working memory element. O-
support is given only to working memory elements created by operator-application produc-
tions.

An operator-application production tests the current operator of a state and modifies the
state. Thus, a working memory element receives O-support if it is for an augmentation of
the current state or substructure of the state, and the conditions of the instantiation that
created it test augmentations of the current operator.

When productions are matched, all productions that have their conditions met fire creating

2.4. PREFERENCE MEMORY: SELECTION KNOWLEDGE 19

or removing working memory elements. Also, working memory elements and preferences
that lose I-support are removed from working memory. Thus, several new working memory
elements and preferences may be created, and several existing working memory elements and
preferences may be removed at the same time. (Of course, all this doesn’t happen literally
at the same time, but the order of firings and retractions is unimportant, and happens in
parallel from a functional perspective.)

2.4 Preference memory: Selection Knowledge

The selection of the current operator is determined by the preferences in preference memory.
Preferences are suggestions or imperatives about the current operator, or information about
how suggested operators compare to other operators. Preferences refer to operators by using
the identifier of a working memory element that stands for the operator. After preferences
have been created for a state, the decision procedures evaluates them to select the current
operator for that state.

For an operator to be selected, there will be at least one preference for it, specifically, a
preference to say that the value is a candidate for the operator attribute of a state (this is
done with either an “acceptable” or “require” preference). There may also be others, for
example to say that the value is “best”.

The different preferences available and the semantics of preferences are explained in Sec-
tion 2.4.1. Preferences remain in preference memory until removed for one of the reasons
previously discussed in Section 2.3.3.

2.4.1 Preference semantics

This section describes the semantics of each type of preference. More details on the preference
resolution process are provided in Appendix D.

Only a single value can be selected as the current operator, that is, all values are mutually
exclusive. In addition, there is no implicit transitivity in the semantics of preferences. If A
is indifferent to B, and B is indifferent to C, A and C will not be indifferent to one another
unless there is a preference that A is indifferent to C (or C and A are both indifferent to all
competing values).

Acceptable (+) An acceptable preference states that a value is a candidate for selection.
All values, except those with require preferences, must have an acceptable preference
in order to be selected. If there is only one value with an acceptable preference (and
none with a require preference), that value will be selected as long as it does not also
have a reject or a prohibit preference.

Reject (−) A reject preference states that the value is not a candidate for selection.

Better (>), Worse (<) A better or worse preference states, for the two values involved,
that one value should not be selected if the other value is a candidate. Better and

20 CHAPTER 2. THE SOAR ARCHITECTURE

worse allow for the creation of a partial ordering between candidate values. Better

and worse are simple inverses of each other, so that A better than B is equivalent to B

worse than A.

Best (>) A best preference states that the value may be better than any competing value
(unless there are other competing values that are also “best”). If a value is best (and
not rejected, prohibited, or worse than another), it will be selected over any other
value that is not also best (or required). If two such values are best, then any re-
maining preferences for those candidates (worst, indifferent) will be examined to
determine the selection. Note that if a value (that is not rejected or prohibited) is
better than a best value, the better value will be selected. (This result is counter-
intuitive, but allows explicit knowledge about the relative worth of two values to dom-
inate knowledge of only a single value. A require preference should be used when a
value must be selected for the goal to be achieved.)

Worst (<) A worst preference states that the value should be selected only if there are no
alternatives. It allows for a simple type of default specification. The semantics of the
worst preference are similar to those for the best preference.

Indifferent (=) An indifferent preference states that there is positive knowledge that it
does not matter which value is selected. This may be a binary preference, to say that
two values are mutually indifferent, or a unary preference, to say that a single value is
as good or as bad a choice as other expected alternatives.

When indifferent preferences are used to signal that it does not matter which oper-
ator is selected, by default, Soar chooses randomly from among the alternatives. (The
indifferent-selection function can be used to change this behavior as described on
page 124 in Chapter 5.)

Numeric-Indifferent (= number) A numeric-indifferent preference is used to bias
the random selection from mutually indifferent values. This preference includes a unary
indifferent preference, so an operator with a numeric-indifferent preference will not
force a tie impasse. Additionally, the preference weights the operator’s probability of
being selected according to the number given. For instance, given the preferences

(<s> ^operator <o1> = 40)

(<s> ^operator <o2> = 10)

the operator bound to <o1> would be more likely to be selected, whereas

(<s> ^operator <o1> =)

(<s> ^operator <o2> =)

would give equal probability to the two choices. There are two schemes for combin-
ing multiple numeric-indifferent preferences and performing the probabilistic selection;
details are given in the description of the numeric-indifferent-mode command on
page 132.

Require (!) A require preference states that the value must be selected if the goal is to
be achieved.

2.5. SOAR’S EXECUTION CYCLE: WITHOUT SUBSTATES 21

Prohibit (∼) A prohibit preference states that the value cannot be selected if the goal is
to be achieved. If a value has a prohibit preference, it will not be selected for a value
of an augmentation, independent of the other preferences.

If there is an acceptable preference for a value of an operator, and there are no other
competing values, that operator will be selected. If there are multiple acceptable preferences
for the same state but with different values, the preferences must be evaluated to determine
which candidate is selected.

If the preferences can be evaluated without conflict, the appropriate operator augmentation
of the state will be added to working memory. This can happen when they all suggest the
same operator or when one operator is preferable to the others that have been suggested.
When the preferences conflict, Soar reaches an impasse, as described in Section 2.6.

Preferences can be confusing; for example, there can be two suggested values that are both
“best” (which again will lead to an impasse unless additional preferences resolve this conflict);
or there may be one preference to say that value A is better than value B and a second
preference to say that value B is better than value A.

2.5 Soar’s Execution Cycle: Without Substates

The execution of a Soar program proceeds through a number of cycles. Each cycle has five
phases:

1. Input: New sensory data comes into working memory.

2. Proposal: Productions fire (and retract) to interpret new data (state elaboration),
propose operators for the current situation (operator proposal), and compare pro-
posed operators (operator comparison). All of the actions of these productions are
I-supported. All matched productions fire in parallel (and all retractions occur in par-
allel), and matching and firing continues until there are no more additional complete
matches or retractions of productions (quiescence).

3. Decision: A new operator is selected, or an impasse is detected and a new state is
created.

4. Application: Productions fire to apply the operator (operator application). The actions
of these productions will be O-supported. Because of changes from operator application
productions, other productions with I-supported actions may also match or retract.
Just as during proposal, productions fire and retract in parallel until quiescence.

5. Output: Output commands are sent to the external environment.

The cycles continue until the halt action is issued from the Soar program (as the action of
a production) or until Soar is interrupted by the user.

22 CHAPTER 2. THE SOAR ARCHITECTURE

D

DD

Elaboration Phase Decision Phase

Decision 1

Quiescence

Decision 2 Decision 3

Elaboration Cycle
Elaboration Phase

Preference
 Phase

Working Memory
Phase

1. all non−operator
 preferences are considered

2. the preferences are
 evaluated

3. elements are added and
 deleted from working memory

newly instantiated
productions fire
 AND
productions that
are no longer
instantiated are
retracted

Quiescence

Decision Phase

1. all operator preferences
 are considered

2. the preferences are
 evaluated

3. a new operator is selected
 OR
 a new state is created

no more
productions
are eligible
to fire or
retract

Decision Cycle

Decision Phase

d d d

E E E

p p p p

Figure 2.8: A detailed illustration of Soar’s decision cycle: out of date

During the processing of these phases, it is possible that the preferences that resulted in
the selection of the current operator could change. Whenever operator preferences change,
the preferences are re-evaluated and if a different operator selection would be made, then
the current operator augmentation of the state is immediately removed. However, a new
operator is not selected until the next decision phase, when all knowledge has had a chance
to be retrieved.

2.6. IMPASSES AND SUBSTATES 23

Soar

while (HALT not true) Cycle;

Cycle

InputPhase;

ProposalPhase;

DecisionPhase;

ApplicationPhase;

OutputPhase;

ProposalPhase

while (some I-supported productions are waiting to fire or retract)

FireNewlyMatchedProductions;

RetractNewlyUnmatchedProductions;

DecisionPhase

for (each state in the stack,

starting with the top-level state)

until (a new decision is reached)

EvaluateOperatorPreferences; /* for the state being considered */

if (one operator preferred after preference evaluation)

SelectNewOperator;

else /* could be no operator available or */

CreateNewSubstate; /* unable to decide between more than one */

ApplicationPhase

while (some productions are waiting to fire or retract)

FireNewlyMatchedProductions;

RetractNewlyUnmatchedProductions;

Figure 2.9: A simplified version of the Soar algorithm.

2.6 Impasses and Substates

When the decision procedure is applied to evaluate preferences and determine the operator
augmentation of the state, it is possible that the preferences are either incomplete or incon-
sistent. The preferences can be incomplete in that no acceptable operators are suggested,
or that there are insufficient preferences to distinguish among acceptable operators. The
preferences can be inconsistent if, for instance, operator A is preferred to operator B, and
operator B is preferred to operator A. Since preferences are generated independently, from
different production instantiations, there is no guarantee that they will be consistent.

24 CHAPTER 2. THE SOAR ARCHITECTURE

2.6.1 Impasse Types

There are four types of impasses that can arise from the preference scheme.

Tie impasse — A tie impasse arises if the preferences do not distinguish between two or
more operators with acceptable preferences. If two operators both have best or worst
preferences, they will tie unless additional preferences distinguish between them.

Conflict impasse — A conflict impasse arises if at least two values have conflicting better
or worse preferences (such as A is better than B and B is better than A) for an operator,
and neither one is rejected, prohibited, or required.

Constraint-failure impasse — A constraint-failure impasse arises if there is more than
one required value for an operator, or if a value has both a require and a prohibit

preference. These preferences represent constraints on the legal selections that can be
made for a decision and if they conflict, no progress can be made from the current
situation and the impasse cannot be resolved by additional preferences.

No-change impasse — A no-change impasse arises if a new operator is not selected during
the decision procedure. There are two types of no-change impasses: state no-change
and operator no-change:

State no-change impasse — A state no-change impasse occurs when there are no
acceptable (or require) preferences to suggest operators for the current state
(or all the acceptable values have also been rejected). The decision procedure
cannot select a new operator.

Operator no-change impasse — An operator no-change impasse occurs when ei-
ther a new operator is selected for the current state but no additional productions
match during the application phase, or a new operator is not selected during the
next decision phase.

There can be only one type of impasse at a given level of subgoaling at a time. Given the
semantics of the preferences, it is possible to have a tie or conflict impasse and a constraint-
failure impasse at the same time. In these cases, Soar detects only the constraint-failure
impasse.

The impasse is detected during the selection of the operator, but happens because one of the
other four problem-solving functions was incomplete.

2.6.2 Creating New States

Soar handles these inconsistencies by creating a new state in which the goal of the problem
solving is to resolve the impasse. Thus, in the substate, operators will be selected and applied
in an attempt either to discover which of the tied operators should be selected, or to apply
the selected operator piece by piece. The substate is often called a subgoal because it exists
to resolve the impasse, but is sometimes called a substate because the representation of the
subgoal in Soar is as a state.

The initial state in the subgoal contains a complete description of the cause of the impasse,
such as the operators that could not be decided among (or that there were no operators

2.6. IMPASSES AND SUBSTATES 25

proposed) and the state that the impasse arose in. From the perspective of the new state,
the latter is called the superstate. Thus, the superstate is part of the substructure of each
state, represented by the Soar architecture using the superstate attribute. (The initial
state, created in the 0th decision cycle, contains a superstate attribute with the value of
nil — the top-level state has no superstate.)

The knowledge to resolve the impasse may be retrieved by any type of problem solving, from
searching to discover the implications of different decisions, to asking an outside agent for
advice. There is no a priori restriction on the processing, except that it involves applying
operators to states.

In the substate, operators can be selected and applied as Soar attempts to solve the sub-
goal. (The operators proposed for solving the subgoal may be similar to the operators in
the superstate, or they may be entirely different.) While problem solving in the subgoal,
additional impasses may be encountered, leading to new subgoals. Thus, it is possible for
Soar to have a stack of subgoals, represented as states: Each state has a single superstate
(except the initial state) and each state may have at most one substate. Newly created
subgoals are considered to be added to the bottom of the stack; the first state is therefore
called the top-level state.3 See Figure 2.10 for a simplified illustrations of a subgoal stack.

Soar continually attempts to retrieve knowledge relevant to all goals in the subgoal stack,
although problem-solving activity will tend to focus on the most recently created state.
However, problem solving is active at all levels, and productions that match at any level will
fire.

2.6.3 Results

In order to resolve impasses, subgoals must generate results that allow the problem solving
at higher levels to proceed. The results of a subgoal are the working memory elements and
preferences that were created in the substate, and that are also linked directly or indirectly
to a superstate (any superstate in the stack). A preference or working memory element is
said to be created in a state if the production that created it tested that state and this is the
most recent state that the production tested. Thus, if a production tests multiple states, the
preferences and working memory elements in its actions are considered to be created in the
most recent of those states (and is not considered to have been created in the other states).
The architecture automatically detects if a preference or working memory elmenet created
in a substate is also linked to a superstate.

These working memory elements and preferences will not be removed when the impasse is
resolved because they are still linked to a superstate, and therefore, they are called the results
of the subgoal. A result has either I-support or O-support; the determination of support is
described below.

A working memory element or preference will be a result if its identifier is already linked to
a superstate. A working memory element or preference can also become a result indirectly

3The original state is the “top” of the stack because as Soar runs, this state (created first), will be at the
top of the computer screen, and substates will appear on the screen below the top-level state.

26 CHAPTER 2. THE SOAR ARCHITECTURE

superstate

attribute

choices

impasse

nil

thing

B1

B2

B3

T1

S1

O2

operator

operator

superstate

S2

operator

superstate

no−change

operator

none

S3

O9

attribute

choices

impasse tie

operator

multiple

O4 O5 O6

O1

item

O7 O8 O9

Top−level
state

Subgoal
level 1

Subgoal
level 2

operator

operator

operator

= acceptable preferences
 for operators

= state and operator
 objects

= other objects

= operator decisions that
 have not yet been made

O2

nil

This subgoal was created
because Soar didn’t know
how to apply operator O2
in state S1

No operator has been
selected yet for S2

This subgoal was
created because Soar
didn’t know which
of the three operators
(O4, O5, or O6)
to select in state S2

Figure 2.10: A simplified illustration of a subgoal stack.

2.6. IMPASSES AND SUBSTATES 27

if, after it is created and it is still in working memory or preference memory, its identifier
becomes linked to a superstate through the creation of another result. For example, if the
problem solving in a state constructs an operator for a superstate, it may wait until the
operator structure is complete before creating an acceptable preference for the operator in
the superstate. The acceptable preference is a result because it was created in the state
and is linked to the superstate (and, through the superstate, is linked to the top-level state).
The substructures of the operator then become results because the operator’s identifier is
now linked to the superstate.

Justifications: Determination of support for results

Some results receive I-support, while others receive O-support. The type of support received
by a result is determined by the function it plays in the superstate, and not the function it
played in the state in which it was created. For example, a result might be created through
operator application in the state that created it; however, it might only be a state elaboration
in the superstate. The first function would lead to O-support, but the second would lead to
I-support.

In order for the architecture to determine whether a result receives I-support or O-support,
Soar must first determine the function that the working memory element or preference plays
(that is, whether the result should be considered an operator application or not). To do this,
Soar creates a temporary production, called a justification. The justification summarizes the
processing in the substate that led to the result:

The conditions of a justification are those working memory elements that exist in the
superstate (and above) that were necessary for producing the result. This is determined
by collecting all of the working memory elements tested by the productions that fired
in the subgoal that led to the creation of the result, and then removing those conditions
that test working memory elements created in the subgoal.

The action of the justification is the result of the subgoal.

Soar determines I-support or O-support for the justification just as it would for any other
production, as described in Section 2.3.3. If the justification is an operator application, the
result will receive O-support. Otherwise, the result gets I-support from the justification. If
such a result loses I-support from the justification, it will be retracted if there is no other
support. Justification are not added to production memory, but are otherwise treated as an
instantiated productions that have already fired.

Justifications include any negated conditions that were in the original productions that
participated in producing the results, and that test for the absence of superstate working
memory elements. Negated conditions that test for the absence of working memory elements
that are local to the substate are not included, which can lead to overgeneralization in the
justification (see Section 4.6 on page 78 for details).

28 CHAPTER 2. THE SOAR ARCHITECTURE

2.6.4 Removal of Substates: Impasse Resolution

Problem solving in substates is an important part of what Soar does, and an operator impasse
does not necessarily indicate a problem in the Soar program. They are a way to decompose
a complex problem into smaller parts and they provide a context for a program to deliberate
about which operator to select. Operator impasses are necessary, for example, for Soar to
do any learning about problem solving (as will be discussed in Chapter 4). This section
describes how impasses may be resolved during the execution of a Soar program, how they
may be eliminated during execution without being resolved, and some tips on how to modify
a Soar program to prevent a specific impasse from occurring in the first place.

Resolving Impasses

An impasse is resolved when processing in a subgoal creates results that lead to the selection
of a new operator for the state where the impasse arose. When an operator impasse is
resolved, Soar has an opportunity to learn, and the substate (and all its substructure) is
removed from working memory.

Here are possible approaches for resolving specific types of impasses are listed below:

Tie impasse — A tie impasse can be resolved by productions that create preferences that
prefer one option (better, best, require), eliminate alternatives (worse, worst,
reject, prohibit), or make all of the objects indifferent (indifferent).

Conflict impasse — A conflict impasse can be resolved by productions that create prefer-
ences to require one option (require), or eliminate the alternatives (reject, prohibit).

Constraint-failure impasse — A constraint-failure impasse cannot be resolved by addi-
tional preferences, but may be prevented by changing productions so that they create
fewer require or prohibit preferences.

State no-change impasse — A state no-change impasse can be resolved by productions
that create acceptable or require preferences for operators.

Operator no-change impasse — An operator no-change impasse can be resolved by pro-
ductions that apply the operator, changing the state so the operator proposal no longer
matches or other operators are proposed and preferred.

Eliminating Impasses

An impasse is resolved when results are created that allow progress to be made in the
state where the impasse arose. In Soar, an impasse can be eliminated (but not resolved)
when a higher level impasse is resolved, eliminated, or regenerated. In these cases, the
impasse becomes irrelevant because higher-level processing can proceed. An impasse can
also become irrelevant if input from the outside world changes working memory which in
turn causes productions to fire that make it possible to select an operator. In all these cases,
the impasse is eliminated, but not “resolved”, and Soar does not learn in this situation.

2.6. IMPASSES AND SUBSTATES 29

Regenerating Impasses

An impasse is regenerated when the problem solving in the subgoal becomes inconsistent with
the current situation. During problem solving in a subgoal, Soar monitors which aspect of the
surrounding situation (the working memory elements that exist in superstates) the problem
solving in the subgoal has depended upon. If those aspects of the surronding situation
change, either because of changes in input or because of results, the problem solving in the
subgoal is inconsistent, and the state created in response to the original impasse is removed
and a new state is created. Problem solving will now continue from this new state. The
impasse is not “resolved”, and Soar does not learn in this situation.

The reason for regeneration is to guarantee that the working memory elements and prefer-
ences created in a substate are consistent with higher level states. As stated above, incon-
sistency can arise when a higher level state changes either as a result of changes in what is
sensed in the external environment, or from results produced in the subgoal. The problem
with inconsistency is that once inconsistency arises, the problem being solved in the subgoal
may no longer be the problem that actually needs to be solved. Luckily, not all changes to
a superstate lead to inconsistency.

In order to detect inconsistencies, Soar maintains a dependency set for every subgoal/substate.
The dependency set consists of all working memory elements that were tested in the condi-
tions of productions that created O-supported working memory elements that are directly
or indirectly linked to the substate. Thus, whenever such an O-supported working memory
element is created, Soar records which working memory elements that exist in a superstate
were tested, directly or indirectly in creating that working memory element. dependency-set
Whenever any of the working memory elements in the dependency set of a substate change,
the substate is regenerated.

Note that the creation of I-supported structures in a subgoal does not increase the depen-
dency set, nor do O-supported results. Thus, only subgoals that involve the creation of
internal O-support working memory elements risk regeneration, and then only when the
basis for the creation of those elements changes.

Substate Removal

Whenever a substate is removed, all working memory elements and preferences that were
created in the substate that are not results are removed from working memory. In Figure
2.10, state S3 will be removed from working memory when the impasse that created it is
resolved, that is, when sufficient preferences have been generated so that one of the operators
for state S2 can be selected. When state S3 is removed, operator O9 will also be removed,
as will the acceptable preferences for O7, O8, and O9, and the impasse, attribute, and
choices augmentations of state S3. These working memory elements are removed because
they are no longer linked to the subgoal stack. The acceptable preferences for operators O4,
O5, and O6 remain in working memory. They were linked to state S3, but since they are also
linked to state S2, they will stay in working memory until S2 is removed (or until they are
retracted or rejected).

30 CHAPTER 2. THE SOAR ARCHITECTURE

2.6.5 Soar’s Cycle: With Substates

When there are multiple substates, Soar’s cycle remains basically the same but has a few
minor changes.

The first change is that during the decision procedure, Soar will detect impasses and create
new substates. For example, following the proposal phase, the decision phase will detect if a
decision cannot be made given the current preferences. If an impasse arises, a new substate
is created and added to working memory.

The second change when there are multiple substates is that at each phase, Soar goes through
the substates, from oldest (highest) to newest (lowest), completing any necessary processing
at that level for that phase before doing any processing in the next substate. When firing
productions for the proposal or application phases, Soar processes the firing (and retrac-
tion) of rules, starting from those matching the oldest substate to the newest. Whenever a
production fires or retracts, changes are made to working memory and preference memory,
possibly changing which productions will match at the lower levels (productions firing within
a given level are fired in parallel – simulated). Productions firings at higher levels can resolve
impasses and thus eliminate lower states before the productions at the lower level ever fire.
Thus, whenever a level in the state stack is reached, all production activity is guaranteed to
be consistent with any processing that has occurred at higher levels.

2.7 Learning

When an operator impasse is resolved, it means that Soar has, through problem solving,
gained access to knowledge that was not readily available before. Therefore, when an impasse
is resolved, Soar has an opportunity to learn, by summarizing and generalizing the processing
in the substate.

Soar’s learning mechanism is called chunking ; it attempts to create a new production, called
a chunk. The conditions of the chunk are the elements of the state that (through some
chain of production firings) allowed the impasse to be resolved; the action of the production
is the working memory element or preference that resolved the impasse (the result of the
impasse). The conditions and action are variablized so that this new production may match
in a similar situation in the future and prevent an impasse from arising.

Chunks are very similar to justifications in that they are both formed via the backtrac-
ing process and both create a result in their actions. However, there are some important
distinctions:

1. Chunks are productions and are added to production memory. Justifications do not
appear in production memory.

2. Justifications disappear as soon as the working memory element or preference they
provide support for is removed.

3. Chunks contain variables so that they may match working memory in other situations;
justifications are similar to an instantiated chunk.

2.8. INPUT AND OUTPUT 31

2.8 Input and Output

Many Soar users will want their programs to interact with a real or simulated environment.
For example, Soar programs may control a robot, receiving sensory inputs and sending
command outputs. Soar programs may also interact with simulated environments, such as a
flight simulator. Input is viewed as Soar’s perception and output is viewed as Soar’s motor
abilities.

When Soar interacts with an external environment, it must make use of mechanisms that
allow it to receive input from that environment and to effect changes in that environment;
the mechanisms provided in Soar are called input functions and output functions.

Input functions add and delete elements from working memory in response to changes in
the external environment.

Output functions attempt to effect changes in the external environment.

Input is processed at the beginning of each execution cycle and output occurs at the end of
each execution cycle.

For instructions on how to use input and output functions with Soar, refer to the SML Quick
Start Guide.

32 CHAPTER 2. THE SOAR ARCHITECTURE

Chapter 3

The Syntax of Soar Programs

This chapter describes in detail the syntax of elements in working memory, preference mem-
ory, and production memory, and how impasses and I/O are represented in working memory
and in productions. Working memory elements and preferences are created as Soar runs,
while productions are created by the user or through chunking. The bulk of this chapter
explains the syntax for writing productions.

The first section of this chapter describes the structure of working memory elements in Soar;
the second section describes the structure of preferences; and the third section describes
the structure of productions. The fourth section describes the structure of impasses. An
overview of how input and output appear in working memory is presented in the fifth section;
the full discussion of Soar I/O can be found in the SML Quick Start Guide.

This chapter assumes that you understand the operating principles of Soar, as presented in
Chapter 2.

3.1 Working Memory

Working memory contains working memory elements (WME’s). As described in Section 2.2,
WME’s can be created by the actions of productions, the evaluation of preferences, the Soar
architecture, and via the input/output system.

A WME is a list consisting of three symbols: an identifier, an attribute, and a value, where
the entire WME is enclosed in parentheses and the attribute is preceded by an up-arrow (∧).
A template for a working memory element is:

(identifier ^attribute value)

The identifier is an internal symbol, generated by the Soar architecture as it runs. The
attribute and value can be either identifiers or constants; if they are identifiers, there are
other working memory elements that have that identifier in their first position. As the
previous sentences demonstrate, identifier is used to refer both to the first position of a
working memory element, as well as to the symbols that occupy that position.

33

34 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

3.1.1 Symbols

Soar distinguishes between two types of working memory symbols: identifiers and constants.

Identifiers: An identifier is a unique symbol, created at runtime when a new object is
added to working memory. The names of identifiers are created by Soar, and consist of a
single uppercase letter followed by a string of digits, such as G37 or O22.

(The Soar user interface will also allow users to specify identifiers using lowercase letters,
for example, when using the print command. But internally, they are actually uppercase
letters.)

Constants: There are three types of constants: integers, floating-point, and symbolic
constants:

• Integer constants (numbers). The range of values depends on the machine and imple-
mentation you’re using, but it is at least [-2 billion..2 billion].

• Floating-point constants (numbers). The range depends on the machine and imple-
mentation you’re using.

• Symbolic constants. These are symbols with arbitrary names. A constant can use
any combination of letters, digits, or $%&*+-/:<=>?_ Other characters (such as blank
spaces) can be included by surrounding the complete constant name with vertical
bars: |This is a constant|. (The vertical bars aren’t part of the name; they’re
just notation.) A vertical bar can be included by prefacing it with a backslash inside
surrounding vertical bars: |Odd-symbol\|name|

Identifiers should not be confused with constants, although they may “look the same”;
identifiers are generated (by the Soar architecture) at runtime and will not necessarily be
the same for repeated runs of the same program. Constants are specified in the Soar program
and will be the same for repeated runs.

Even when a constant “looks like” an identifier, it will not act like an identifier in terms of
matching. A constant is printed surrounded by vertical bars whenever there is a possibility of
confusing it with an identifier: |G37| is a constant while G37 is an identifier. To avoid possible
confusion, you should not use letter-number combinations as constants or for production
names.

3.1.2 Objects

Recall from Section 2.2 that all WME’s that share an identifier are collectively called an object
in working memory. The individual working memory elements that make up an object are
often called augmentations, because they augment the object. A template for an object in
working memory is:

(identifier ^attribute-1 value-1 ^attribute-2 value-2

^attribute-3 value-3... ^attribute-n value-n)

3.1. WORKING MEMORY 35

For example, if you run Soar with the example blocks-world program described in Appendix
A, after one elaboration cycle, you can look at the top-level state by using the print com-
mand:

soar> print s1

(S1 ^io I1 ^ontop O2 ^ontop O3 ^ontop O1 ^problem-space blocks

^superstate nil ^thing B3 ^thing T1 ^thing B1 ^thing B2

^type state)

The attributes of an object are printed in alphabetical order to make it easier to find a
specific attribute.

Working memory is a set, so that at any time, there are never duplicate versions of working
memory elements. However, it is possible for several working memory elements to share
the same identifier and attribute but have different values. Such attributes are called multi-
valued attributes or multi-attributes. For example, state S1, above, has two attributes that
are multi-valued: thing and ontop.

3.1.3 Timetags

When a working memory element is created, Soar assigns it a unique integer timetag. The
timetag is a part of the working memory element, and therefore, WME’s are actually quadru-
ples, rather than triples. However, the timetags are not represented in working memory and
cannot be matched by productions. The timetags are used to distinguish between multiple
occurrences of the same WME. As preferences change and elements are added and deleted
from working memory, it is possible for a WME to be created, removed, and created again.
The second creation of the WME — which bears the same identifier, attribute, and value as
the first WME — is different, and therefore is assigned a different timetag. This is important
because a production will fire only once for a given instantiation, and the instantiation is de-
termined by the timetags that match the production and not by the identifier-attribute-value
triples.

To look at the timetags of WMEs, the wmes command can be used:

soar> wmes s1

(3: S1 ^io I1)

(10: S1 ^ontop O2)

(9: S1 ^ontop O3)

(11: S1 ^ontop O1)

(4: S1 ^problem-space blocks)

(2: S1 ^superstate nil)

(6: S1 ^thing B3)

(5: S1 ^thing T1)

(8: S1 ^thing B1)

(7: S1 ^thing B2)

(1: S1 ^type state)

36 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

This shows all the individual augmentations of S1, each is preceded by an integer timetag.

3.1.4 Acceptable preferences in working memory

The acceptable preferences for the operator augmentations of states appear in working mem-
ory as identifier-attribute-value-preference quadruples. No other preferences appear in work-
ing memory. A template for an acceptable preference in working memory is:

(identifier ^operator value +)

For example, if you run Soar with the example blocks-world program described in Appendix
A, after the first operator has been selected, you can again look at the top-level state using
the wmes command:

soar> wmes s1

(3: S1 ^io I1)

(9: S1 ^ontop O3)

(10: S1 ^ontop O2)

(11: S1 ^ontop O1)

(48: S1 ^operator O4 +)

(49: S1 ^operator O5 +)

(50: S1 ^operator O6 +)

(51: S1 ^operator O7 +)

(54: S1 ^operator O7)

(52: S1 ^operator O8 +)

(53: S1 ^operator O9 +)

(4: S1 ^problem-space blocks)

(2: S1 ^superstate nil)

(5: S1 ^thing T1)

(8: S1 ^thing B1)

(6: S1 ^thing B3)

(7: S1 ^thing B2)

(1: S1 ^type state)

The state S1 has six augmentations of acceptable preferences for different operators (O4
through O9). These have plus signs following the value to denote that they are acceptable
preferences. The state has exactly one operator, O7. This state corresponds to the illustration
of working memory in Figure 2.4.

3.1.5 Working Memory as a Graph

Not only is working memory a set, it is also a graph structure where the identifiers are nodes,
attributes are links, and constants are terminal nodes. Working memory is not an arbitrary
graph, but a graph rooted in the states. Therefore, all WMEs are linked either directly or

3.1. WORKING MEMORY 37

O43
X44

apple red small

grams

mass

200

box largeorange

ball red big

isa color size

contains

color
size

isa
inside

sizecolorisa

unit

property

inside

O53

O87

= attributesname

state = values

= identifiersS1

Figure 3.1: A semantic net illustration of four objects in working memory.

indirectly to a state. The impact of this constraint is that all WMEs created by actions are
linked to WMEs tested in the conditions. The link is one-way, from the identifier to the
value. Less commonly, the attribute of a WME may be an identifier.

Figure 3.1 illustrates four objects in working memory; the object with identifier X44 has
been linked to the object with identifier O43, using the attribute as the link, rather than the
value. The objects in working memory illustrated by this figure are:

(O43 ^isa apple ^color red ^inside O53 ^size small ^X44 200)

(O87 ^isa ball ^color red ^inside O53 ^size big)

(O53 ^isa box ^size large ^color orange ^contains O43 O87)

(X44 ^unit grams ^property mass)

In this example, object O43 and object O87 are both linked to object O53 through (O53
∧contains O43) and (O53 ∧contains O87), respectively (the contains attribute is a multi-
valued attribute). Likewise, object O53 is linked to object O43 through (O43 ∧inside O53)

and linked to object O87 through (O87 ∧inside O53). Object X44 is linked to object O43

through (O43 ∧X44 200).

Links are transitive so that X44 is linked to O53 (because O43 is linked to O53 and X44 is
linked to O43). However, since links are not symmetric, O53 is not linked to X44.

38 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

3.2 Preference Memory

Preferences are created by production firings and express the relative or absolute merits for
selecting an operator for a state. When preferences express an absolute rating, they are
identifier-attribute-value-preference quadruples; when preferences express relative ratings,
they are identifier-attribute-value-preference-value quintuples

For example,

(S1 ^operator O3 +)

is a preference that asserts that operator O3 is an acceptable operator for state S1, while

(S1 ^operator O3 > O4)

is a preference that asserts that operator O3 is a better choice for the operator of state S1
than operator O4.

The semantics of preferences and how they are processed were described in Section 2.4,
which also described each of the eleven different types of preferences. Multiple production
instantiations may create identical preferences. Unlike working memory, preference memory
is not a set: Duplicate preferences are allowed in preference memory.

3.3 Production Memory

Production memory contains productions, which can be loaded in by a user (typed in while
Soar is running or sourced from a file) or generated by chunking while Soar is running.
Productions (both user-defined productions and chunks) may be examined using the print

command, described in Section 5.2.7 on page 102.

Each production has three required components: a name, a set of conditions (also called the
left-hand side, or LHS), and a set of actions (also called the right-hand side, or RHS). There
are also two optional components: a documentation string and a type.

Syntactically, each production consists of the symbol sp, followed by: an opening curly brace,
{; the production’s name; the documentation string (optional); the production type (op-
tional); comments (optional); the production’s conditions; the symbol --> (literally: dash-
dash-greaterthan); the production’s actions; and a closing curly brace, }. Each element of a
production is separated by white space. Indentation and linefeeds are used by convention,
but are not necessary.

sp {production-name

Documentation string

:type

CONDITIONS

-->

ACTIONS

}

3.3. PRODUCTION MEMORY 39

sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^thing <thing1> {<> <thing1> <thing2>}

^ontop <ontop>)

(<thing1> ^type block ^clear yes)

(<thing2> ^clear yes)

(<ontop> ^top-block <thing1>

^bottom-block <> <thing2>)

-->

(<s> ^operator <o> +)

(<o> ^name move-block

^moving-block <thing1>

^destination <thing2>)}

Figure 3.2: An example production from the example blocks-world task.

An example production, named “blocks-world*propose*move-block”, is shown in Figure
3.2. This production proposes operators named move-block that move blocks from one
location to another. The details of this production will be described in the following sections.

Conventions for indenting productions

Productions in this manual are formatted using conventions designed to improve their read-
ability. These conventions are not part of the required syntax. First, the name of the pro-
duction immediately follows the first curly bracket after the sp. All conditions are aligned
with the first letter after the first curly brace, and attributes of an object are all aligned
The arrow is indented to align with the conditions and actions and the closing curly brace
follows the last action.

3.3.1 Production Names

The name of the production is an almost arbitrary constant. (See Section 3.1.1 for a de-
scription of constants.) By convention, the name describes the role of the production, but
functionally, the name is just a label primarily for the use of the programmer.

A production name should never be a single letter followed by numbers, which is the format
of identifiers.

The convention for naming productions is to separate important elements with asterisks; the
important elements that tend to appear in the name are:

1. The name of the task or goal (e.g., blocks-world).
2. The name of the architectural function (e.g., propose).
3. The name of the operator (or other object) at issue. (e.g., move-block)
4. Any other relevant details.

40 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

This name convention enables one to have a good idea of the function of a production just
by examining its name. This can help, for example, when you are watching Soar run and
looking at the specific productions that are firing and retracting. Since Soar uses white space
to delimit components of a production, if whitespace inadvertently occurs in the production
name, Soar will complain that an open parenthesis was expected to start the first condition.

3.3.2 Documentation string (optional)

A production may contain an optional documentation string. The syntax for a documenta-
tion string is that it is enclosed in double quotes and appears after the name of the production
and before the first condition (and may carry over to multiple lines). The documentation
string allows the inclusion of internal documentation about the production; it will be printed
out when the production is printed using the print command.

3.3.3 Production type (optional)

A production may also include an optional production type, which may specify that the
production should be considered a default production (:default) or a chunk (:chunk),
or may specify that a production should be given O- support (:o-support) or I-support
(:i-support). Users are discouraged from using these types. These types are described in
Section 5.1.7, which begins on Page 90.

There is one additional flag (:interrupt) which can be placed at this location in a produc-
tion. However this flag does not specify a production type, but is a signal that the production
should be marked for special debugging capabilities. For more information, see Section 5.1.7
on Page 90.

3.3.4 Comments (optional)

Productions may contain comments, which are not stored in Soar when the production is
loaded, and are therefore not printed out by the print command. A comment is begun with
a pound sign character # and ends at the end of the line. Thus, everything following the #

is not considered part of the production, and comments that run across multiple lines must
each begin with a #.

For example:

sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^thing <thing1> {<> <thing1> <thing2>}

^ontop <ontop>)

(<thing1> ^type block ^clear yes)

(<thing2> ^clear yes)

(<ontop> ^top-block <thing1>

3.3. PRODUCTION MEMORY 41

^bottom-block <> <thing2>)

-->

(<s> ^operator <o> +)

(<o> ^name move-block # you can also use in-line comments

^moving-block <thing1>

^destination <thing2>)}

When commenting out conditions or actions, be sure that all parentheses remain balanced
outside the comment.

External comments

Comments may also appear in a file with Soar productions, outside the curly braces of the
sp command. Comments must either start a new line with a # or start with ;#. In both
cases, the comment runs to the end of the line.

imagine that this is part of a "Soar program" that contains

Soar productions as well as some other code.

source blocks.soar ;# this is also a comment

3.3.5 The condition side of productions (or LHS)

The condition side of a production, also called the left-hand side (or LHS) of the production,
is a pattern for matching one or more WMEs. When all of the conditions of a production
match elements in working memory, the production is said to be instantiated, and is ready
to perform its action.

The following subsections describe the condition side of a production, including predicates,
disjunctions, conjunctions, negations, acceptable preferences for operators, and a few ad-
vanced topics.

3.3.5.1 Conditions

The condition side of a production consists of a set of conditions. Each condition tests for
the existence or absence (explained later in Section 3.3.5.6) of working memory elements.
Each condition consists of a open parenthesis, followed by a test for the identifier, and the
tests for augmentations of that identifier, in terms of attributes and values. The condition
is terminated with a close parenthesis. Thus, a single condition might test properties of a
single working memory element, or properties of multiple working memory elements that
constitute an object.

(identifier-test ^attribute1-test value1-test

^attribute2-test value2-test

^attribute3-test value3-test

42 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

...)

The first condition in a production must match against a state in working memory. Thus,
the first condition must begin with the additional symbol “state”. All other conditions
and actions must be linked directly or indirectly to this condition. This linkage may be
direct to the state, or it may be indirect, through objects specified in the conditions. If
the identifiers of the actions are not linked to the state, a warning is printed when the
production is parsed, and the production is not stored in production memory. In the actions
of the example production shown in Figure 3.2, the operator preference is directly linked to
the state and the remaining actions are linked indirectly via the operator preference.

Although all of the attribute tests in the template above are followed by value tests, it is
possible to test for only the existence of an attribute and not test any specific value by just
including the attribute and no value. Another exception to the above template is operator
preferences, which have the following structure where a plus sign follows the value test.

(state-identifier-test ^operator value1-test +

...)

In the remainder of this section, we describe the different tests that can be used for identifiers,
attributes, and values. The simplest of these is a constant, where the constant specified in
the attribute or value must match the same constant in a working memory element.

3.3.5.2 Variables in productions

Variables match against constants in working memory elements in the identifier, attribute,
or value positions. Variables can be further constrained by additional tests (described in
later sections) or by multiple occurrences in conditions. If a variable occurs more than once
in the condition of a production, the production will match only if the variables match the
same identifier or constant. However, there is no restriction that prevents different variables
from binding to the same identifier or constant.

Because identifiers are generated by Soar at run time, it impossible to include tests for
specific identifiers in conditions. Therefore, variables are used in conditions whenever an
identifier is to be matched.

Variables also provide a mechanism for passing identifiers and constants which match in
conditions to the action side of a rule.

Syntactically, a variable is a symbol that begins with a left angle-bracket (i.e., <), ends with
a right angle-bracket (i.e., >), and contains at least one alphanumeric symbol in between.

In the example production in Figure 3.2, there are seven variables: <s>, <clear1>, <clear2>,
<ontop>, <block1>, <block2>, and <o>.

The following table gives examples of legal and illegal variable names.

3.3. PRODUCTION MEMORY 43

Legal variables Illegal variables
<s> <>

<1> <1

<variable1> variable>

<abc1> <a b>

3.3.5.3 Predicates for values

A test for an identifier, attribute, or value in a condition (whether constant or variable) can
be modified by a preceding predicate. There are six predicates that can be used: <>, <=>,

<, <=, >=, >.

Predicate Semantics of Predicate
<> Not equal. Matches anything except the value immediately

following it.
<=> Same type. Matches any symbol that is the same type (identifier,

integer, floating-point, non-numeric constant) as the value
immediately following it.

< Numerically less than the value immediately following it.
<= Numerically less than or equal to the value immediately

following it.
>= Numerically greater than or equal to the value immediately

following it.
> Numerically greater than the value immediately following it.

The following table shows examples of legal and illegal predicates:

Legal predicates Illegal predicates
> <valuex> > > <valuey>

< 1 1 >

<=> <y> = 10

Example Production

sp {propose-operator*to-show-example-predicate

(state <s> ^car <c>)

(<c> ^style convertible ^color <> rust)

-->

(<s> ^operator <o> +)

(<o> ^name drive-car ^car <c>) }

In this production, there must be a “color” attribute for the working memory object that
matches <c>, and the value of that attribute must not be “rust”.

44 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

3.3.5.4 Disjunctions of values

A test for an identifier, attribute, or value may also be for a disjunction of constants. With a
disjunction, there will be a match if any one of the constants is found in a working memory
element (and the other parts of the working memory element matches). Variables and
predicates may not be used within disjunctive tests.

Syntactically, a disjunctive test is specified with double angle brackets (i.e., << and >>).
There must be spaces separating the brackets from the constants.

The following table provides examples of legal and illegal disjunctions:

Legal disjunctions Illegal disjunctions
<< A B C 45 I17 >> << <A> A >>

<< 5 10 >> << < 5 > 10 >>

<< good-morning good-evening >> <<A B C >>

Example Production

For example, the third condition of the following production contains a disjunction that
restricts the color of the table to red or blue:

sp {blocks*example-production-conditions

(state ^operator <o> + ^table <t>)

(<o> ^name move-block)

(<t> ^type table ^color << red blue >>)

-->

... }

Note

Disjunctions of complete conditions are not allowed in Soar. Multiple (similar) productions
fulfill this role.

3.3.5.5 Conjunctions of values

A test for an identifier, attribute, or value in a condition may include a conjunction of tests,
all of which must hold for there to be a match.

Syntactically, conjuncts are contained within curly braces (i.e., { and }). The following table
shows some examples of legal and illegal conjunctive tests:

3.3. PRODUCTION MEMORY 45

Legal conjunctions Illegal conjunctions
{ <= <a> >= } { <x> < <a> + }
{ <x> > <y> } { > > }
{ <> <x> <y> }
{ << A B C >> <x> }
{ <=> <x> > <y> << 1 2 3 4 >> <z> }

Because those examples are a bit difficult to interpret, let’s go over the legal examples one
by one to understand what each is doing.

In the first example, the value must be less than or equal to the value bound to variable <a>

and greater than or equal to the value bound to variable .

In the second example, the value is bound to the variable <x>, which must also be greater
than the value bound to variable <y>.

In the third example, the value must not be equal to the value bound to variable <x> and
should be bound to variable <y>. Note the importance of order when using conjunctions with
predicates: in the second example, the predicate modifies <y>, but in the third example, the
predicate modifies <x>.

In the fourth example, the value must be one of A, B, or C, and the second conjunctive test
binds the value to variable <x>.

In the fifth example, there are four conjunctive tests. First, the value must be the same type
as the value bound to variable <x>. Second, the value must be greater than the value bound
to variable <y>. Third, the value must be equal to 1, 2, 3, or 4. Finally, the value should be
bound to variable <z>.

In Figure 3.2, a conjunctive test is used for the thing attribute in the first condition.

3.3.5.6 Negated conditions

In addition to the positive tests for elements in working memory, conditions can also test for
the absence of patterns. A negated condition will be matched only if there does not exist a
working memory element consistent with its tests and variable bindings. Thus, it is a test
for the absence of a working memory element.

Syntactically, a negated condition is specified by preceding a condition with a dash (i.e.,
“-”).

For example, the following condition tests the absence of a working memory element of the
object bound to <p1> ∧type father.

-(<p1> ^type father)

A negation can be used within an object with many attribute-value pairs by having it precede
a specific attribute:

46 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

(<p1> ^name john -^type father ^spouse <p2>)

In that example, the condition would match if there is a working memory element that
matches (<p1> ∧name john) and another that matches (<p1> ∧spouse <p2>), but is no
working memory element that matches (<p1> ∧type father) (when p1 is bound to the
same identifier).

On the other hand, the condition:

-(<p1> ^name john ^type father ^spouse <p2>)

would match only if there is no object in working memory that matches all three attribute-
value tests.

Example Production

sp {default*evaluate-object

(state <ss> ^operator <so>)

(<so> ^type evaluation

^superproblem-space <p>)

-(<p> ^default-state-copy no)

-->

(<so> ^default-state-copy yes) }

Notes

One use of negated conditions to avoid is testing for the absence of the working memory
element that a production creates with I-support; this would lead to an “infinite loop” in
your Soar program, as Soar would repeatedly fire and retract the production.

3.3.5.7 Negated conjunctions of conditions

Conditions can be grouped into conjunctive sets by surrounding the set of conditions with {
and }. The production compiler groups the test in these conditions together. This grouping
allows for negated tests of more than one working memory element at a time. In the example
below, the state is tested to ensure that it does not have an object on the table.

sp {blocks*negated-conjunction-example

(state <s> ^name top-state)

-{(<s> ^ontop <on>)

(<on> ^bottom-object <bo>)

(<bo> ^type table)}

-->

(<s> ^nothing-ontop-table true) }

3.3. PRODUCTION MEMORY 47

When using negated conjunctions of conditions, the production has nested curly braces. One
set of curly braces delimits the production, while the other set delimits the conditions to be
conjunctively negated.

If only the last condition, (<bo> ∧type table) were negated, the production would match
only if the state had an ontop relation, and the ontop relation had a bottom-object, but
the bottom object wasn’t a table. Using the negated conjunction, the production will also
match when the state has no ontop augmentation or when it has an ontop augmentation
that doesn’t have a bottom-object augmentation.

The semantics of negated conjunctions can be thought of in terms of mathematical logic,
where the negation of (A ∧B ∧ C):

¬(A ∧B ∧ C)

can be rewritten as:

(¬A) ∨ (¬B) ∨ (¬C)

That is, “not (A and B and C)” becomes “(not A) or (not B) or (not C)”.

3.3.5.8 Multi-valued attributes

An object in working memory may have multiple augmentations that specify the same at-
tribute with different values; these are called multi-valued attributes, or multi-attributes for
short. To shorten the specification of a condition, tests for multi-valued attributes can be
shortened so that the value tests are together.

For example, the condition:

(<p1> ^type father ^child sally ^child sue)

could also be written as:

(<p1> ^type father ^child sally sue)

Multi-valued attributes and variables

When variables are used with multi-valued attributes, remember that variable bindings are
not unique unless explicitly forced to be so. For example, to test that an object has two
values for attribute child, the variables in the following condition can match to the same
value.

(<p1> ^type father ^child <c1> <c2>)

To do tests for multi-valued attributes with variables correctly, conjunctive tests must be
used, as in:

(<p1> ^type father ^child <c1> {<> <c1> <c2>})

48 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

The conjunctive test {<> <c1> <c2>} ensures that <c2> will bind to a different value than
<c1> binds to.

Negated conditions and multi-valued attributes

A negation can also precede an attribute with multiple values. In this case it tests for the
absence of the conjunction of the values. For example

(<p1> ^name john -^child oprah uma)

is the same as

(<p1> ^name john)

-{(<p1> ^child oprah)

(<p1> ^child uma)}

and the match is possible if either (<p1> ∧child oprah) or (<p1> ∧child uma) cannot be
found in working memory with the binding for <p1> (but not if both are present).

3.3.5.9 Acceptable preferences for operators

The only preferences that can appear in working memory are acceptable preferences for oper-
ators, and therefore, the only preferences that may appear in the conditions of a production
are acceptable preferences for operators.

Acceptable preferences for operators can be matched in a condition by testing for a “+”
following the value. This allows a production to test the existence of a candidate operator
and its properties, and possibly create a preference for it, before it is selected.

In the example below, ∧operator <o> + matches the acceptable preference for the operator
augmentation of the state. This does not test that operator <o> has been selected as the
current operator.

sp {blocks*example-production-conditions

(state ^operator <o> + ^table <t>)

(<o> ^name move-block)

-->

... }

In the example below, the production tests the state for acceptable preferences for two
different operators (and also tests that these operators move different blocks):

sp {blocks*example-production-conditions

(state ^operator <o1> + <o2> + ^table <t>)

(<o1> ^name move-block ^moving-block <m1> ^destination <d1>)

(<o2> ^name move-block ^moving-block {<m2> <> <m1>}

^destination <d2>)

-->

3.3. PRODUCTION MEMORY 49

... }

3.3.5.10 Attribute tests

The previous examples applied all of the different test to the values of working memory
elements. All of the tests that can be used for values can also be used for attributes and
identifiers (except those including constants).

Variables in attributes

Variables may be used with attributes, as in:

sp {blocks*example-production-conditions

(state <s> ^operator <o> +

^thing <t> {<> <t> <t2>})

(operator <o> ^name group

^by-attribute <a>

^moving-block <t>

^destination <t2>)

(<t> ^type block ^<a> <x>)

(<t2> ^type block ^<a> <x>)

-->

(<s> ^operator <o> >) }

This production tests that there is acceptable operator that is trying to group blocks accord-
ing to some attribute, <a>, and that block <t> and <t2> both have this attribute (whatever
it is), and have the same value for the attribute.

Predicates in attributes

Predicates may be used with attributes, as in:

sp {blocks*example-production-conditions

(state ^operator <o> + ^table <t>)

(<t> ^<> type table)

-->

... }

which tests that the object with its identifier bound to <t> must have an attribute whose
value is table, but the name of this attribute is not type.

Disjunctions of attributes

Disjunctions may also be used with attributes, as in:

50 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

sp {blocks*example-production-conditions

(state ^operator <o> + ^table <t>)

(<t> ^<< type name>> table)

-->

... }

which tests that the object with its identifier bound to <t> must have either an attribute
type whose value is table or an attribute name whose value is table.

Conjunctive tests for attributes

Section 3.3.5.5 illustrated the use of conjunctions for the values in conditions. Conjunctive
tests may also be used with attributes, as in:

sp {blocks*example-production-conditions

(state ^operator <o> + ^table <t>)

(<t> ^{<ta> <> name} table)

-->

... }

which tests that the object with its identifier bound to <t> must have an attribute whose
value is table, and the name of this attribute is not name, and the name of this attribute
(whatever it is) is bound to the variable <ta>.

When attribute predicates or attribute disjunctions are used with multi-valued attributes, the
production is rewritten internally to use a conjunctive test for the attribute; the conjunctive
test includes a variable used to bind to the attribute name. Thus,

(<p1> ^type father ^ <> name sue sally)

is interpreted to mean:

(<p1> ^type father ^ {<> name <a*1>} sue ^ <a*1> sally)

3.3.5.11 Attribute-path notation

Often, variables appear in the conditions of productions only to link the value of one attribute
with the identifier of another attribute. Attribute-path notation provides a shorthand so that
these intermediate variables do not need to be included.

Syntactically, path notation lists a sequence of attributes separated by dots (.), after the ∧

in a condition.

For example, using attribute path notation, the production:

sp {blocks-world*monitor*move-block

(state <s> ^operator <o>)

(<o> ^name move-block

^moving-block <block1>

3.3. PRODUCTION MEMORY 51

^destination <block2>)

(<block1> ^name <block1-name>)

(<block2> ^name <block2-name>)

-->

(write (crlf) |Moving Block: | <block1-name>

| to: | <block2-name>) }

could be written as:

sp {blocks-world*monitor*move-block

(state <s> ^operator <o>)

(<o> ^name move-block

^moving-block.name <block1-name>

^destination.name <block2-name>)

-->

(write (crlf) |Moving Block: | <block1-name>

| to: | <block2-name>) }

Attribute-path notation yields shorter productions that are easier to write, less prone to
errors, and easier to understand.

When attribute-path notation is used, Soar internally expands the conditions into the multi-
ple Soar objects, creating its own variables as needed. Therefore, when you print a produc-
tion (using the print command), the production will not be represented using attribute-path
notation.

Negations and attribute path notation

A negation may be used with attribute path notation, in which case it amounts to a negated
conjunction. For example, the production:

sp {blocks*negated-conjunction-example

(state <s> ^name top-state)

-{(<s> ^ontop <on>)

(<on> ^bottom-object <bo>)

(<bo> ^type table)}

-->

(<s> ^nothing-ontop-table true) }

could be rewritten as:

sp {blocks*negated-conjunction-example

(state <s> ^name top-state -^ontop.bottom-object.type table)

-->

(<s> ^nothing-ontop-table true) }

52 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

Multi-valued attributes and attribute path notation

Attribute path notation may also be used with multi-valued attributes, such as:

sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^clear.block <block1> { <> <block1> <block2> }

^ontop <ontop>)

(<block1> ^type block)

(<ontop> ^top-block <block1>

^bottom-block <> <block2>)

-->

(<s> ^operator <o> +)

(<o> ^name move-block +

^moving-block <block1> +

^destination <block2> +) }

Multi-attributes and attribute-path notation

Note: It would not be advisable to write the production in Figure 3.2 using attribute-path
notation as follows:

sp {blocks-world*propose*move-block*dont-do-this

(state <s> ^problem-space blocks

^clear.block <block1>

^clear.block { <> <block1> <block2> }

^ontop.top-block <block1>

^ontop.bottom-block <> <block2>)

(<block1> ^type block)

-->

...

}

This is not advisable because it corresponds to a different set of conditions than those in
the original production (the top-block and bottom-block need not correspond to the same
ontop relation). To check this, we could print the original production at the Soar prompt:

soar> print blocks-world*propose*move-block*dont-do-this

sp {blocks-world*propose*move-block*dont-do-this

(state <s> ^problem-space blocks ^thing <thing2>

^thing { <> <thing2> <thing1> } ^ontop <o*1> ^ontop <o*2>)

(<thing2> ^clear yes)

(<thing1> ^clear yes ^type block)

(<o*1> ^top-block <thing1>)

(<o*2> ^bottom-block { <> <thing2> <b*1> })

-->

(<s> ^operator <o> +)

3.3. PRODUCTION MEMORY 53

(<o> ^name move-block

^moving-block <thing1>

^destination <thing2>) }

Soar has expanded the production into the longer form, and created two distinctive variables,
<o*1> and <o*2> to represent the ontop attribute. These two variables will not necessarily
bind to the same identifiers in working memory.

Negated multi-valued attributes and attribute-path notation

Negations of multi-valued attributes can be combined with attribute-path notation. How-
ever; it is very easy to make mistakes when using negated multi-valued attributes with
attribute-path notation. Although it is possible to do it correctly, we strongly discourage its
use.

For example,

sp {blocks*negated-conjunction-example

(state <s> ^name top-state -^ontop.bottom-object.name table A)

-->

(<s> ^nothing-ontop-A-or-table true) }

gets expanded to:

sp {blocks*negated-conjunction-example

(state <s> ^name top-state)

-{(<s> ^ontop <o*1>)

(<o*1> ^bottom-object <b*1>)

(<b*1> ^name A)

(<b*1> ^name table)}

-->

(<s> ^nothing-ontop-A-or-table true) }

This example does not refer to two different blocks with different names. It tests that there
is not an ontop relation with a bottom-block that is named A and named table. Thus,
this production probably should have been written as:

sp {blocks*negated-conjunction-example

(state <s> ^name top-state

-^ontop.bottom-object.name table

-^ontop.bottom-object.name A)

-->

(<s> ^nothing-ontop-A-or-table true) }

which expands to:

sp {blocks*negated-conjunction-example

(state <s> ^name top-state)

-{(<s> ^ontop <o*2>)

54 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

(<o*2> ^bottom-object <b*2>)

(<b*2> ^name a)}

-{(<s> ^ontop <o*1>)

(<o*1> ^bottom-object <b*1>)

(<b*1> ^name table)}

-->

(<s> ^nothing-ontop-a-or-table true +) }

Notes on attribute-path notation

• Attributes specified in attribute-path notation may not start with a digit. For example,
if you type ∧foo.3.bar, Soar thinks the .3 is a floating-point number. (Attributes
that don’t appear in path notation can begin with a number.)

• Attribute-path notation may be used to any depth.

• Attribute-path notation may be combined with structured values, described in Section
3.3.5.12.

3.3.5.12 Structured-value notation

Another convenience that eliminates the use of intermediate variables is structured-value
notation.

Syntactically, the attributes and values of a condition may be written where a variable would
normally be written. The attribute-value structure is delimited by parentheses.

Using structured-value notation, the production in Figure 3.2 (on page 39) may also be
written as:

sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^thing <thing1> {<> <thing1> <thing2>}

^ontop (^top-block <thing1>

^bottom-block <> <thing2>))

(<thing1> ^type block ^clear yes)

(<thing2> ^clear yes)

-->

(<s> ^operator <o> +)

(<o> ^name move-block

^moving-block <thing1>

^destination <thing2>) }

Thus, several conditions may be “collapsed” into a single condition.

3.3. PRODUCTION MEMORY 55

Using variables within structured-value notation

Variables are allowed within the parentheses of structured-value notation to specify an iden-
tifier to be matched elsewhere in the production. For example, the variable <ontop> could
be added to the conditions (although it are not referenced again, so this is not helpful in this
instance):

sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^thing <thing1> {<> <thing1> <thing2>}

^ontop (<ontop>

^top-block <thing1>

^bottom-block <> <thing2>))

(<thing1> ^type block ^clear yes)

(<thing2> ^clear yes)

-->

(<s> ^operator <o> +)

(<o> ^name move-block

^moving-block <thing1>

^destination <thing2>) }

Structured values may be nested to any depth. Thus, it is possible to write our example
production using a single condition with multiple structured values:

sp {blocks-world*propose*move-block

(state <s> ^problem-space blocks

^thing <thing1>

({<> <thing1> <thing2>}

^clear yes)

^ontop (^top-block

(<thing1>

^type block

^clear yes)

^bottom-block <> <thing2>))

-->

(<s> ^operator <o> +)

(<o> ^name move-block

^moving-block <thing1>

^destination <thing2>) }

Notes on structured-value notation

• Attribute-path notation and structured-value notation are orthogonal and can be com-
bined in any way. A structured value can contain an attribute path, or a structure can
be given as the value for an attribute path.

• Structured-value notation may also be combined with negations and with multi-attributes.

56 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

• Structured-value notation may not be used in the actions of productions.

3.3.6 The action side of productions (or RHS)

The action side of a production, also called the right-hand side (or RHS) of the production,
consists of individual actions that can:

• Add new elements to working memory.

• Remove elements from working memory.

• Create preferences.

• Perform other actions

When the conditions of a production match working memory, the production is said to
be instantiated, and the production will fire during the next elaboration cycle. Firing the
production involves performing the actions using the same variable bindings that formed the
instantiation.

3.3.6.1 Variables in Actions

Variables can be used in actions. A variable that appeared in the condition side will be
replaced with the value that is was bound to in the condition. A variable that appears only
in the action side will be bound to a new identifier that begins with the first letter of that
variable (e.g., <o> might be bound to o234). This symbol is guaranteed to be unique and it
will be used for all occurrences of the variable in the action side, appearing in all working
memory elements and preferences that are created by the production action.

3.3.6.2 Creating Working Memory Elements

An element is created in working memory by specifying it as an action. Multiple augmen-
tations of an object can be combined into a single action, using the same syntax as in
conditions, including path notation and multi-valued attributes.

-->

(<s> ^block.color red

^thing <t1> <t2>) }

The action above is expanded to be:

-->

(<s> ^block <*b>)

(<*b> ^color red)

(<s> ^thing <t1>)

(<s> ^thing <t2>) }

3.3. PRODUCTION MEMORY 57

This will add four elements to working memory with the variables replaced with whatever
values they were bound to on the condition side.

Since Soar is case sensitive, different combinations of upper- and lowercase letters represent
different constants. For example, “red”, “Red”, and “RED” are all distinct symbols in Soar.
In many cases, it is prudent to choose one of uppercase or lowercase and write all constants
in that case to avoid confusion (and bugs).

The constants that are used for attributes and values have a few restrictions on them:

1. There are a number of architecturally created augmentations for state and impasse
objects; see Section 3.4 for a listing of these special augmentations. User-defined
productions can not create or remove augmentations of states that use these attribute
names.

2. Attribute names should not begin with a number if these attributes will be used in
attribute-path notation.

3.3.6.3 Removing Working Memory Elements

A element is explicitly removed from working memory by following the value with a dash:
-, also called a reject.

-->

(<s> ^block -)}

If the removal of a working memory element removes the only link between the state and
working memory elements that had the value of the removed element as an identifier, those
working memory elements will be removed. This is applied recursively, so that all item that
become unlinked are removed.

The reject should be used with an action that will be o-supported. If reject is attempted
with I-support, the working memory element will reappear if the reject loses I-support and
the element still has support.

3.3.6.4 The syntax of preferences

Below are the eleven types of preferences as they can appear in the actions of a production
for the selection of operators:

58 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

RHS preferences Semantics
(id ∧operator value) acceptable
(id ∧operator value +) acceptable
(id ∧operator value !) require
(id ∧operator value ∼) prohibit
(id ∧operator value -) reject
(id ∧operator value > value2) better
(id ∧operator value < value2) worse
(id ∧operator value >) best
(id ∧operator value <) worst
(id ∧operator value =) unary indifferent
(id ∧operator value = value2) binary indifferent
(id ∧operator value = number) numeric indifferent

The identifier and value will always be variables, such as (<s1> ∧operator <o1> > <o2>).

The preference notation appears similar to the predicate tests that appear on the left-hand
side of productions, but has very different meaning. Predicates cannot be used on the right-
hand side of a production and you cannot restrict the bindings of variables on the right-hand
side of a production. (Such restrictions can happen only in the conditions.)

Also notice that the + symbol is optional when specifying acceptable preferences in the actions
of a production, although using this symbol will make the semantics of your productions
clearer in many instances. The + symbol will always appear when you inspect preference
memory (with the preferences command).

Productions are never needed to delete preferences because preferences will be retracted
when the production no longer matches. Preferences should never be created by operator
application rules, and they should always be created by rules that will give only I-support
to their actions.

3.3.6.5 Shorthand notations for preference creation

There are a few shorthand notations allowed for the creation of operator preferences on the
right-hand side of productions.

Acceptable preferences do not need to be specified with a + symbol. (<s> ∧operator <op1>)

is assumed to mean (<s> ∧operator <op1> +).

Ambiguity can easily arise when using a preference that can be either binary or unary: > <

=. The default assumption is that if a value follows the preference, then the preference is
binary. It will be unary if a carat (up-arrow), a closing parenthesis, another preference, or a
comma follows it.

Below are four examples of legal, although unrealistic, actions that have the same effect.

(<s> ^operator <o1> <o2> + <o2> < <o1> <o3> =, <o4>)

(<s> ^operator <o1> + <o2> +

3.3. PRODUCTION MEMORY 59

<o2> < <o1> <o3> =, <o4> +)

(<s> ^operator <o1> <o2> <o2> < <o1> <o4> <o3> =)

(<s> ^operator <o1> ^operator <o2>

^operator <o2> < <o1> ^operator <o4> <o3> =)

Any one of those actions could be expanded to the following list of preferences:

(<s> ^operator <o1> +)

(<s> ^operator <o2> +)

(<s> ^operator <o2> < <o1>)

(<s> ^operator <o3> =)

(<s> ^operator <o4> +)

Note that structured-value notation may not be used in the actions of productions.

3.3.6.6 Righthand-side Functions

The fourth type of action that can occur in productions is called a righthand-side function.
Righthand-side functions allow productions to create side effects other than changing working
memory. The RHS functions are described below, organized by the type of side effect they
have.

3.3.6.7 Stopping and pausing Soar

halt — Terminates Soar’s execution and returns to the user prompt. A halt action irre-
versibly terminates the running of a Soar program. It should not be used if Soar is to
be restarted (see the interrupt RHS action below.)

sp {

...

-->

(halt) }

interrupt — Executing this function causes Soar to stop at the end of the current phase,
and return to the user prompt. This is similar to halt, but does not terminate the
run. The run may be continued by issuing a run command from the user interface.
The interrupt RHS function has the same effect as typing stop-soar at the prompt,
except that there is more control because it takes effect exactly at the end of the phase
that fires the production.

sp {

...

-->

(interrupt) }

60 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

Soar execution may also be stopped immediately before a production fires, using the
:interrupt directive. This functionality is called a matchtime interrupt and is very
useful for debugging. See Section 5.1.7 on Page 90 for more information.

sp {production*name

:interrupt

...

-->

...

}

3.3.6.8 Text input and output

The function write is provided as a production action to do simple output of text in Soar.
Soar applications that do extensive input and output of text should use Soar Markup Lan-
guage (SML). To learn about SML, read the ”SML Quick Start Guide” which should be
located in the ”Documentation” folder of your Soar install.

write — This function writes its arguments to the standard output. It does not auto-
matically insert blanks, linefeeds, or carriage returns. For example, if <o> is bound to
4, then

sp {

...

-->

(write <o> <o> <o> | x| <o> | | <o>) }

prints

444 x4 4

crlf — Short for “carriage return, line feed”, this function can be called only within
write. It forces a new line at its position in the write action.

sp {

...

-->

(write <x> (crlf) <y>) }

3.3.6.9 Mathematical functions

The expressions described in this section can be nested to any depth. For all of the functions
in this section, missing or non-numeric arguments result in an error.

3.3. PRODUCTION MEMORY 61

+, -, *, / — These symbols provide prefix notation mathematical functions. These
symbols work similarly to C functions. They will take either integer or real-number
arguments. The first three functions return an integer when all arguments are integers
and otherwise return a real number, and the last two functions always return a real
number. The - symbol is also a unary function which, given a single argument, returns
the product of the argument and -1. The / symbol is also a unary function which,
given a single argument, returns the reciprocal of the argument (1/x).

sp {

...

-->

(<s> ^sum (+ <x> <y>)

^product-sum (* (+ <v> <w>) (+ <x> <y>))

^big-sum (+ <x> <y> <z> 402)

^negative-x (- <x>))

}

div, mod — These symbols provide prefix notation binary mathematical functions (they
each take two arguments). These symbols work similarly to C functions: They will
take only integer arguments (using reals results in an error) and return an integer: div
takes two integers and returns their integer quotient; mod returns their remainder.

sp {

...

-->

(<s> ^quotient (div <x> <y>)

^remainder (mod <x> <y>)) }

abs, atan2, sqrt, sin, cos — These symbols provide prefix notation unary math-
ematical functions (they each take one argument). These symbols work similarly to C
functions: They will take either integer or real-number arguments. The first function
(abs) returns an integer when its argument is an integer and otherwise returns a real
number, and the last four functions always return a real number. atan2 returns as
a float in radians, the arctangent of (first arg / second arg). sin and cos take as
arguments the angle in radians.

sp {

...

-->

(<s> ^abs-value (abs <x>)

^sqrt (sqrt <x>)) }

int — Converts a single symbol to an integer constant. This function expects either an
integer constant, symbolic constant, or floating point constant. The symbolic constant
must be a string which can be interpreted as a single integer. The floating point

62 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

constant is truncated to only the integer portion. This function essentially operates as
a type casting function.

For example, the expression 2 + sqrt(6) could be printed as an integer using the
following:

sp {

...

-->

(write (+ 2 (int sqrt(6)))) }

float — Converts a single symbol to a floating point constant. This function expects
either an integer constant, symbolic constant, or floating point constant. The symbolic
constant must be a string which can be interpreted as a single floating point number.
This function essentially operates as a type casting function.

For example, if you wanted to print out an integer expression as a floating-point num-
ber, you could do the following:

sp {

...

-->

(write (float (+ 2 3))) }

3.3.6.10 Generating and manipulating symbols

A new symbol (an identifier) is generated on the right-hand side of a production whenever
a previously unbound variable is used. This section describes other ways of generating and
manipulating symbols on the right-hand side.

timestamp — This function returns a symbol whose print name is a representation of
the current date and time.

For example:

sp {

...

-->

(write (timestamp)) }

When this production fires, it will print out a representation of the current date and
time, such as:

soar> run 1 e

8/1/96-15:22:49

3.3. PRODUCTION MEMORY 63

make-constant-symbol — This function returns a new constant symbol guaranteed
to be different from all symbols currently present in the system. With no arguments, it
returns a symbol whose name starts with “constant”. With one or more arguments,
it takes those argument symbols, concatenates them, and uses that as the prefix for
the new symbol. (It may also append a number to the resulting symbol, if a symbol
with that prefix as its name already exists.)

sp {

...

-->

(<s> ^new-symbol (make-constant-symbol)) }

When this production fires, it will create an augmentation in working memory such as:

(S1 ^new-symbol constant5)

The production:

sp {

...

-->

(<s> ^new-symbol (make-constant-symbol <s>)) }

will create an augmentation in working memory such as:

(S1 ^new-symbol |S14|)

when it fires. The vertical bars denote that the symbol is a constant, rather than an
identifier; in this example, the number 4 has been appended to the symbol S1.

This can be particularly useful when used in conjunction with the timestamp function;
by using timestamp as an argument to make-constant-symbol, you can get a new
symbol that is guaranteed to be unique. For example:

sp {

...

-->

(<s> ^new-symbol (make-constant-symbol (timestamp))) }

When this production fires, it will create an augmentation in working memory such as:

(S1 ^new-symbol 8/1/96-15:22:49)

capitalize-symbol — Given a symbol, this function returns a new symbol with the
first character capitalized. This function is provided primarily for text output, for
example, to allow the first word in a sentence to be capitalized.

64 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

(capitalize-symbol foo)

concat — Given an arbitrary number of symbols, this function concatenates them to-
gether into a single constant symbol. For example,

sp {example

(state <s> ^type state)

-->

(<s> ^name (concat foo bar (+ 2 4))) }

After this rule fires, the WME (S1 ^name foobar6) will be added.

3.3.6.11 User-defined functions and interface commands as RHS actions

Any function which has a certain function signature may be registered with the Kernel and
called as a RHS function. The function must have the following signature:

std::string MyFunction(smlRhsEventId id, void* pUserData, Agent* pAgent,

char const* pFunctionName, char const* pArgument);

The Tcl and Java interfaces have similar function signatures. Any arguments passed to the
function on the RHS of a production are concatenated and passed to the function in the
pArgument argument.

Such a function can be registered with the kernel via the client interface by calling:

Kernel::AddRhsFunction(char const* pRhsFunctionName, RhsEventHandler

handler, void* pUserData);

The exec and cmd functions are used to call user-defined functions and interface commands
on the RHS of a production.

exec — Used to call user-defined registered functions. Any arguments are concatenated
without spaces. For example, if <o> is bound to x, then

sp {

...

-->

(exec MakeANote <o> 1) }

will call the user-defined MakeANote function with the argument ”x1”.

The return value of the function, if any, may be placed in working memory or passed
to another RHS function. For example, the log of a number <x> could be printed this
way:

3.3. PRODUCTION MEMORY 65

sp {

...

-->

(write |The log of | <x> | is: | (exec log(<x>))|) }

where ”log” is a registered user-defined function.

cmd — Used to call built-in Soar commands. Spaces are inserted between concatenated
arguments. For example, the production

sp {

...

-->

(write (cmd print --depth 2 <s>)) }

will have the effect of printing the object bound to <s> to depth 2.

3.3.6.12 Controlling learning

Soar’s learning mechanism, called Chunking, is described in Chapter 4.

The following two functions are provided as RHS actions to assist in development of Soar
programs; they are not intended to correspond to any theory of learning in Soar. This
functionality is provided as a development tool, so that learning may be turned off in specific
problem spaces, preventing otherwise buggy behavior.

The dont-learn and force-learn RHS actions are to be used with specific settings for the
learn command (see page 126.) Using the learn command, learning may be set to one of
on, off, except, or only; learning must be set to except for the dont-learn RHS action to
have any effect and learning must be set to only for the force-learn RHS action to have
any effect.

dont-learn — When learning is set to except, by default chunks can be formed in all
states; the dont-learn RHS action will cause learning to be turned off for the specified
state.

sp {turn-learning-off

(state <s> ^feature 1 ^feature 2 -^feature 3)

-->

(dont-learn <s>) }

The dont-learn RHS action applies when learn is set to -except, and has no effect
when other settings for learn are used.

force-learn — When learning is set to only, by default chunks are not formed in any
state; the force-learn RHS action will cause learning to be turned on for the specified
state.

66 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

sp {turn-learning-on

(state <s> ^feature 1 ^feature 2 -^feature 3)

-->

(force-learn <s>) }

The force-learn RHS action applies when learn is set to -only, and has no effect
when other settings for learn are used.

3.4 Impasses in Working Memory and in Productions

When the preferences in preference memory cannot be resolved unambiguously, Soar reaches
an impasse, as described in Section 2.6:

• When Soar is unable to select a new operator (in the decision cycle), it is said to reach
an operator impasse.

All impasses appear as states in working memory, where they can be tested by productions.
This section describes the structure of state objects in working memory.

3.4.1 Impasses in working memory

There are four types of impasses.

Below is a short description of the four types of impasses. (This was described in more detail
in Section 2.6 on page 23.)

1. tie: when there is a collection of equally eligible operators competing for the value of
a particular attribute;

2. conflict : when two or more objects are better than each other, and they are not
dominated by a third operator;

3. constraint-failure: when there are conflicting necessity preferences;

4. no-change: when the proposal phase runs to quiescence without suggesting a new
operator.

The list below gives the seven augmentations that the architecture creates on the substate
generated when an impasse is reached, and the values that each augmentation can contain:
∧type state

∧impasse Contains the impasse type: tie, conflict, constraint-failure, or no-change.
∧choices Either multiple (for tie and conflict impasses), constraint-failure (for constraint-

failure impasses), or none (for no-change impasses).
∧superstate Contains the identifier of the state in which the impasse arose.
∧attribute For multi-choice and constraint-failure impasses, this contains operator. For

no-change impasses, this contains the attribute of the last decision with a value (state
or operator).

3.4. IMPASSES IN WORKING MEMORY AND IN PRODUCTIONS 67

∧item For multi-choice and constraint-failure impasses, this contains all values involved in
the tie, conflict, or constraint-failure. If the set of items that tie or conflict changes dur-
ing the impasse, the architecture removes or adds the appropriate item augmentations
without terminating the existing impasse.

∧item-count For multi-choice and constraint-failure impasses, this contains the number of
values listed under the item augmentation above.

∧quiescence States are the only objects with quiescence t, which is an explicit statement
that quiescence (exhaustion of the elaboration cycle) was reached in the superstate.
If problem solving in the subgoal is contingent on quiescence having been reached,
the substate should test this flag. The side-effect is that no chunk will be built if it
depended on that test. See Section 4.1 on page 73 for details. This attribute can be
ignored when learning is turned off.

Knowing the names of these architecturally defined attributes and their possible values will
help you to write productions that test for the presence of specific types of impasses so that
you can attempt to resolve the impasse in a manner appropriate to your program. Many of
the default productions in the demos/defaults directory of the Soar distribution provide
means for resolving certain types of impasses. You may wish to make use of some of all of
these productions or merely use them as guides for writing your own set of productions to
respond to impasses.

Examples

The following is an example of a substate that is created for a tie among three operators:

(S12 ^type state ^impasse tie ^choices multiple ^attribute operator

^superstate S3 ^item O9 O10 O11 ^quiescence t)

The following is an example of a substate that is created for a no-change impasse to apply
an operator:

(S12 ^type state ^impasse no-change ^choices none ^attribute operator

^superstate S3 ^quiescence t)

(S3 ^operator O2)

3.4.2 Testing for impasses in productions

Since states appear in working memory, they may also be tested for in the conditions of
productions.

For example, the following production tests for a constraint-failure impasse on the top-level
state.

sp {default*top-goal*halt*operator*failure

68 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

"Halt if no operator can be selected for the top goal."

:default

(state <ss> ^impasse constraint-failure ^superstate <s>)

(<s> ^superstate nil)

-->

(write (crlf) |No operator can be selected for top goal.|)

(write (crlf) |Soar must halt.|)

(halt)

}

3.5 Soar I/O: Input and Output in Soar

Many Soar users will want their programs to interact with a real or simulated environment.
For example, Soar programs could control a robot, receiving sensory inputs and sending
command outputs. Soar programs might also interact with simulated environments, such as
a flight simulator. The mechanisms by which Soar receives inputs and sends outputs to an
external process is called Soar I/O.

This section describes how input and output are represented in working memory and in
productions. The details of creating and registering the input and output functions for Soar
are beyond the scope of this manual, but they are described in the SML Quick Start Guide.
This section is provided for the sake of Soar users who will be making use of a program that
has already been implemented, or for those who would simply like to understand how I/O
is implemented in Soar.

3.5.1 Overview of Soar I/O

When Soar interacts with an external environment, it must make use of mechanisms that
allow it to receive input from that environment and to effect changes in that environment.
An external environment may be the real world or a simulation; input is usually viewed as
Soar’s perception and output is viewed as Soar’s motor abilities.

Soar I/O is accomplished via input functions and output functions. Input functions are called
at the start of every execution cycle, and add elements directly to specific input structures
in working memory. These changes to working memory may change the set of productions
that will fire or retract. Output functions are called at the end of every execution cycle and
are processed in response to changes to specific output structures in working memory. An
output function is called only if changes have been made to the output-link structures in
working memory.

The structures for manipulating input and output in Soar are linked to a predefined attribute
of the top-level state, called the io attribute. The io attribute has substructure to represent
sensor inputs from the environment called input links ; because these are represented in
working memory, Soar productions can match against input links to respond to an external

3.5. SOAR I/O: INPUT AND OUTPUT IN SOAR 69

S1

type state

superstate
nil

 I6

B1

B2

B3

 I9

io

input−link

block

block

block

x−location

color

y−location

x−location

color

y−location

x−location

color

y−location

1

red

2

blue

3

yellow

(red) (blue) (yellow)

(0,0) (1,0) (2,0) (3,0)

(0,1)

(0,2)

0

0

0

Figure 3.3: An example portion of the input link for the blocks-world task.

situation. Likewise, the io attribute has substructure to represent motor commands, called
output links. Functions that execute motor commands in the environment use the values on
the output links to determine when and how they should execute an action. Generally, input
functions create and remove elements on the input link to update Soar’s perception of the
environment. Output functions respond to values of working memory elements that appear
on Soar’s output link strucure.

3.5.2 Input and output in working memory

All input and output is represented in working memory as substructure of the io attribute
of the top-level state. By default, the architecture creates an input-link attribute of the
io object and an output-link attribute of the io object. The values of the input-link and
output-link attributes are identifiers whose augmentations are the complete set of input and
output working memory elements, respectively. Some Soar systems may benefit from having
multiple input and output links, or that use names which are more descriptive of the input or
output function, such as vision-input-link, text-input-link, or motor-output-link.
In addition to providing the default io substructure, the architecture allows users to create
multiple input and output links via productions and I/O functions. Any identifiers for io

substructure created by the user will be assigned at run time and are not guaranteed to be
the same from run to run. Therefore users should always employ variables when referring to
input and output links in productions.

Suppose a blocks-world task is implemented using a robot to move actual blocks around,
with a camera creating input to Soar and a robotic arm executing command outputs. The

70 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

S1

type state

superstate
nil

 I6

io

(red) (blue) (yellow)

(0,0) (1,0) (2,0) (3,0)

(0,1)

(0,2)

output−link

O3

moving−block

B1

name
move−block

x−location

y−location

1

0

x−destination

y−destinaion

2

1

Figure 3.4: An example portion of the output link for the blocks-world task.

camera image might be analyzed by a separate vision program; this program could have
as its output the locations of blocks on an xy plane. The Soar input function could take
the output from the vision program and create the following working memory elements on
the input link (all identifiers are assigned at runtime; this is just an example of possible
bindings):

(S1 ^io I1) [A]

(I1 ^input-link I2) [A]

(I2 ^block B1)

(I2 ^block B2)

(I2 ^block B3)

(B1 ^x-location 1)

(B1 ^y-location 0)

(B1 ^color red)

(B2 ^x-location 2)

(B2 ^y-location 0)

(B2 ^color blue)

(B3 ^x-location 3)

(B3 ^y-location 0)

(B3 ^color yellow)

The ’[A]’ notation in the example is used to indicate the working memory elements that
are created by the architecture and not by the input function. This configuration of blocks
corresponds to all blocks on the table, as illustrated in the initial state in Figure 2.2.

3.5. SOAR I/O: INPUT AND OUTPUT IN SOAR 71

Then, during the Apply Phase of the execution cycle, Soar productions could respond to an
operator, such as “move the red block ontop of the blue block” by creating a structure on
the output link, such as:

(S1 ^io I1) [A]

(I1 ^output-link I3) [A]

(I3 ^name move-block)

(I3 ^moving-block B1)

(I3 ^x-destination 2)

(I3 ^y-destination 1)

(B1 ^x-location 1)

(B1 ^y-location 0)

(B1 ^color red)

The ’[A]’ notation is used to indicate the working memory elements that are created by the
architecture and not by productions. An output function would look for specific structure
in this output link and translate this into the format required by the external program that
controls the robotic arm. Movement by the robotic arm would lead to changes in the vision
system, which would later be reported on the input-link.

Input and output are viewed from Soar’s perspective. An input function adds or deletes
augmentations of the input-link providing Soar with information about some occurrence
external to Soar. An output function responds to substructure of the output-link produced
by production firings, and causes some occurrence external to Soar. Input and output occur
through the io attribute of the top-level state exclusively.

Structures placed on the input-link by an input function remain there until removed by
an input function. During this time, the structure continues to provide support for any
production that has matched against it. The structure does not cause the production to
rematch and fire again on each cycle as long as it remains in working memory; to get the
production to refire, the structure must be removed and added again.

3.5.3 Input and output in production memory

Productions involved in input will test for specific attributes and values on the input-link,
while productions involved in output will create preferences for specific attributes and values
on the output link. For example, a simplified production that responds to the vision input
for the blocks task might look like this:

sp {blocks-world*elaborate*input

(state <s> ^io.input-link <in>)

(<in> ^block <ib1>)

(<ib1> ^x-location <x1> ^y-location <y1>)

(<in> ^block {<ib2> <> <ib1>})

(<ib2> ^x-location <x1> ^y-location {<y2> > <y1>})

-->

72 CHAPTER 3. THE SYNTAX OF SOAR PROGRAMS

(<s> ^block <b1>)

(<s> ^block <b2>)

(<b1> ^x-location <x1> ^y-location <y1> ^clear no)

(<b2> ^x-location <x1> ^y-location <y2> ^above <b1>)

}

This production “copies” two blocks and their locations directly to the top-level state. It
also adds information about the relationship between the two blocks. The variables used for
the blocks on the RHS of the production are deliberately different from the variable name
used for the block on the input-link in the LHS of the production. If the variable were the
same, the production would create a link into the structure of the input-link, rather than
copy the information. The attributes x-location and y-location are assumed to be values
and not identifiers, so the same variable names may be used to do the copying.

A production that creates wmes on the output-link for the blocks task might look like this:

sp {blocks-world*apply*move-block*send-output-command

(state <s> ^operator <o> ^io.output-link <out>)

(<o> ^name move-block ^moving-block <b1> ^destination <b2>)

(<b1> ^x-location <x1> ^y-location <y1>)

(<b2> ^x-location <x2> ^y-location <y2>)

-->

(<out> ^move-block <b1>

^x-destination <x2> ^y-destination (+ <y2> 1))

}

This production would create substructure on the output-link that the output function could
interpret as being a command to move the block to a new location.

Chapter 4

Learning

Chunking is Soar’s learning mechanism, the sole learning mechanism in Soar. Chunking
creates productions, called chunks, that summarize the processing required to produce the
results of subgoals. When a chunk is built, it is added to production memory, where it will
be matched in similar situations, avoiding the need for the subgoal. Chunks are created only
when results are formed in subgoals; since most Soar programs are continuously subgoaling
and returning results to higher-level states, chunks are typically created continuously as Soar
runs.

This chapter begins with a discussion of when chunks are built (Section 4.1 below), followed
by a detailed discussion of how Soar determines a chunk’s conditions and actions (Section
4.2). Sections 4.3 through 4.4 examine the construction of chunks in further detail. Section
4.5 explains how and why chunks are prevented from matching with the WME’s that led to
their creation. Section 4.6 reviews the problem of overgeneral chunks.

4.1 Chunk Creation

Several factors govern when chunks are built. Soar chunks the results of every subgoal, unless
one of the following conditions is true:

1. Learning is off. (See Section 5.4.3 on page 126 for details of learn used to turn
learning off.)

Learning can be set to on or off. When learn is on chunks are built. When learn is
off, chunks are not built.

2. Learning is set to bottom-up and a chunk has already been built for a subgoal of the
state that generated the results. (See Section 5.4.3 on page 126 for details of learn

used to set learning to bottom-up.)

With bottom-up learning, chunks are learned only in states in which no subgoal has
yet generated a chunk. In this mode, chunks are learned only for the “bottom” of the

73

74 CHAPTER 4. LEARNING

subgoal hierarchy and not the intermediate levels. With experience, the subgoals at the
bottom will be replaced by the chunks, allowing higher level subgoals to be chunked.1

3. The learning flag through-local-negations is disabled, and the result is dependent
on a test for the negation of a subgoal WME. Testing a local negation can result in
an overgeneral chunk (see Section 4.6 on page 78). In this mode, such chunks are not
created.

4. The chunk duplicates a production or chunk already in production memory. In some
rare cases, a duplicate production will not be detected because the order of the condi-
tions or actions is not the same as an existing production.

5. The augmentation, ∧quiescence t, of the substate that produced the result is back-
traced through.

This mechanism is motivated by the chunking from exhaustion problem, where the
results of a subgoal are dependent on the exhaustion of alternatives (see Section 4.6 on
page 78). If this substate augmentation is encountered when determining the conditions
of a chunk, then no chunk will be built for the currently considered action. This is
recursive, so that if an un-chunked result is relevant to a second result, no chunk will
be built for the second result. This does not prevent the creation of a chunk that would
include ∧quiescence t as a condition.

6. Learning has been temporarily turned off via a call to the dont-learn production
action (described on page 65 in Section 3.3.6.12).

This capability is provided for debugging and system development, and it is not part
of the theory of Soar.

If a result is to be chunked, Soar builds the chunk as soon as the result is created, rather
than waiting until subgoal termination.

4.2 Determining Conditions and Actions

Chunking is an experience-based learning mechanism that summarizes as productions the
problem solving that occurs within a state. In order to maintain a history of the processing
to be used for chunking, Soar builds a trace of the productions that fire in the subgoals.
This section describes how the relevant actions are determined, how information is stored in
a trace, and finally, how the trace and the actions together determine the conditions for the
chunk.

In order for the chunk to apply at the appropriate time, its conditions must test exactly those
working memory elements that were necessary to produce the results of the subgoal. Soar
computes a chunk’s conditions based on the productions that fire in the subgoal, beginning
with the results of the subgoal, and then backtracing through the productions that created

1For some tasks, bottom-up chunking facilitates modelling power-law speedups, although its long-term
theoretical status is problematic.

4.2. DETERMINING CONDITIONS AND ACTIONS 75

each result. It recursively backtraces through the working memory elements that matched
the conditions of the productions, finding the actions that led to the WME’s creation, etc.,
until conditions are found that test elements that are linked to a superstate.

4.2.1 Determining a chunk’s actions

A chunk’s actions are built from the results of a subgoal. A result is any working memory
element created in the substate that is linked to a superstate. A working memory element is
linked if its identifier is either the value of a superstate WME, or the value of an augmentation
for an object that is linked to a superstate.

The results produced by a single production firing are the basis for creating the actions
of a chunk. A new result can lead to other results by linking a superstate to a WME in
the substate. This WME may in turn link other WMEs in the substate to the superstate,
making them results. Therefore, the creation of a single WME that is linked to a superstate
can lead to the creation of a large number of results. All of the newly created results become
the basis of the chunk’s actions.

4.2.2 Tracing the creation and reference of working memory ele-
ments

Soar automatically maintains information on the creation of each working memory element
in every state. When a production fires, a trace of the production is saved with the appro-
priate state. A trace is a list of the working memory elements matched by the production’s
conditions, together with the actions created by the production. The appropriate state is
the most recently created state (i.e., the state lowest in the subgoal hierarchy) that occurs
in the production’s matched working memory elements.

Recall that when a subgoal is created, the ∧item augmentation lists all values that lead to the
impasse. Chunking is complicated by the fact that the ∧item augmentation of the substate
is created by the architecture and not by productions. Backtracing cannot determine the
cause of these substate augmentations in the same way as other working memory elements.
To overcome this, Soar maps these augmentations onto the acceptable preferences for the
operators in the ∧item augmentations.

Negated conditions

Negated conditions are included in a trace in the following way: when a production fires, its
negated conditions are fully instantiated with its variables’ appropriate values. This instan-
tiation is based on the working memory elements that matched the production’s positive
conditions. If the variable is not used in any positive conditions, such as in a conjunctive
negation, a dummy variable is used that will later become a variable in a chunk.

If the identifier used to instantiate a negated condition’s identifier field is linked to the super-

76 CHAPTER 4. LEARNING

state, then the instantiated negated condition is added to the trace as a negated condition.
In all other cases, the negated condition is ignored because the system cannot determine
why a working memory element was not produced in the subgoal and thus allowed the pro-
duction to fire. Ignoring these negations of conditions internal to the subgoal may lead to
overgeneralization in chunking (see Section 4.6 on page 78).

4.2.3 Determining a chunk’s conditions

The conditions of a chunk are determined by a dependency analysis of production traces —
a process called backtracing. For each instantiated production that creates a subgoal result,
backtracing examines the production trace to determine which working memory elements
were matched. If a matched working memory element is linked to a superstate, it is included
in the chunk’s conditions. If it is not linked to a superstate, then backtracing recursively
examines the trace of the production that created the working memory element. Thus,
backtracing begins with a subgoal result, traces backwards through all working memory
elements that were used to produce that result, and collects all of the working memory
elements that are linked to a superstate. This method ignores when the working memory
elements were created, thus allowing the conditions of one chunk to test the results of a chunk
learned earlier in the subgoal. The user can observe the backtracing process by setting setting
backtracing on, using the watch command: watch backtracing -on (see Section 5.3.7 on
page 114). This prints out a trace of the conditions as they are collected.

Certain productions do not participate in backtracing. If a production creates only a reject

preference or a desirability preference (better, worse, indifferent, or parallel), then
neither the preference nor the objects that led to its creation will be included in the chunk.
(The exception to this is that if the desirability or reject preference is a result of a subgoal,
it will be in the chunk’s actions.) Desirability and reject preferences should be used only as
search control for choosing between legal alternatives and should not be used to guarantee the
correctness of the problem solving. The argument is that such preferences should affect only
the efficiency and not the correctness of problem solving, and therefore are not necessary to
produce the results. Necessity preferences (require or prohibit) should be used to enforce
the correctness of problem solving; the productions that create these preferences will be
included in backtracing.

Given that results can be created at any point during a subgoal, it is possible for one result
to be relevant to another result. Whether or not the first result is included in the chunk
for the second result depends on the links that were used to match the first result in the
subgoal. If the elements are linked to the superstate, they are included as conditions. If the
elements are not linked to the superstate, then the result is traced through. In some cases,
there may be more than one set of links, so it is possible for a result to be both backtraced
through, and included as a condition.

4.3. VARIABLIZING IDENTIFIERS 77

4.3 Variablizing Identifiers

Chunks are constructed by examining the traces, which include working memory elements
and operator preferences. To achieve any useful generality in chunks, identifiers of actual
objects must be replaced by variables when the chunk is created; otherwise chunks will only
ever fire when the exact same objects are matched. However, a constant value is never
variablized; the actual value always appears directly in the chunk.

When a chunk is built, all occurrences of the same identifier are replaced with the same
variable. This can lead to an overspecific chunk, when two variables are forced to be the
same in the chunk, even though distinct variables in the original productions just happened
to match the same identifier.

A chunk’s conditions are also constrained by any not-equal (<>) tests for pairs of indentifiers
used in the conditions of productions that are included in the chunk. These tests are saved
in the production traces and then added in to the chunk.

4.4 Ordering Conditions

Since the efficiency of the Rete matcher depends heavily upon the order of a production’s
conditions, the chunking mechanism attempts to write the chunk’s conditions in the most
favorable order. At each stage, the condition-ordering algorithm tries to determine which
eligible condition, if placed next, will lead to the fewest number of partial instantiations when
the chunk is matched. A condition that matches an object with a multi-valued attribute
will lead to multiple partial instantiations, so it is generally more efficient to place these
conditions later in the ordering.

This is the same process that internally reorders the conditions in user-defined productions,
as mentioned briefly in Section 2.3.1.

4.5 Inhibition of Chunks

When a chunk is built, it may be able to match immediately with the same working memory
elements that participated in its creation. If the production’s actions include preferences
for new operators, the production would immediately fire and create a preference for a
new operator, which duplicates the operator preference that was the original result of the
subgoal. To prevent this, inhibition is used. This means that each production that is built
during chunking is considered to have already fired with the instantiation of the exact set of
working memory elements used to create it. This does not prevent a newly learned chunk
from matching other working memory elements that are present and firing with those values.

78 CHAPTER 4. LEARNING

4.6 Problems that May Arise with Chunking

One of the weaknesses of Soar is that chunking can create overgeneral productions that apply
in inappropriate situations, or overspecific productions that will never fire. These problems
arise when chunking cannot accurately summarize the processing that led to the creation of
a result. Below is a description of five known problems in chunking.

4.6.1 Using search control to determine correctness

Overgeneral chunks can be created if a result of problem solving in a subgoal is dependent
on search-control knowledge. Recall that desirability preferences, such as better, best,
and worst, are not included in the traces of problem solving used in chunking (Section 4.2
on page 74). In theory, these preferences do not affect the validity of search. In practice,
however, a Soar program can be written so that search control does affect the correctness of
search. Here are two examples:

1. Some of the tests for correctness of a result are included in productions that prefer
operators that will produce correct results. The system will work correctly only when
those productions are loaded.

2. An operator is given a worst preference, indicating that it should be used only when all
other options have been exhausted. Because of the semantics of worst, this operator
will be selected after all other operators; however, if this operator then produces a
result that is dependent on the operator occurring after all others, this fact will not be
captured in the conditions of the chunk.

In both of these cases, part of the test for producing a result is implicit in search control
productions. This move allows the explicit state test to be simpler because any state to which
the test is applied is guaranteed to satisfy some of the requirements for success. However,
chunks created in such a problem space will be overgeneral because the implicit parts of the
state test do not appear as conditions.

Solution: To avoid this problem, necessity preferences (require and prohibit) should
be used whenever a control decision is being made that also incorporates goal-attainment
knowledge. The necessity preferences are included in the backtrace by chunking, thereby
avoiding overgenerality.

4.6.2 Testing for local negated conditions

Overgeneral chunks can be created when negated conditions test for the absence of a work-
ing memory element that, if it existed, would be local to the substate. Chunking has no
mechanism for determining why a given working memory element does not exist, and thus
a condition that occurred in a production in the subgoal is not included in the chunk. For
example, if a production tests for the absence of a local flag, and that flag is copied down
to the substate from a superstate, then the chunk should include a test that the flag in the

4.6. PROBLEMS THAT MAY ARISE WITH CHUNKING 79

superstate does not exist. Unfortunately, it is computationally expensive to determine why
a given working memory element does not exist. Chunking only includes negated tests if
they test for the absence of superstate working memory elements.

Solution: To avoid using negated conditions for local data, the local data can be made a
result by attaching it to the superstate. This increases the number of chunks learned, but a
negated condition for the superstate can be used that leads to correct chunks.

Alternatively, Soar’s learning mode can be set to reject chunks when the backtrace encounters
a local negation, by setting learn --through-local-negations disable. There are many
cases where local negations are safe to ignore (and hence this mode reduces performance),
but it can substantially reduce the number of overgeneral chunks in big agents (and aid in
debugging).

4.6.3 Testing for the substate

Overgeneral chunks can be created if a result of a subgoal is dependent on the creation
of an impasse within the substate. For example, processing in a subgoal may consist of
exhaustively applying all the operators in the problem space. If so, then a convenient way
to recognize that all operators have applied and processing is complete is to wait for a
state no-change impasse to occur. When the impasse occurs, a production can test for the
resulting substate and create a result for the original subgoal. This form of state test builds
overgeneral chunks because no pre-existing structure is relevant to the result that terminates
the subgoal. The result is dependent only on the existence of the substate within a substate.

Solution: The current solution to this problem is to allow the problem solving to signal the
architecture that the test for a substate is being made. The signal used by Soar is a test for
the ∧quiescence t augmentation of the subgoal. The chunking mechanism recognizes this
test and does not build a chunk when it is found in a backtrace of a subgoal. The history of
this test is maintained, so that if the result of the substate is then used to produce further
results for a superstate, no higher chunks will be built. However, if the result is used as
search control (it is a desirability preference), then it does not prevent the creation of chunks
because the original result is not included in the backtrace. If the ∧quiescence t being
tested is connected to a superstate, it will not inhibit chunking and it will be included in the
conditions of the chunk.

4.6.4 Mapping multiple superstate WMEs to one local WME

An agent may have several rule instantiations that match on different structures in a su-
perstate but create WMEs with the same attribute-value pairs in a substate. For example,
there may be a rule that matches several WMEs in a superstate with the same multi-valued
attribute and elaborates the local state with a WME indicating that at least one WME with
that attribute exists. In these cases, the total effect of those rule firings will be collapsed into
creating a single WME in the substate, because working memory is represented as a set. If

80 CHAPTER 4. LEARNING

this WME is then tested to create a result on the superstate, the chunk that is subsequently
created will be overgeneral: While the original subgoal processing created only one result,
the chunk will create a distinct result for each superstate structure originally tested. This is
because the desired behavior cannot be reduced to a single rule.

Solution: If this type of behavior is needed, the single WME should go in the top state, so
that the chunks built can similarly map multiple structures to one.

4.6.5 Revising the substructure of a previous result

This can occur when a subgoal creates a local structure, which is then linked to a superstate,
becoming a result. A new WME added to this structure is also a result, as as it is linked
to the superstate. However, if that WME is created with a rule that matches the local
state only (not the superstate), Soar cannot build a chunk for the result, as it is unable to
determine how the new WME is linked to the superstate.

For example, assume that an agent builds up a structure consisting of an identifier called
∧thing attached to a substate, and then adds ∧property foo as an augmentation to thing.
If the agent now matches thing on the substate, and creates a WME on a superstate linked
to the same identifier, that identifier, along with its augmentation ∧property foo, becomes
a result, and a chunk is formed. Now, if a rule in the subgoal adds another augmentation
to the thing identifier, (∧property bar, say), that augmentation will also be a result, as it
is linked to an identifier which is linked to a superstate. However, if that rule matches the
identifier through the substate, the chunking process cannot determine how it is linked to
the superstate, and a chunk cannot be created.

Solution: If the substructure of a result must be revised, the rules that modify it should
match the result through the superstate, not through the local state.

Chapter 5

The Soar User Interface

This chapter describes the set of user interface commands for Soar. All commands and
examples are presented as if they are being entered at the Soar command prompt.

This chapter is organized into 7 sections:

1. Basic Commands for Running Soar

2. Examining Memory

3. Configuring Trace Information and Debugging

4. Configuring Soar’s Run-Time Parameters

5. File System I/O Commands

6. Soar I/O commands

7. Miscellaneous Commands

Each section begins with a summary description of the commands covered in that section,
including the role of the command and its importance to the user. Commands are then
described fully, in alphabetical order. The most accurate and up-to-date information on the
syntax of the Soar User Interface is found online, on the Soar Wiki, at

http://winter.eecs.umich.edu/soarwiki/Soar_Command_Line_Interface}.

Throughout this chapter, each function description includes a specification of its syntax and
an example of its use.

For a concise overview of the Soar interface functions, see the Function Summary and Index
on page 189. This index is intended to be a quick reference into the commands described in
this chapter.

81

82 CHAPTER 5. THE SOAR USER INTERFACE

Notation

The notation used to denote the syntax for each user-interface command follows some general
conventions:

• The command name itself is given in a bold font.

• Optional command arguments are enclosed within square brackets, [and].

• A vertical bar, |, separates alternatives.

• Curly braces, {}, are used to group arguments when at least one argument from the
set is required.

• The commandline prompt that is printed by Soar, is normally the agent name, followed
by ’>’. In the examples in this manual, we use “soar>”.

• Comments in the examples are preceded by a ’#’, and in-line comments are preceded
by ’;#’.

For many commands, there is some flexibility in the order in which the arguments may
be given. (See the online help for each command for more information.) We have not
incorporated this flexible ordering into the syntax specified for each command because doing
so complicates the specification of the command. When the order of arguments will affect
the output produced by a command, the reader will be alerted.

5.1 Basic Commands for Running Soar

This section describes the commands used to start, run and stop a Soar program; to invoke
on-line help information; and to create and delete Soar productions. The specific commands
described in this section are:

Summary

excise - Delete Soar productions from production memory.

gp - Define a pattern used to generate and source a set of Soar productions.

help - Provide formatted, on-line information about Soar commands.

init-soar - Reinitialize Soar so a program can be rerun from scratch.

quit - Close log file, terminate Soar, and return user to the operating system.

run - Begin Soar’s execution cycle.

sp - Create a production and add it to production memory.

stop-soar - Interrupt a running Soar program.

These commands are all frequently used anytime Soar is run.

5.1. BASIC COMMANDS FOR RUNNING SOAR 83

5.1.1 excise

Delete Soar productions from production memory.

Synopsis

excise production_name

excise -[acdrtTu]

Options

-a, --all Remove all productions from memory and perform an init-soar
command

-c, --chunks Remove all chunks (learned productions) and justifications from
memory

-d, --default Remove all default productions (:default) from memory
-r, --rl Excise Soar-RL rules
-t, --task Remove chunks, justifications, and user productions from memory
-T, --templates Excise Soar-RL templates
-u, --user Remove all user productions (but not chunks or default rules) from

memory
production name Remove the specific production with this name.

Description

This command removes productions from Soar’s memory. The command must be called
with either a specific production name or with a flag that indicates a particular group of
productions to be removed. Using the flag -a or –all also causes an init-soar.

Examples

This command removes the production my*first*production and all chunks:

excise my*first*production --chunks

This removes all productions and does an init-soar:

excise --all

Default Aliases

Alias Maps to
ex excise

84 CHAPTER 5. THE SOAR USER INTERFACE

See Also

init-soar

5.1.2 gp

Generate productions according to a specified pattern.

Synopsis

gp {production_body}

Options

production body A Soar production with whitespace-separated lists in square brack-
ets.

Description

The gp command defines a pattern used to generate and source a set of Soar productions.
production body is a single argument that looks almost identical to a standard Soar rule that
would be used with the sp command. Indeed, any syntax that is allowed in sp is also allowed
in gp.

Patterns in gp are specified with sets of whitespace-seprated values in square brackets. Every
combination of values across all square-bracketed value lists will be generated. Values with
whitespaces can be used if wrapped in pipes. Characters can also be escaped with a backslash
(so string literals with embedded pipes and spaces outside of string literals are both possible).

gp is primarily intended as an alternative to:template rules for reinforcement learning.:template
rules generate new rules as patterns occur at run time. Unfortunately, this incurs a high
run time cost. If all possible values are known in advance, then the rules can be generated
using gp at source time, thus allowing code to run faster. gp is not appropriate when all
possible values are not known or if the total number of possible rules is very large (and the
system is likely to encounter only a small subset at run time). It is also possible to combine
gp and:template (e.g., if some of the values are known and not others). This should reduce
the run time cost of:template.

There is nothing that actually restricts gp to being used for RL, although for non-RL rules,
a disjunction list (using << and >>) is better where it can be used. More esoteric uses may
include multiple bracketed value lists inside a disjunction list, or even variables in bracketed
value lists.

Each rule generated by gp has “*integer “ appended to its name.

5.1. BASIC COMMANDS FOR RUNNING SOAR 85

Examples

Template version of rule:

sp {water-jug*fill

:template

(state <s1> ^name water-jug ^operator <op> +

^jug <j1> <j2>)

(<op> ^name fill ^fill-jug.volume <fvol>)

(<j1> ^volume 3 ^contents <c1>)

(<j2> ^volume 5 ^contents <c2>)

-->

(<s1> ^operator <op> = 0)

}

gp version of rule (generates 144 rules):

gp {water-jug*fill

(state <s1> ^name water-jug ^operator <op> +

^jug <j1> <j2>)

(<op> ^name fill ^fill-jug.volume [3 5])

(<j1> ^volume 3 ^contents [0 1 2 3])

(<j2> ^volume 5 ^contents [0 1 2 3 4 5])

-->

(<s1> ^operator <op> = 0)

}

Esoteric example (generates 24 rules):

gp {strange-example

(state <s1> ^<< [att1 att2] [att3 att4] >> [val |another val| |strange val\||])

-->

(<s1> ^foo [bar <bar>])

}

SoarLibrary/Tests/testgp.soar contains many more examples.

See Also

sp

5.1.3 help

Provide formatted usage information about Soar commands.

86 CHAPTER 5. THE SOAR USER INTERFACE

Synopsis

help [command_name]

Options

command name Print usage syntax for the command.

Description

This command prints formatted help for the given command name.

Examples

To see the syntax for the excise command:

help excise

To see what commands help is available for:

help

Default Aliases

Alias Maps to
? help
h help
man help

5.1.4 init-soar

empties working memory and resets run-time statistics.

Synopsis

init-soar

Options

No options.

5.1. BASIC COMMANDS FOR RUNNING SOAR 87

Description

The init-soar command initializes Soar. It removes all elements from working memory, wip-
ing out the goal stack, and resets all runtime statistics. The firing counts for all productions
are reset to zero. The init-soar command allows a Soar program that has been halted to
be reset and start its execution from the beginning.

init-soar does not remove any productions from production memory; to do this, use the
excise command. Note however, that all justifications will be removed because they will no
longer be supported.

Default Aliases

Alias Maps to
init init-soar
is init-soar

See Also

excise

5.1.5 quit

Close log file, terminate Soar, and return user to the operating system.

Synopsis

quit

Options

No options.

Description

This command stops the run, quits the log and closes Soar.

Default Aliases

Alias Maps to
exit quit

88 CHAPTER 5. THE SOAR USER INTERFACE

5.1.6 run

Begin Soar’s execution cycle.

Synopsis

run [-f|count]

run -[d|e|o|p][s][un] [f|count]

run -[d|e|o|p][un] count [-i <e|p|d|o>]

Options

-d, --decision Run Soar for count decision cycles.
-e, --elaboration Run Soar for count elaboration cycles.
-o, --output Run Soar until the nth time output is generated by the agent.

Limited by the value of max-nil-output-cycles.
-p, --phase Run Soar by phases. A phase is either an input phase, proposal

phase, decision phase, apply phase, or output phase.
-s, --self If other agents exist within the kernel, do not run them at this

time.
-u, --update Sets a flag in the update event callback requesting that an envi-

ronment updates. This is the default if –self is not specified.
-n, --noupdate Sets a flag in the update event callback requesting that an envi-

ronment does not update. This is the default if –self is specified.
-f, forever Run until halted by problem-solving completion or until stopped

by an interrupt.
count A single integer which specifies the number of cycles to run Soar.
-i, --interleave Support round robin execution across agents at a finer grain

than the run-size parameter. e = elaboration, p = phase, d =
decision, o = output

Deprecated Options

These may be reimplemented in the future.

--operator Run Soar until the nth time an operator is selected.
--state Run Soar until the nth time a state is selected.

Description

The run command starts the Soar execution cycle or continues any execution that was
temporarily stopped. The default behavior of run , with no arguments, is to cause Soar to
execute until it is halted or interrupted by an action of a production, or until an external

5.1. BASIC COMMANDS FOR RUNNING SOAR 89

interrupt is issued by the user. The run command can also specify that Soar should run
only for a specific number of Soar cycles or phases (which may also be prematurely stopped
by a production action or the stop-soar command). This is helpful for debugging sessions,
where users may want to pay careful attention to the specific productions that are firing and
retracting.

The run command takes optional arguments: an integer, count , which specifies how many
units to run; and a units flag indicating what steps or increments to use. If count is specified,
but no units are specified, then Soar is run by decision cycles. If units are specified, but
count is unpecified, then count defaults to ’1’. The argument forever (can be shortened to f
) is a keyword used instead of an integer count and indicates Soar should be run indefinitely,
until halted by problem-solving completion, or stopped by an interrupt.

If there are multiple Soar agents that exist in the same Soar process, then issuing a run
command in any agent will cause all agents to run with the same set of parameters, unless
the flag –self is specified, in which case only that agent will execute.

If an environment is registered for the kernel’s update event, then when the event it triggered,
the environment will get information about how the run was executed. If a run was executed
with the –update option, then then event sends a flag requesting that the environment
actually update itself. If a run was executed with the –noupdate option, then the event
sends a flag requesting that the environment not update itself. The –update option is the
default when run is specified without the –self option is not specified. If the –self option is
specified, then the –noupdate option is on by default. It is up to the environment to check
for these flags and honor them.

Some use cases include:

run --self runs one agent but not the environment
run --self --update runs one agent and the environment
run runs all agents and the environment
run --noupdate runs all agents but not the environment

Setting an interleave size

When there are multiple agents running within the same process, it may be useful to keep
agents more closely aligned in their execution cycle than the run increment (–elaboration,
–phases, –decisions, –output) specifies. For instance, it may be necessary to keep agents in
“lock step” at the phase level, eventhough the run command issued is for 5 decisions. Some
use cases include:

run -d 5 -inteleave p run the agent one phase and then move to the next agent,
looping over agents until they have run for 5 decision cycles

run -o 3 -interleave d run the agent one decision cycle and then move to the next
agent. When an agent generates output for the 3rd time,
it no longer runs even if other agents continue.

The interleave parameter must always be equal to or smaller than the specified run pa-

90 CHAPTER 5. THE SOAR USER INTERFACE

rameter. This option is not currently compatible with the forever option.

Note

If Soar has been stopped due to a halt action, an init-soar command must be issued before
Soar can be restarted with the run command.

Default Aliases

Alias Maps to
d run -d 1
e run -e 1
step run 1

5.1.7 sp

Define a Soar production.

Synopsis

sp {production_body}

Options

production body A Soar production.

Description

The sp command creates a new production and loads it into production memory. produc-
tion body is a single argument parsed by the Soar kernel, so it should be enclosed in curly
braces to avoid being parsed by other scripting languages that might be in the same process.
The overall syntax of a rule is as follows:

name

["documentation-string"]

[FLAG*]

LHS

-->

RHS

The first element of a rule is its name. Conventions for names are given in the Soar Users
Manual. If given, the documentation-string must be enclosed in double quotes. Optional

5.1. BASIC COMMANDS FOR RUNNING SOAR 91

flags define the type of rule and the form of support its right-hand side assertions will receive.
The specific flags are listed in a separate section below. The LHS defines the left-hand side
of the production and specifies the conditions under which the rule can be fired. Its syntax
is given in detail in a subsequent section. The –> symbol serves to separate the LHS and
RHS portions. The RHS defines the right-hand side of the production and specifies the
assertions to be made and the actions to be performed when the rule fires. The syntax of the
allowable right-hand side actions are given in a later section. The Soar Users Manual gives
an elaborate discussion of the design and coding of productions. Please see that reference
for tutorial information about productions.

If the name of the new production is the same as an existing one, the old production will be
overwritten (excised).

Rules matching the following requirement are flagged upon being created/sourced: a rule is
a Soar-RL rule if and only if its right hand side (RHS) consists of a single numeric preference
and it is not a template rule (see FLAGs below). This format exists to ease technical
requirements of identifying/updating Soar-RL rules, as well as to make it easy for the agent
programmer to add/maintain RL capabilities within an agent. See the Soar-RL Manual for
further details.

RULE FLAGS

The optional FLAGs are given below. Note that these switches are preceeded by a colon
instead of a dash – this is a Soar parser convention.

:o-support specifies that all the RHS actions are to be given

o-support when the production fires

:no-support specifies that all the RHS actions are only to be given

i-support when the production fires

:default specifies that this production is a default production

(this matters for excise -task and watch task)

:chunk specifies that this production is a chunk

(this matters for learn trace)

:interrupt specifies that Soar should stop running when this

production matches but before it fires

(this is a useful debugging tool)

:template specifies that this production should be used to generate

new reinforcement learning rules by filling in those

variables that match constants in working memory

Multiple flags may be used, but not both of o-support and no-support .

Although you could force your productions to provide O-support or I-support by using these
commands — regardless of the structure of the conditions and actions of the production —
this is not proper coding style. The o-support and no-support flags are included to help
with debugging, but should not be used in a standard Soar program.

92 CHAPTER 5. THE SOAR USER INTERFACE

Examples

sp {blocks*create-problem-space

"This creates the top-level space"

(state <s1> ^superstate nil)

-->

(<s1> ^name solve-blocks-world ^problem-space <p1>)

(<p1> ^name blocks-world)

}

See Also

excise learn watch

5.1.8 stop-soar

Pause Soar.

Synopsis

stop-soar [-s] [reason string]

Options

-s, --self Stop only the soar agent where the command is issued. All other
agents continue running as previously specified.

reason string An optional string which will be printed when Soar is stopped, to
indicate why it was stopped. If left blank, no message will be printed
when Soar is stopped.

Description

The stop-soar command stops any running Soar agents. It sets a flag in the Soar kernel so
that Soar will stop running at a “safe” point and return control to the user. This command
is usually not issued at the command line prompt - a more common use of this command
would be, for instance, as a side-effect of pressing a button on a Graphical User Interface
(GUI).

5.2. EXAMINING MEMORY 93

Default Aliases

Alias Maps to
interrupt stop-soar
ss stop-soar
stop stop-soar

See Also

run

Warnings

If the graphical interface doesn’t periodically do an “update” of flush the pending I/O, then
it may not be possible to interrupt a Soar agent from the command line.

5.2 Examining Memory

This section describes the commands used to inspect production memory, working memory,
and preference memory; to see what productions will match and fire in the next Propose or
Apply phase; and to examine the goal dependency set. These commands are particularly
useful when running or debugging Soar, as they let users see what Soar is “thinking.” The
specific commands described in this section are:

Summary

default-wme-depth - Set the level of detail used to print WMEs.

gds-print - Print the WMEs in the goal dependency set for each goal.

internal-symbols - Print information about the Soar symbol table.

matches - Print information about the match set and partial matches.

memories - Print memory usage for production matches.

preferences - Examine items in preference memory.

print - Print items in working memory or production memory.

production-find - Find productions that contain a given pattern.

Of these commands, print is the most often used (and the most complex) followed by
matches and memories. preferences is used to examine which candidate operators have
been proposed. production-find is especially useful when the number of productions loaded
is high. gds-print is useful for examining the goal dependecy set when subgoals seem

94 CHAPTER 5. THE SOAR USER INTERFACE

to be disappearing unexpectedly. default-wme-depth is related to the print command.
internal-symbols is not often used but is helpful when debugging Soar extensions or trying
to locate memory leaks.

5.2.1 default-wme-depth

Set the level of detail used to print WMEs.

Synopsis

default-wme-depth [depth]

Options

depth A non-negative integer.

Description

The default-wme-depth command reflects the default depth used when working memory
elements are printed (using the print command or wmes alias). The default value is 1.
When the command is issued with no arguments, default-wme-depth returns the current
value of the default depth. When followed by an integer value, default-wme-depth sets the
default depth to the specified value. This default depth can be overridden on any particular
call to the print or wmes command by explicitly using the –depth flag, e.g.,print –depth
10 args .

By default, the print command prints objects in working memory, not just the individual
working memory element. To limit the output to individual working memory elements, the
–internal flag must also be specified in the print command. Thus when the print depth is
0 , by default Soar prints the entire object, which is the same behavior as when the print
depth is 1 . But if –internal is also specified, then a depth of 0 prints just the individual
WME, while a depth of 1 prints all WMEs which share that same identifier. This is true
when printing timetags, identifiers or WME patterns.

When the depth is greater than 1 , the identifier links from the specified WME’s will be
followed, so that additional substructure is printed. For example, a depth of 2 means that
the object specified by the identifier, wme-pattern, or timetag will be printed, along with
all other objects whose identifiers appear as values of the first object. This may result in
multiple copies of the same object being printed out. If –internal is also specified, then
individuals WMEs and their timetags will be printed instead of the full objects.

5.2. EXAMINING MEMORY 95

Default Aliases

Alias Maps to
set-default-depth default-

wme-
depth

See Also

print

5.2.2 gds-print

Print the WMEs in the goal dependency set for each goal.

Synopsis

gds-print

Options

No options.

Description

The Goal Dependency Set (GDS) is described in an appendix of the Soar manual. This
command is a debugging command for examining the GDS for each goal in the stack. First
it steps through all the working memory elements in the rete, looking for any that are
included in any goal dependency set, and prints each one. Then it also lists each goal in
the stack and prints the wmes in the goal dependency set for that particular goal. This
command is useful when trying to determine why subgoals are disappearing unexpectedly:
often something has changed in the goal dependency set, causing a subgoal to be regenerated
prior to producing a result.

Warnings

gds-print is horribly inefficient and should not generally be used except when something is
going wrong and you need to examine the Goal Dependency Set.

96 CHAPTER 5. THE SOAR USER INTERFACE

Default Aliases

Alias Maps to
gds print gds-print

5.2.3 internal-symbols

Print information about the Soar symbol table.

Synopsis

internal-symbols

Options

No options.

Description

The internal-symbols command prints information about the Soar symbol table. Such
information is typically only useful for users attempting to debug Soar by locating memory
leaks or examining I/O structure.

Example

soar> internal-symbols

--- Symbolic Constants: ---

operator

accept

evaluate-object

problem-space

sqrt

interrupt

mod

goal

io

(...additional symbols deleted for brevity...)

--- Integer Constants: ---

--- Floating-Point Constants: ---

--- Identifiers: ---

--- Variables: ---

<o>

5.2. EXAMINING MEMORY 97

<sso>

<to>

<ss>

<ts>

<so>

<sss>

5.2.4 matches

Prints information about partial matches and the match set.

Synopsis

matches [-nctw] production_name

matches -[a|r] [-nctw]

Options

production name Print partial match information for the named produc-
tion.

-n, --names, -c, --count For the match set, print only the names of the produc-
tions that are about to fire or retract (the default). If
printing partial matches for a production, just list the
partial match counts.

-t, --timetags Also print the timetags of the wmes at the first failing
condition

-w, --wmes Also print the full wmes, not just the timetags, at the
first failing condition.

-a, --assertions List only productions about to fire.
-r, --retractions List only productions about to retract.

Description

The matches command prints a list of productions that have instantiations in the match set,
i.e., those productions that will retract or fire in the next Propose or Apply phase. It also
will print partial match information for a single, named production.

Printing the match set

When printing the match set (i.e., no production name is specified), the default action prints
only the names of the productions which are about to fire or retract. If there are multiple

98 CHAPTER 5. THE SOAR USER INTERFACE

instantiations of a production, the total number of instantiations of that production is printed
after the production name, unless –timetags or –wmes are specified, in which case each
instantiation is printed on a separate line.

When printing the match set, the –assertions and –retractions arguments may be specified
to restrict the output to print only the assertions or retractions.

Printing partial matches for productions

In addition to printing the current match set, the matches command can be used to print
information about partial matches for a named production. In this case, the conditions of
the production are listed, each preceded by the number of currently active matches for that
condition. If a condition is negated, it is preceded by a minus sign - . The pointer >>>>
before a condition indicates that this is the first condition that failed to match.

When printing partial matches, the default action is to print only the counts of the number
of WME’s that match, and is a handy tool for determining which condition failed to match
for a production that you thought should have fired. At levels –timetags and –wmes the
matches command displays the WME’s immediately after the first condition that failed to
match — temporarily interrupting the printing of the production conditions themselves.

Notes

When printing partial match information, some of the matches displayed by this command
may have already fired, depending on when in the execution cycle this command is called.
To check for the matches that are about to fire, use the matches command without a named
production.

In Soar 8, the execution cycle (decision cycle) is input, propose, decide, apply output; it no
longer stops for user input after the decision phase when running by decision cycles (run -d
1). If a user wishes to print the match set immediately after the decision phase and before
the apply phase, then the user must run Soar by phases (run -p 1).

Examples

This example prints the productions which are about to fire and the wmes that match the
productions on their left-hand sides:

matches --assertions --wmes

This example prints the wme timetags for a single production.

matches -t my*first*production

5.2. EXAMINING MEMORY 99

5.2.5 memories

Print memory usage for partial matches.

Synopsis

memories [-cdju] [n]

memories production_name

Options

-c, --chunks Print memory usage of chunks.
-d, --default Print memory usage of default productions.
-j, --justifications Print memory usage of justifications.
-u, --user Print memory usage of user-defined productions.

production name Print memory usage for a specific production.
n Number of productions to print, sorted by those that use the

most memory.

Reinforcement Learning

These are only available with 8.6.4-rl.

-T, --template Print memory usage of Soar-RL templates.

Description

The memories command prints out the internal memory usage for full and partial matches
of production instantiations, with the productions using the most memory printed first.
With no arguments, the memories command prints memory usage for all productions. If a
production name is specified, memory usage will be printed only for that production. If a
positive integer n is given, only n productions will be printed: the n productions that use
the most memory. Output may be restricted to print memory usage for particular types of
productions using the command options.

Memory usage is recorded according to the tokens that are allocated in the rete network for
the given production(s). This number is a function of the number of elements in working
memory that match each production. Therefore, this command will not provide useful
information at the beginning of a Soar run (when working memory is empty) and should be
called in the middle (or at the end) of a Soar run.

The memories command is used to find the productions that are using the most memory
and, therefore, may be taking the longest time to match (this is only a heuristic). By
identifying these productions, you may be able to rewrite your program so that it will run

100 CHAPTER 5. THE SOAR USER INTERFACE

more quickly. Note that memory usage is just a heuristic measure of the match time: A
production might not use much memory relative to others but may still be time-consuming to
match, and excising a production that uses a large number of tokens may not speed up your
program, because the Rete matcher shares common structure among different productions.

As a rule of thumb, numbers less than 100 mean that the production is using a small amount
of memory, numbers above 1000 mean that the production is using a large amount of memory,
and numbers above 10,000 mean that the production is using a very large amount of memory.

See Also

matches

5.2.6 preferences

Examine details about the preferences that support the specified id and attribute .

Synopsis

preferences [-0123nNtw] [[id] [[^]attribute]]

Options

-0, -n, --none Print just the preferences themselves
-1, -N, --names Print the preferences and the names of the productions that

generated them
-2, -t, --timetags Print the information for the –names option above plus the

timetags of the wmes matched by the LHS of the indicated
productions

-3, -w, --wmes Print the information for the –timetags option above plus the
entire wme matched on the LHS.

-o, --object Print the support for all the wmes that comprise the object
(the specified ID).

id Must be an existing Soar object identifier.
attribute Must be an existing ˆattribute of the specified identifier.

Description

The preferences command prints all the preferences for the given object id and attribute. If
id and attribute are not specified, they default to the current state and the current operator.
The ’ˆ’ is optional when specifying the attribute. The optional arguments indicates the level
of detail to print about each preference.

5.2. EXAMINING MEMORY 101

This command is useful for examining which candidate operators have been proposed and
what relationships, if any, exist among them. If a preference has O-support, the string, “:O”
will also be printed.

When only the ID is specified on the commandline, if the ID is a state, Soar uses the default
attribute ˆoperator. If the ID is not a state, Soar prints the support information for all
WMEs whose <value> is the ID.

When an ID and the –object flag are specified, Soar prints the preferences / wme support
for all WMEs comprising the specified ID.

Notes

For the time being, numeric-indifferent preferences are listed under the heading “binary
indifferents:”.

By default, using the –wmes option with a wme on the top state will only print the timetags.
To change this, the kernel can be recompiled with DO TOP LEVEL REF CTS, but this has
other consequences (see comments in kernel.h).

Examples

This example prints the preferences on (S1 ˆoperator) and the production names which
created the preferences:

soar> preferences S1 operator --names

Preferences for S1 ^operator:

acceptables:

O2 (fill) +

From waterjug*propose*fill

O3 (fill) +

From waterjug*propose*fill

unary indifferents:

O2 (fill) =

From waterjug*propose*fill

O3 (fill) =

From waterjug*propose*fill

If the current state is S1, then the above syntax is equivalent to:

preferences -n

This example shows the support for the WMEs with the ˆjug attribute:

soar> preferences s1 jug

Preferences for S1 ^jug:

acceptables:

(S1 ^jug I4) :O

102 CHAPTER 5. THE SOAR USER INTERFACE

(S1 ^jug J1) :O

This example shows the support for the WMEs with <value> = J1, and the productions
that generated them

soar> pref J1 -1

Support for (31: O3 ^jug J1)

(O3 ^jug J1)

From water-jug*propose*fill

Support for (11: S1 ^jug J1)

(S1 ^jug J1) :O

From water-jug*apply*initialize-water-jug-look-ahead

This example shows the support for all WMEs that make up the object S1:

soar> pref -o s1

Support for S1 ^problem-space:

(S1 ^problem-space P1)

Support for S1 ^name:

(S1 ^name water-jug) :O

Support for S1 ^jug:

(S1 ^jug I4) :O

(S1 ^jug J1) :O

Support for S1 ^desired:

(S1 ^desired D1) :O

Support for S1 ^superstate-set:

(S1 ^superstate-set nil)

Preferences for S1 ^operator:

acceptables:

O2 (fill) +

O3 (fill) +

Arch-created wmes for S1:

(2: S1 ^superstate nil)

(1: S1 ^type state)

Input (IO) wmes for S1:

(3: S1 ^io I1)

See Also

5.2.7 print

Print items in working memory or production memory.

Synopsis

print [-fFin] production_name

5.2. EXAMINING MEMORY 103

print -[a|c|D|j|r|T|u][fFin]

print [-it] [-d <depth>] identifier|timetag|pattern

print -s[oS]

print -e pattern

Options

Printing items in production memory

-a, --all print the names of all productions currently loaded
-c, --chunks print the names of all chunks currently loaded
-D, --defaults print the names of all default productions currently loaded
-f, --full When printing productions, print the whole production. This

is the default when printing a named production.
-F, --filename also prints the name of the file that contains the production.
-i, --internal items should be printed in their internal form. For produc-

tions, this means leaving conditions in their reordered (rete
net) form.

-j, --justifications print the names of all justifications currently loaded.
-n, --name When printing productions, print only the name and not the

whole production. This is the default when printing any
category of productions, as opposed to a named production.

-r, --rl Print Soar-RL rules
-T, --template Print Soar-RL templates
-u, --user print the names of all user productions currently loaded

production name print the production named production-name

Printing items in working memory

-d, –depth n This option overrides the default printing depth (see the default-
wme-depth command for more detail).

-e, --exact Print only the wmes that match the pattern
-i, --internal items should be printed in their internal form. For working mem-

ory, this means printing the individual elements with their timetags,
rather than the objects.

-t, --tree wmes should be printed in in a tree form (one wme per line).
-v, --varprint Print identifiers enclosed in angle brackets.

identifier print the object identifier . identifier must be a valid Soar symbol
such as S1

pattern print the object whose working memory elements matching the given
pattern. See Description for more information on printing objects
matching a specific pattern.

timetag print the object in working memory with the given timetag

104 CHAPTER 5. THE SOAR USER INTERFACE

Printing the current subgoal stack

-s, --stack Specifies that the Soar goal stack should be printed. By default
this includes both states and operators.

-o, --operators When printing the stack, print only operators .
-S, --states When printing the stack, print only states .

Description

The print command is used to print items from production memory or working memory. It
can take several kinds of arguments. When printing items from working memory, the Soar
objects are printed unless the –internal flag is used, in which case the wmes themselves are
printed.

(identifier ^attribute value [+])

The pattern is surrounded by parentheses. The identifier , attribute , and value must be
valid Soar symbols or the wildcard symbol * which matches all occurrences. The optional
+ symbol restricts pattern matches to acceptable preferences. If wildcards are included, an
object will be printed for each pattern match, even if this results in the same object being
printed multiple times.

Examples

Print the objects in working memory (and their timetags) which have wmes with identifier
s1 and value v2 (note: this will print the entire s1 object for each match found):

print --internal (s1 ^* v2)

Print the Soar stack which includes states and operators:

print --stack

Print the named production in its RETE form:

print -if prodname

Print the names of all user productions currently loaded:

print -u

Default print vs tree print:

print s1 --depth 2

(S1 ^io I1 ^reward-link R1 ^superstate nil ^type state)

(I1 ^input-link I2 ^output-link I3)

print s1 --depth 2 --tree

(S1 ^io I1)

(I1 ^input-link I2)

5.2. EXAMINING MEMORY 105

(I1 ^output-link I3)

(S1 ^reward-link R1)

(S1 ^superstate nil)

(S1 ^type state)

Default Aliases

Alias Maps to
p print
pc print –chunks
wmes print -i

See Also

default-wme-depth predefined-aliases

5.2.8 production-find

Synopsis

production-find [-lrs[n|c]] pattern

Options

-c, --chunks Look only for chunks that match the pattern.
-l, --lhs Match pattern only against the conditions (left-hand side) of

productions (default).
-n, --nochunks Disregard chunks when looking for the pattern.
-r, --rhs Match pattern against the actions (right-hand side) of produc-

tions.
-s, --show-bindings Show the bindings associated with a wildcard pattern.
pattern Any pattern that can appear in productions.

Description

The production-find command is used to find productions in production memory that include
conditions or actions that match a given pattern . The pattern given specifies one or more
condition elements on the left hand side of productions (or negated conditions), or one
or more actions on the right-hand side of productions. Any pattern that can appear in
productions can be used in this command. In addition, the asterisk symbol, *, can be used
as a wildcard for an attribute or value. It is important to note that the whole pattern,
including the parenthesis, must be enclosed in curly braces for it to be parsed properly.

106 CHAPTER 5. THE SOAR USER INTERFACE

The variable names used in a call to production-find do not have to match the variable names
used in the productions being retrieved.

The production-find command can also be restricted to apply to only certain types of pro-
ductions, or to look only at the conditions or only at the actions of productions by using the
flags.

Examples

Find productions that test that some object gumby has an attribute alive with value t . In
addition, limit the rules to only those that test an operator named foo :

production-find (<state> ^gumby <gv> ^operator.name foo)(<gv> ^alive t)

Note that in the above command, <state> does not have to match the exact variable name
used in the production.

Find productions that propose the operator foo :

production-find --rhs (<x> ^operator <op> +)(<op> ^name foo)

Find chunks that test the attribute ˆpokey:

production-find --chunks (<x> ^pokey *)

Examples using the water-jugs demo:

source demos/water-jug/water-jug.soar

production-find (<s> ^name *)(<j> ^volume *)

production-find (<s> ^name *)(<j> ^volume 3)

production-find --rhs (<j> ^* <volume>)

See Also

sp

5.3 Configuring Trace Information and Debugging

This section describes the commands used primarily for debugging or to configure the trace
output printed by Soar as it runs. Users may: specify the content of the runtime trace
output; ask that they be alerted when specific productions fire and retract; or request details
on Soar’s performance.

The specific commands described in this section are:

Summary

5.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 107

chunk-name-format - Specify format of the name to use for new chunks.

firing-counts - Print the number of times productions have fired.

pwatch - Trace firings and retractions of specific productions.

stats - Print information on Soar’s runtime statistics.

verbose - Control detailed information printed as Soar runs.

warnings - Toggle whether or not warnings are printed.

watch - Control the information printed as Soar runs.

watch-wmes - Print information about wmes that match a certain pattern as
they are added and removed

Of these commands, watch is the most often used (and the most complex). pwatch is related
to watch, but applies only to specific, named productions. firing-counts and stats are
useful for understanding how much work Soar is doing. chunk-name-format is less-frequently
used, but allows for detailed control of Soar’s chunk naming.

5.3.1 chunk-name-format

Specify format of the name to use for new chunks.

Synopsis

chunk-name-format [-sl] -p [<prefix>]

chunk-name-format [-sl] -c [<count>]

Options

-s, --short Use the short format for naming chunks
-l, --long Use the long format for naming chunks (default)
-p, --prefix [<prefix>] If <prefix> is given, use <prefix> as the prefix for nam-

ing chunks. Otherwise, return the current prefix . (de-
faults to “chunk “)

-c, --count [<count>] If <count> is given, set the chunk counter for naming
chunks to <count>. Otherwise, return the current value
of the chunk counter.

Description

The short format for naming newly-created chunks is:

prefixChunknum

108 CHAPTER 5. THE SOAR USER INTERFACE

The long (default) format for naming chunks is:

prefix-Chunknum *ddc *impassetype *dcChunknum

where:

prefix is a user-definable prefix string; prefix defaults to “chunk “ when unspecified by the
user. It many not contain the character *,

Chunknum is <count> for the first chunk created, <count>+1 for the second chunk created,
etc.

dc is the number of the decision cycle in which the chunk was formed,

impassetype is one of [tie — conflict — cfailure — snochange — opnochange] ,

dcChunknum is the number of the chunk within that specific decision cycle.

5.3.2 firing-counts

Print the number of times each production has fired.

Synopsis

firing-counts [n]

firing-counts production_name

Options

If given, an option can take one of two forms – an integer or a production name:

n List the top n productions. If n is 0, only the productions which
haven’t fired are listed

production name Print how many times the production has fired

Description

The firing-counts command prints the number of times each production has fired; produc-
tion names are given from most requently fired to least frequently fired. With no arguments,
it lists all productions. If an integer argument, n , is given, only the top n productions
are listed. If n is zero (0), only the productions that haven’t fired at all are listed. If a
production name is given as an argument, the firing count for that production is printed.

Note that firing counts are reset by a call to init-soar .

5.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 109

Examples

This example prints the 10 productions which have fired the most times along with their
firing counts:

firing-counts 10

This example prints the firing counts of production my*first*production:

firing-counts my*first*production

Warnings

Firing-counts are reset to zero after an init-soar.

NB: This command is slow, because the sorting takes time O(n*log n)

Default Aliases

Alias Maps to
fc firing-counts

See Also

init-soar

5.3.3 pwatch

Trace firings and retractions of specific productions.

Synopsis

pwatch [-d|e] [production name]

110 CHAPTER 5. THE SOAR USER INTERFACE

Options

-d, --disable, --off Turn production watching off for the specified production. If
no production is specified, turn production watching off for
all productions.

-e, --enable, --on Turn production watching on for the specified production.
The use of this flag is optional, so this is pwatch’s default
behavior. If no production is specified, all productions cur-
rently being watched are listed.

production name The name of the production to watch.

Description

The pwatch command enables and disables the tracing of the firings and retractions of
individual productions. This is a companion command to watch , which cannot specify
individual productions by name.

With no arguments, pwatch lists the productions currently being traced. With one production-
name argument, pwatch enables tracing the production; –enable can be explicitly stated,
but it is the default action.

If –disable is specified followed by a production-name, tracing is turned off for the produc-
tion. When no production-name is specified, pwatch –enable lists all productions currently
being traced, and pwatch –disable disables tracing of all productions.

Note that pwatch now only takes one production per command. Use multiple times to
watch multiple functions.

Default Aliases

Alias Maps to
pw pwatch

See Also

watch

5.3.4 stats

Print information on Soar’s runtime statistics.

5.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 111

Synopsis

stats [-s|-m|-r]

Options

-m, --memory report usage for Soar’s memory pools
-r, --rete report statistics about the rete structure
-s, --system report the system (agent) statistics. This is the default if no args are

specified.

Description

This command prints Soar internal statistics. The argument indicates the component of
interest.

With the –system flag, the stats command lists a summary of run statistics, including the
following:

• Version — The Soar version number, hostname, and date of the run.

• Number of productions — The total number of productions loaded in the system,
including all chunks built during problem solving and all default productions.

• Timing Information — Might be quite detailed depending on the flags set at compile
time. See note on timers below.

• Decision Cycles — The total number of decision cycles in the run and the average
time-per-decision-cycle in milliseconds.

• Elaboration cycles — The total number of elaboration cycles that were executed
during the run, the average number of elaboration cycles per decision cycle, and the
average time-per-elaboration-cycle in milliseconds. This is not the total number of
production firings, as productions can fire in parallel.

• Production Firings — The total number of productions that were fired.

• Working Memory Changes — This is the total number of changes to working
memory. This includes all additions and deletions from working memory. Also prints
the average match time.

• Working Memory Size — This gives the current, mean and maximum number of
working memory elements.

The optional stats argument –memory provides information about memory usage and
Soar’s memory pools, which are used to allocate space for the various data structures used
in Soar.

112 CHAPTER 5. THE SOAR USER INTERFACE

The optional stats argument –rete provides information about node usage in the Rete net,
the large data structure used for efficient matching in Soar.

Default Aliases

Alias Maps to
st stats

See Also

timers

A Note on Timers

The current implementation of Soar uses a number of timers to provide time-based statistics
for use in the stats command calculations. These timers are:

total CPU time

total kernel time

phase kernel time (per phase)

phase callbacks time (per phase)

input function time

output function time

Total CPU time is calculated from the time a decision cycle (or number of decision cycles)
is initiated until stopped. Kernel time is the time spent in core Soar functions. In this case,
kernel time is defined as the all functions other than the execution of callbacks and the input
and output functions. The total kernel timer is only stopped for these functions. The phase
timers (for the kernel and callbacks) track the execution time for individual phases of the
decision cycle (i.e., input phase, preference phase, working memory phase, output phase,
and decision phase). Because there is overhead associated with turning these timers on and
off, the actual kernel time will always be greater than the derived kernel time (i.e., the sum
of all the phase kernel timers). Similarly, the total CPU time will always be greater than
the derived total (the sum of the other timers) because the overhead of turning these timers
on and off is included in the total CPU time. In general, the times reported by the single
timers should always be greater than than the corresponding derived time. Additionally,
as execution time increases, the difference between these two values will also increase. For
those concerned about the performance cost of the timers, all the run time timing calculations
can be compiled out of the code by defining NO TIMING STUFF (in soarkernel.h) before
compilation.

5.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 113

5.3.5 verbose

Control detailed information printed as Soar runs.

Synopsis

verbose [-ed]

Options

-d, --disable, --off Turn verbosity off.
-e, --enable, --on Turn verbosity on.

Description

Invoke with no arguments to query. (fix this) - More about what this command does?

5.3.6 warnings

Enable or disable the printing of warning messages from the Soar kernel.

Synopsis

warnings -[e|d]

Options

-e, --enable, --on Default. Print all warning messages from the kernel.
-d, --disable, --off Disable all, except most critical, warning messages.

Description

Enables and disables the printing of warning messages. If an argument is specified, then the
warnings are set to that state. If no argument is given, then the current warnings status
is printed. At startup, warnings are initially enabled. If warnings are disabled using this
command, then some warnings may still be printed, since some are considered too important
to ignore.

The warnings that are printed apply to the syntax of the productions, to notify the user
when they are not in the correct syntax. When a lefthand side error is discovered (such

114 CHAPTER 5. THE SOAR USER INTERFACE

as conditions that are not linked to a common state or impasse object), the production is
generally loaded into production memory anyway, although this production may never match
or may seriously slow down the matching process. In this case, a warning would be printed
only if warnings were –on . Righthand side errors, such as preferences that are not linked
to the state, usually result in the production not being loaded, and a warning regardless of
the warnings setting.

Examples

See Also

5.3.7 watch

Control the run-time tracing of Soar.

Synopsis

watch

watch [--level 0|1|2|3|4|5]

watch -N

watch -[dpPwrDujcbi] [<remove>] -[n|t|f]

watch --learning [<print|noprint|fullprint>]

Options

When appropriate, a specific option may be turned off using the remove argument. This
argument has a numeric alias; you can use 0 for remove . A mix of formats is acceptable,
even in the same command line.

5.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 115

Basic Watch Settings

Option Flag Argument to Option Description
-l, --level 0 to 5 (see Watch Levels be-

low)
This flag is optional but recom-
mended. Set a specific watch
level using an integer 0 to 5,
this is an inclusive operation

-N, --none No argument Turns off all printing about
Soar’s internals, equivalent to
–level 0

-d, --decisions remove (optional) Controls whether state and op-
erator decisions are printed as
they are made

-p, --phases remove (optional) Controls whether decisions cy-
cle phase names are printed as
Soar executes

-P, --productions remove (optional) Controls whether the names of
productions are printed as they
fire and retract, equivalent to -
Dujc

-w, --wmes remove (optional) Controls the printing of work-
ing memory elements that are
added and deleted as produc-
tions are fired and retracted.
(Including wme changes to
GDS)

-r, --preferences remove (optional) Controls whether the prefer-
ences generated by the traced
productions are printed when
those productions fire or re-
tract

Watch Levels

Use of the –level (-l) flag is optional but recommended.

0 watch nothing; equivalent to -N
1 watch decisions; equivalent to -d
2 watch phases and decisions; equivalent to -dp
3 watch productions, phases, and decisions; equivalent to -dpP
4 watch wmes, productions, phases, and decisions; equivalent to -dpPw
5 watch preferences, wmes, productions, phases, and decisions; equivalent to -dpPwr

It is important to note that watch level 0 turns off ALL watch options, including backtracing,
indifferent selection and learning. However, the other watch levels do not change these

116 CHAPTER 5. THE SOAR USER INTERFACE

settings. That is, if any of these settings is changed from its default, it will retain its new
setting until it is either explicitly changed again or the watch level is set to 0.

Watching Productions

By default, the names of the productions are printed as each production fires and retracts
(at watch levels 3 and higher). However, it may be more helpful to watch only a specific
type of production. The tracing of firings and retractions of productions can be limited to
only certain types by the use of the following flags:

Option Flag Argument to Option Description
-D, --default remove (optional) Control only default-

productions as they fire
and retract

-u, --user remove (optional) Control only user-
productions as they fire
and retract

-c, --chunks remove (optional) Control only chunks as they
fire and retract

-j, --justifications remove (optional) Control only justifications as
they fire and retract

-T, --template remote (optional) Soar-RL template firing trace

Note: The pwatch command is used to watch individual productions specified by name
rather than watch a type of productions, such as –user .

Additionally, when watching productions, users may set the level of detail to be displayed
for WMEs that are added or retracted as productions fire and retract. Note that detailed
information about WMEs will be printed only for productions that are being watched.

Option Flag Argument to Option Description
-n, --nowmes No argument When watching productions, do

not print any information about
matching wmes

-t, --timetags No argument When watching productions,
print only the timetags for
matching wmes

-f, --fullwmes No argument When watching productions,
print the full matching wmes

Watching Learning

Option Flag Argument to Option Description
-L, --learning noprint, print, or fullprint (see

table below)
Controls the printing of
chunks/justifications as they
are created

5.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 117

As Soar is running, it may create justifications and chunks which are added to production
memory. The watch command allows users to monitor when chunks and justifications are
created by specifying one of the following arguments to the watch –learning command:

Argument Alias Effect
noprint 0 Print nothing about new chunks or

justifications (default)
print 1 Print the names of new chunks and

justifications when created
fullprint 2 Print entire chunks and justifica-

tions when created

Watching other Functions

Option Flag Argument to Option Description
-b, --backtracing remove (optional) Controls the printing of

backtracing information
when a chunk or justifi-
cation is created

-i, --indifferent-selection remove (optional) Controls the printing of
the scores for tied oper-
ators in random indiffer-
ent selection mode

-R, --rl remove (optional) Soar-RL debugging trace

Description

The watch command controls the amount of information that is printed out as Soar runs.
The basic functionality of this command is to trace various levels of information about Soar’s
internal workings. The higher the level , the more information is printed as Soar runs. At
the lowest setting, 0 — –none , nothing is printed. The levels are cumulative, so that each
successive level prints the information from the previous level as well as some additional
information. The default setting for the watch level is 1 , (or –decisions). Each level
can be indicated with either a number or a series of flags as follows:

0 or --none

1 or --decisions

2 or --decisions --phases

3 or --decisions --phases --productions

4 or --decisions --phases --productions --wmes

5 or --decisions --phases --productions --wmes --preferences

The numerical arguments inclusively turn on all levels up to the number specified. To use
numerical arguments to turn off a level, specify a number which is less than the level to be
turned off. For instance, to turn off watching of productions, specify “watch –level 2” (or

118 CHAPTER 5. THE SOAR USER INTERFACE

1 or 0). Numerical arguments are provided for shorthand convenience. For more detailed
control over the watch settings, the named arguments should be used.

With no arguments, this command prints information about the current watch status, i.e.,
the values of each parameter.

For the named arguments, including the named argument turns on only that setting. To
turn off a specific setting, follow the named argument with remove or 0.

The named argument –productions is shorthand for the four arguments –default , –user
, –justifications , and –chunks .

Examples

The most common uses of watch are by using the numeric arguments which indicate watch
levels. To turn off all printing of Soar internals, do any one of the following (not all possi-
bilities listed):

watch --level 0

watch -l 0

watch -N

Although the –level flag is optional, its use is recommended:

watch --level 5 OK
watch 5 OK, but try to avoid

Be careful of where the level is on the command line, for example, if you want level 2 and
preferences:

watch -r -l 2 Incorrect: -r flag ignored, level 2 parsed after it and overrides the setting
watch -r 2 Syntax error: 0 or remove expected as optional argument to -r
watch -r -l 2 Incorrect: -r flag ignored, level 2 parsed after it and overrides the setting
watch 2 -r OK, but try to avoid
watch -l 2 -r OK

To turn on printing of decisions, phases and productions, do any one of the following (not
all possibilities listed):

watch --level 3

watch -l 3

watch --decisions --phases --productions

watch -d -p -P

Individual options can be changed as well. To turn on printing of decisions and wmes, but
not phases and productions, do any one of the following (not all possibilities listed):

5.3. CONFIGURING TRACE INFORMATION AND DEBUGGING 119

watch --level 1 --wmes

watch -l 1 -w

watch --decisions --wmes

watch -d --wmes

watch -w --decisions

watch -w -d

To turn on printing of decisions, productions and wmes, and turns phases off, do any one of
the following (not all possibilities listed):

watch --level 4 --phases remove

watch -l 4 -p remove

watch -l 4 -p 0

watch -d -P -w -p remove

To watch the firing and retraction of decisions and only user productions, do any one of the
following (not all possibilities listed):

watch -l 1 -u

watch -d -u

To watch decisions, phases and all productions except user productions and justifications,
and to see full wmes, do any one of the following (not all possibilities listed):

watch --decisions --phases --productions --user remove --justifications remove --fullwmes

watch -d -p -P -f -u remove -j 0

watch -f -l 3 -u 0 -j 0

Default Aliases

Alias Maps to
w watch

See Also

pwatch print run watch-wmes

5.3.8 watch-wmes

Print information about wmes matching a certain pattern as they are added and removed.

Synopsis

watch-wmes -[a|r] -t <type> pattern

watch-wmes -[l|R] [-t <type>]

120 CHAPTER 5. THE SOAR USER INTERFACE

Options

-a, --add-filter Add a filter to print wmes that meet the type and pattern
criteria.

-r, --remove-filter Delete filters for printing wmes that match the type and pat-
tern criteria.

-l, --list-filter List the filters of this type currently in use. Does not use the
pattern argument.

-R, --reset-filter Delete all filters of this type. Does not use pattern arg.
-t, --type Follow with a type of wme filter, see below.

Pattern

The pattern is an id-attribute-value triplet:

id attribute value

Note that * can be used in place of the id, attribute or value as a wildcard that maches any
string. Note that braces are not used anymore.

Types

When using the -t flag, it must be followed by one of the following:

adds Print info when a wme is added .
removes Print info when a wme is retracted .
both Print info when a wme is added or retracted.

When issuing a -R or -l , the -t flag is optional. Its absence is equivalent to -t both .

Description

This commands allows users to improve state tracing by issuing filter-options that are applied
when watching wmes. Users can selectively define which object-attribute-value triplets are
monitored and whether they are monitored for addition, removal or both, as they go in and
out of working memory.

Note: The functionality of watch-wmes resided in the watch command prior to Soar 8.6.

Examples

Users can watch an attribute of a particular object (as long as that object already exists):

soar> watch-wmes --add-filter -t both D1 speed *

or print WMEs that retract in a specific state (provided the state already exists):

5.4. CONFIGURING SOAR’S RUNTIME PARAMETERS 121

soar> watch-wmes --add-filter -t removes S3 * *

or watch any relationship between objects:

soar> watch-wmes --add-filter -t both * ontop *

5.4 Configuring Soar’s Runtime Parameters

This section describes the commands that control Soar’s Runtime Parameters. Many of these
commands provide options that simplify or restrict runtime behavior to enable easier and
more localized debugging. Others allow users to select alternative algorithms or methodolo-
gies. Users can configure Soar’s learning mechanism; examine the backtracing information
that supports chunks and justifications; provide hints that could improve the efficiency of
the Rete matcher; limit runaway chunking and production firing; choose an alternative algo-
rithm for determining whether a working memory element receives O-support; and configure
options for selecting between mutually indifferent operators.

The specific commands described in this section are:

Summary

explain-backtraces - Print information about chunk and justification back-
traces.

indifferent-selection - Controls indifferent preference arbitration.

learn - Set the parameters for chunking, Soar’s learning mechanism.

max-chunks - Limit the number of chunks created during a decision cycle.

max-elaborations - Limit the maximum number of elaboration cycles in a given
phase.

max-memory-usage - Set the number of bytes that when exceeded by an agent,
will trigger the memory usage exceeded event.

max-nil-output-cycles - Limit the maximum number of decision cycles exe-
cuted without producing output.

multi-attributes - Declare multi-attributes so as to increase Rete matching
efficiency.

numeric-indifferent-mode - Select method for combining numeric preferences.

o-support-mode - Choose experimental variations of o-support.

predict - Predict the next selected operator

rl - Get/Set Soar-RL parameters and statistics

save-backtraces - Save trace information to explain chunks and justifications.

select - Force the next selected operator

122 CHAPTER 5. THE SOAR USER INTERFACE

set-stop-phase - Controls the phase where agents stop when running by deci-
sion.

timers - Toggle on or off the internal timers used to profile Soar.

waitsnc - Generate a wait state rather than a state-no-change impasse.

5.4.1 explain-backtraces

Print information about chunk and justification backtraces.

Synopsis

explain-backtraces -f prod_name

explain-backtraces [-c <n>] prod_name

Options

(no args) List all productions that can be “explained”
prod name List all conditions and grounds for the chunk or justification.
-c, --condition Explain why condition number n is in the chunk or justification.
-f, --full Print the full backtrace for the named production

Description

This command provides some interpretation of backtraces generated during chunking.

The two most useful variants are:

explain-backtraces prodname

explain-backtraces -c n prodname

The first variant prints a numbered list of all the conditions for the named chunk or justi-
fication, and the ground which resulted in inclusion in the chunk/justification. A ground is
a working memory element (WME) which was tested in the supergoal. Just knowing which
WME was tested may be enough to explain why the chunk/justification exists. If not, the
second variant, explain-backtraces -c n prodname , where n is the condition of interest,
can be used to obtain a list of the productions which fired to obtain this condition in the
chunk/justification (and the crucial WMEs tested along the way).

save-backtraces mode must be on when a chunk or justification is created or no explanation
will be available. Calling explain-backtraces with no argument prints a list of all chunks
and justifications for which backtracing information is available.

5.4. CONFIGURING SOAR’S RUNTIME PARAMETERS 123

Examples

Examining the chunk chunk-65*d13*tie*2 generated in a water-jug task:

soar> explain-backtraces chunk-65*d13*tie*2

(sp chunk-65*d13*tie*2

(state <s2> ^name water-jug ^jug <n4> ^jug <n3>)

(state <s1> ^name water-jug ^desired <d1> ^operator <o1> + ^jug <n1>

^jug <n2>)

(<s2> ^desired <d1>)

(<o1> ^name pour ^into <n1> ^jug <n2>)

(<n1> ^volume 3 ^contents 0)

(<s1> ^problem-space <p1>)

(<p1> ^name water-jug)

(<n4> ^volume 3 ^contents 3)

(<n3> ^volume 5 ^contents 0)

(<n2> ^volume 5 ^contents 3)

-->

(<s3> ^operator <o1> -))

1: (state <s2> ^name water-jug) Ground: (S3 ^name water-jug)

2: (state <s1> ^name water-jug) Ground: (S5 ^name water-jug)

3: (<s1> ^desired <d1>) Ground: (S5 ^desired D1)

4: (<s2> ^desired <d1>) Ground: (S3 ^desired D1)

5: (<s1> ^operator <o1> +) Ground: (S5 ^operator O18 +)

6: (<o1> ^name pour) Ground: (O18 ^name pour)

7: (<o1> ^into <n1>) Ground: (O18 ^into N3)

8: (<n1> ^volume 3) Ground: (N3 ^volume 3)

9: (<n1> ^contents 0) Ground: (N3 ^contents 0)

10: (<s1> ^jug <n1>) Ground: (S5 ^jug N3)

11: (<s1> ^problem-space <p1>) Ground: (S5 ^problem-space P3)

12: (<p1> ^name water-jug) Ground: (P3 ^name water-jug)

13: (<s2> ^jug <n4>) Ground: (S3 ^jug N1)

14: (<n4> ^volume 3) Ground: (N1 ^volume 3)

15: (<n4> ^contents 3) Ground: (N1 ^contents 3)

16: (<s2> ^jug <n3>) Ground: (S3 ^jug N2)

17: (<n3> ^volume 5) Ground: (N2 ^volume 5)

18: (<n3> ^contents 0) Ground: (N2 ^contents 0)

19: (<s1> ^jug <n2>) Ground: (S5 ^jug N4)

20: (<n2> ^volume 5) Ground: (N4 ^volume 5)

21: (<n2> ^contents 3) Ground: (N4 ^contents 3)

22: (<o1> ^jug <n2>) Ground: (O18 ^jug N4)

Further examining condition 21:

soar> explain-backtraces -c 21 chunk-65*d13*tie*2

Explanation of why condition (N4 ^contents 3) was included in chunk-65*d13*tie*2

Production chunk-64*d13*opnochange*1 matched

124 CHAPTER 5. THE SOAR USER INTERFACE

(N4 ^contents 3) which caused

production selection*select*failure-evaluation-becomes-reject-preference to match

(E3 ^symbolic-value failure) which caused

A result to be generated.

Default Aliases

Alias Maps to
eb explain-backtraces

See Also

save-backtraces

5.4.2 indifferent-selection

Controls indifferent preference arbitration.

Synopsis

indifferent-selection

indifferent-selection [-s]

indifferent-selection [-bgfxl]

indifferent-selection [-et] [value]

indifferent-selection [-p] <parameter> [reduction policy]

indifferent-selection [-r] <parameter> <reduction policy> [reduction rate]

indifferent-selection [-a] [setting]

5.4. CONFIGURING SOAR’S RUNTIME PARAMETERS 125

Options

-s, --stats Summary of settings
<policy> Set exploration policy
<parameter> [value] Get/Set exploration pol-

icy parameters (if value
not given, returns the
current value)

<parameter> [reduction policy] Get/Set exploration
policy parameter reduc-
tion policy (if policy
not given, returns the
current)

<parameter> <reduction policy> [reduction rate] Get/Set exploration pol-
icy parameter reduction
rate for a policy (if rate
not give, returns the cur-
rent)

-a, --auto-reduce [on,off] Get/Set auto-reduction
setting (if setting not
provided, returns the
current)

Description

The indifferent-selection command allows the user to set options relating to selection
between operator proposals that are mutually indifferent in preference memory.

The primary option is the exploration policy (each is covered below). When Soar starts, soft-
max is the default policy. The first time Soar-RL is enabled, the architecture automatically
changes the policy to epsilon-greedy and issues a message to the trace.

Some policies have parameters to temper behavior. The indifferent-selection command
provides basic facilities to automatically reduce these parameters exponentially and linearly
each decision cycle by a fixed rate. In addition to setting these policies/rates, the auto-
reduce option enables the automatic reduction system (disabled by default), for which the
Soar decision cycle incurs a small performance cost.

126 CHAPTER 5. THE SOAR USER INTERFACE

Exploration Policies

-b, --boltzmann Tempered softmax (uses temperature)
-g, --epsilon-greedy Tempered greedy (uses epsilon)
-x, --softmax Random, biased by numeric indifferent values (if a non-

positive value is encountered, resorts to a uniform random
selection)

-f, --first Deterministic, first indifferent preference is selected
-l, --last Deterministic, last indifferent preference is selected

Exploration Policy Parameters

Parameter Name Acceptable Values Default Value
-e, --epsilon [0, 1] 0.1
-t, --temperature (0, inf) 25

Exploration Policy Parameter Auto-Reduction Policies

Policy Name Valid Rates Default Rate
exponential default [0, 1] 1
linear [0, inf] 0

Default Aliases

Alias Maps to
inds indifferent-selection

See Also

numeric-indifferent-mode rl

5.4.3 learn

Set the parameters for chunking, Soar’s learning mechanism.

Synopsis

learn [-l]

learn [-d|E|o]

learn [-eabnN]

5.4. CONFIGURING SOAR’S RUNTIME PARAMETERS 127

Options

-e, --enable, --on Turn chunking on. Can be modified by
-a or -b.

-d, --disable, --off Turn all chunking off. (default)
-E, --except Learning is on, except as specified by

RHS dont-learn actions.
-o, --only Chunking is on only as specified by RHS

force-learn actions.
-l, --list Prints listings of dont-learn and force-

learn states.
-a, --all-levels Build chunks whenever a subgoal re-

turns a result. Learning must be –
enabled.

-b, --bottom-up Build chunks only for subgoals that have
not yet had any subgoals with chunks
built. Learning must be –enabled.

-n, --enable-through-local-negations Build chunks when local negation en-
countered in backtrace. (default)

-N, --disable-through-local-negations Do not build chunks when local negation
encountered in backtrace.

Description

The learn command controls the parameters for chunking (Soar’s learning mechanism). With
no arguments, this command prints out the current learning environment status. If argu-
ments are provided, they will alter the learning environment as described in the options and
arguments table. The watch command can be used to provide various levels of detail when
productions are learned. Learning is disabled by default.

With the –on flag, chunking is on all the time. With the –except flag, chunking is on, but
Soar will not create chunks for states that have had RHS dont-learn actions executed in
them. With the –only flag, chunking is off, but Soar will create chunks for only those states
that have had RHS force-learn actions executed in them. With the –off flag, chunking is
off all the time.

The –only flag and its companion force-learn RHS action allow Soar developers to turn
learning on in a particular problem space, so that they can focus on debugging the learning
problems in that particular problem space without having to address the problems elsewhere
in their programs at the same time. Similarly, the –except flag and its companion dont-
learn RHS action allow developers to temporarily turn learning off for debugging purposes.
These facilities are provided as debugging tools, and do not correspond to any theory of
learning in Soar.

The –all-levels and –bottom-up flags are orthogonal to the –on , –except , –only , and –
off flags, and so, may be used in combination with them. With bottom-up learning, chunks

128 CHAPTER 5. THE SOAR USER INTERFACE

are learned only in states in which no subgoal has yet generated a chunk. In this mode,
chunks are learned only for the “bottom” of the subgoal hierarchy and not the intermediate
levels. With experience, the subgoals at the bottom will be replaced by the chunks, allowing
higher level subgoals to be chunked.

Similarly, “–enable-through-local-negations” and “–disable-though-local-negations” are or-
thogonal to the rest of the learn options. These options control whether or not chunks
can be created that are derived from rules that check for negated WMEs on the substate
(local negations). Chunking through local negations can result in overgeneral chunks, but
disabling this ability will reduce the number of chunks formed. The default is to enable
chunking through local negations.

If chunking through local negations is disabled, to see when chunks are discarded (and why),
set “watch –learning print”.

Learning can be turned on or off at any point during a run.

Examples

To enable learning only at the lowest subgoal level:

learn -e b

To see all the force-learn and dont-learn states registered by RHS actions

learn -l

Default Aliases

Alias Maps to
l learn

See Also

watch explain-backtraces save-backtraces

5.4.4 max-chunks

Limit the number of chunks created during a decision cycle.

Synopsis

max-chunks [n]

5.4. CONFIGURING SOAR’S RUNTIME PARAMETERS 129

Options

n Maximum number of chunks allowed during a decision cycle.

Description

The max-chunks command is used to limit the maximum number of chunks that may be
created during a decision cycle. The initial value of this variable is 50; allowable settings are
any integer greater than 0.

The chunking process will end after max-chunks chunks have been created, even if there are
more results that have not been backtraced through to create chunks , and Soar will proceed
to the next phase. A warning message is printed to notify the user that the limit has been
reached.

This limit is included in Soar to prevent getting stuck in an infinite loop during the chunking
process. This could conceivably happen because newly-built chunks may match immediately
and are fired immediately when this happens; this can in turn lead to additional chunks being
formed, etc. If you see this warning, something is seriously wrong; Soar is unable to guarantee
consistency of its internal structures. You should not continue execution of the Soar program
in this situation; stop and determine whether your program needs to build more chunks or
whether you’ve discovered a bug (in your program or in Soar itself).

5.4.5 max-elaborations

Limit the maximum number of elaboration cycles in a given phase. Print a warning message
if the limit is reached during a run.

Synopsis

max-elaborations [n]

Options

n Maximum allowed elaboration cycles, must be a positive integer.

Description

This command sets and prints the maximum number of elaboration cycles allowed. If n is
given, it must be a positive integer and is used to reset the number of allowed elaboration
cycles. The default value is 100. max-elaborations with no arguments prints the current
value.

130 CHAPTER 5. THE SOAR USER INTERFACE

max-elaborations controls the maximum number of elaborations allowed in a single deci-
sion cycle. The elaboration phase will end after max-elaboration cycles have completed, even
if there are more productions eligible to fire or retract; and Soar will proceed to the next
phase after a warning message is printed to notify the user. This limits the total number of
cycles of parallel production firing but does not limit the total number of productions that
can fire during elaboration.

This limit is included in Soar to prevent getting stuck in infinite loops (such as a production
that repeatedly fires in one elaboration cycle and retracts in the next); if you see the warning
message, it may be a signal that you have a bug your code. However some Soar programs
are designed to require a large number of elaboration cycles, so rather than a bug, you may
need to increase the value of max-elaborations .

In Soar8, max-elaborations is checked during both the Propose Phase and the Apply Phase.
If Soar8 runs more than the max-elaborations limit in either of these phases, Soar8 proceeds
to the next phase (either Decision or Output) even if quiescence has not been reached.

Examples

The command issued with no arguments, returns the max elaborations allowed:

max-elaborations

to set the maximum number of elaborations in one phase to 50:

max-elaborations 50

5.4.6 max-memory-usage

Set the number of bytes that when exceeded by an agent, will trigger the memory usage
exceeded event.

Synopsis

max-memory-usage [n]

Options

n Size of limit in bytes.

Description

The max-memory-usage command is used to trigger the memory usage exceeded event.
The initial value of this is 100MB (100,000,000); allowable settings are any integer greater

5.4. CONFIGURING SOAR’S RUNTIME PARAMETERS 131

than 0. The code supporting this event is commented out by default in the release build.
The test can be computationally expensive and is needed only for specific embedded appli-
cations. Users may enable the test and event generation by uncommenting code in SoarK-
ernel/src/mem.cpp.

Using the command with no arguments displays the current limit.

5.4.7 max-nil-output-cycles

Limit the maximum number of decision cycles that are executed without producing output
when run is invoked with run-til-output args.

Synopsis

max-nil-output-cycles [n]

Options

n Maximum number of consecutive output cycles allowed without producing output.
Must be a positive integer.

Description

This command sets and prints the maximum number of nil output cycles (output cycles that
put nothing on the output link) allowed when running using run-til-output (run –output).
If n is not given, this command prints the current number of nil-output-cycles allowed. If n
is given, it must be a positive integer and is used to reset the maximum number of allowed
nil output cycles.

max-nil-output-cycles controls the maximum number of output cycles that generate no
output allowed when a run –out command is issued. After this limit has been reached,
Soar stops. The default initial setting of n is 15.

Examples

The command issued with no arguments, returns the max empty output cycles allowed:

max-nil-output-cycles

to set the maximum number of empty output cycles in one phase to 25:

max-nil-output-cycles 25

132 CHAPTER 5. THE SOAR USER INTERFACE

See Also

run

5.4.8 multi-attributes

Declare a symbol to be multi-attributed.

Synopsis

multi-attributes [symbol [n]]

Options

symbol Any Soar attribute.
n Integer > 1, estimate of degree of simultaneous values for attribute.

Description

This command declares the given symbol to be an attribute which can take on multiple
values. The optional n is an integer (>1) indicating an upper limit on the number of
expected values that will appear for an attribute. If n is not specified, the value 10 is
used for each declared multi-attribute. More informed values will tend to result in greater
efficiency. This command is used only to provide hints to the production condition reorderer
so it can produce better condition orderings. Better orderings enable the rete network to
run faster. This command has no effect on the actual contents of working memory and most
users needn’t use this at all.

Note that multi-attributes declarations must be made before productions are loaded into
soar or this command will have no effect.

Examples

Declare the symbol “thing” to be an attribute likely to take more than 1 but no more than
4 values:

multi-attributes thing 4

5.4.9 numeric-indifferent-mode

Select method for combining numeric preferences.

5.4. CONFIGURING SOAR’S RUNTIME PARAMETERS 133

Synopsis

numeric-indifferent-mode [-as]

Options

-a, --avg, --average Use average mode (default).
-s, --sum Use sum mode.

Description

The numeric-indifferent-mode command is used to select the method for combining numeric
preferences. This command is only meaningful in indifferent-selection –random mode.

The default procedure is –avg (average) which assigns a final value to an operator according
to the rule:

• If the operator has at least one numeric preference, assign it the value that is the
average of all of its numeric preferences.

• If the operator has no numeric preferences (but has been included in the indifferent
selection through some combination of non-numeric preferences), assign it the value
50.

The intended range of numeric-preference values for –avg mode is 0-100.

The other combination option –sum assigns a final value according to the rule:

• Add together any numeric preferences for the operator (defaulting to 0 if there are
none).

• Assign the operator the value eˆ{PreferenceSum / AgentTemperature}, where Agent-
Temperature is a compile-time constant currently set at 25.0.

Any real-numbered preference may be used in –sum mode.

Once a value has been computed for each operator, the next operator is selected probabilis-
tically, with each candidate operator’s chance weighted by its computed value.

5.4.10 o-support-mode

Choose experimental variations of o-support.

134 CHAPTER 5. THE SOAR USER INTERFACE

Synopsis

o-support-mode [0|1|2|3|4]

Options

0 Mode 0 is the base mode. O-support is calculated based on the structure of working
memory that is tested and modified. Testing an operator or operator acceptable
preference results in state or operator augmentations being o-supported. The sup-
port computation is very complex (see Soar manual).

1 Mode 1 is the same as mode 2, but a message is printed whenever the alternative
scheme would have made a difference in the Soar program.

2 Mode 2 is the same as mode 0 except that all support is calculated the production
structure, not from working memory structure. Augmentations of operators are still
o-supported.

3 Mode 3 is the same as mode 2 except that operator elaborations (adding attributes to
operators) now get i-support even though you have to test the operator to elaborate
an operator. In cases where the rule mixes support types, support defaults to o-
support (and a warning is printed).

4 Mode 4 is the default. It is the same as mode 3 except where a rule mixes support
types, support defaults to i-support (and a warning is still printed).

Description

The o-support-mode command is used to control the way that o-support is determined for
preferences. Only o-support modes 3 & 4 can be considered current to Soar8, and o-support
mode 4 should be considered an improved version of mode 3. The default o-support mode
is mode 4.

In o-support modes 3 & 4, support is given production by production; that is, all preferences
generated by the RHS of a single instantiated production will have the same support. The
difference between the two modes is in how they handle productions with both operator and
non-operator augmentations on the RHS. For more information on o-support calculations,
see the relevant appendix in the Soar manual.

Running o-support-mode with no arguments prints out the current o-support-mode.

5.4.11 predict

Predict the next selected operator

5.4. CONFIGURING SOAR’S RUNTIME PARAMETERS 135

Synopsis

predict

Options

No options

Description

The predict command determines, based upon current operator proposals, which operator
will be chosen during the next decision phase. If predict determines an operator tie will
be encountered, “tie” is returned. If predict determines no operator will be selected (state
no-change), “none” is returned. If predict determines a conflict will arise during the decision
phase, “conflict” is returned. If predict determines a constraint failure will occur, “con-
straint” is returned. Otherwise, predict will return the id of the operator to be chosen. If
operator selection will require probabilistic selection, and no alterations to the probabilities
are made between the call to predict and decision phase, predict will manipulate the random
number generator to enforce its prediction.

See Also

select

5.4.12 rl

Get/Set Soar-RL parameters and statistics

Synopsis

rl

rl [-g|--get] <parameter>

rl [-s|--set] <parameter>

rl [-S|--stats] <statistic>

Parameters

-g, --get Retrieve a Soar-RL parameter value
-s, --set Set a Soar-RL parameter value
-S, --stats Access Soar-RL statistics

136 CHAPTER 5. THE SOAR USER INTERFACE

Description

This command is used to get/set all parameters in Soar-RL. Additionally used to access
statistics. See tables below for available parameters, full information is in the Soar-RL
manual.

Parameters

Without any options: summary table of parameter settings

Parameter Name Acceptable Values Default
learning on, off off
temporal-extension on, off on

discount-rate [0, 1] 0.9

learning-rate [0, 1] 0.3
learning-policy sarsa, q-learning sarsa
hrl-discount on, off on

eligibility-trace-decay-rate [0, 1] 0
eligibility-trace-tolerance (0, inf) 0.001

Examples

This command gets the value of the learning-rate parameter:

rl --get learning-rate

This command sets the value of the learning-rate parameter to 0.5:

rl --set learning-rate 0.5

5.4.13 save-backtraces

Save trace information to explain chunks and justifications.

Synopsis

save-backtraces [-ed]

5.4. CONFIGURING SOAR’S RUNTIME PARAMETERS 137

Options

-e, --enable, --on Turn explain sysparam on.
-d, --disable, --off Turn explain sysparam off.

Description

The save-backtraces variable is a toggle that controls whether or not backtracing informa-
tion (from chunks and justifications) is saved.

When save-backtraces is set to off , backtracing information is not saved and explanations
of the chunks and justifications that are formed can not be retrieved. When save-backtraces
is set to on , backtracing information can be retrieved by using the explain-backtraces com-
mand. Saving backtracing information may slow down the execution of your Soar program,
but it can be a very useful tool in understanding how chunks are formed.

See Also

explain-backtraces

5.4.14 select

Force the next selected operator

Synopsis

select <id>

Options

If no “id” is supplied, currently “select”ed operator (if applicable) is displayed

id case-insensitive operator id of the operator to be selected in the next decision phase

Description

The select command will force the selection of an operator, whose id is supplied as an
argument, during the next decision phase. If the argument is not a proposed operator in
the next decision phase, an error is raised and operator selection proceeds as if the select
command had not been called. Otherwise, the supplied operator will be selected as the next
operator, regardless of preferences. If select is called with no id argument, the command

138 CHAPTER 5. THE SOAR USER INTERFACE

returns the operator id currently forced for selection (by a previous call to select), if one
exists.

Examples

Assuming operator “O2” is a valid operator, this would select it as the next operator to be
selected:

select O2

After this command, issuing just “select” will get “O2” as a return:

select

See Also

predict

5.4.15 set-stop-phase

Controls the phase where agents stop when running by decision.

Synopsis

set-stop-phase -[ABadiop]

Options

Options -A and -B are optional and mutually exclusive. If not specified, the default is -B.

Only one of -a, -d, -i, -o, -p must be selected.

With no options, reports the current stop phase.

-A, --after Stop after specified phase.
-B, --before Stop before specified phase (the default).
-a, --apply Select the apply phase.
-d, --decision Select the decision phase.
-i, --input Select the input phase.
-o, --output Select the output phase.
-p, --proposal Select the proposal phase.

5.4. CONFIGURING SOAR’S RUNTIME PARAMETERS 139

Description

When running by decision cycle it can be helpful to have agents stop at a particular point in
its execution cycle. This command allows the user to control which phase Soar stops in. The
precise definition is that running for <n> decisions and stopping before phase <ph> means
to run until the decision cycle counter has increased by <n> and then stop when the next
phase is <ph>. The phase sequence (as of this writing) is: input, proposal, decision, apply,
output. Stopping after one phase is exactly equivalent to stopping before the next phase.

On initialization Soar defaults to stopping before the input phase (or after the output phase,
however you like to think of it).

Setting the stop phase applies to all agents.

Examples

set-stop-phase -Bi // stop before input phase

set-stop-phase -Ad // stop after decision phase (before apply phase)

set-stop-phase -d // stop before decision phase

set-stop-phase --after --output // stop after output phase

set-stop-phase // reports the current stop phase

See Also

5.4.16 timers

Toggle on or off the internal timers used to profile Soar.

Synopsis

timers [-ed]

Options

-d, --disable, --off Disable all timers.
-e, --enable, --on Enable timers as compiled.

Description

This command is used to control the timers that collect internal profiling information while
Soar is running. With no arguments, this command prints out the current timer status.
Timers are ENABLED by default. The default compilation flags for soar enable the basic

140 CHAPTER 5. THE SOAR USER INTERFACE

timers and disable the detailed timers. The timers command can only enable or disable
timers that have already been enabled with compiler directives. See the stats command for
more info on the Soar timing system.

See Also

stats

5.4.17 waitsnc

Generate a wait state rather than a state-no-change impasse.

Synopsis

wait -[e|d]

Options

-e, --enable, --on Turns a state-no-change into a wait state.
-d, --disable, --off Default. A state-no-change generates an impasse.

Description

In some systems, espcially those that model expert (fully chunked) knowledge, a state-no-
change may represent a wait state rather than an impasse. The waitsnc command allows the
user to switch to a mode where a state-no-change that would normally generate an impasse
(and subgoaling), instead generates a wait state. At a wait state, the decision cycle will
repeat (and the decision cycle count is incremented) but no state-no-change impasse (and
therefore no substate) will be generated.

When issued with no arguments, waitsnc returns its current setting.

5.5 File System I/O Commands

This section describes commands which interact in one way or another with operating system
input and output, or file I/O. Users can save/retrieve information to/from files, redirect the
information printed by Soar as it runs, and save and load the binary representation of
productions. The specific commands described in this section are:

5.5. FILE SYSTEM I/O COMMANDS 141

Summary

cd - Change directory.

clog - Record all user-interface input and output to a file. (was log)

command-to-file - Dump the printed output and results of a command to a
file.

dirs - List the directory stack.

echo - Print a string to the current output device.

ls - List the contents of the current working directory.

popd - Pop the current working directory off the stack and change to the next
directory on the stack.

pushd - Push a directory onto the directory stack, changing to it.

pwd - Print the current working directory.

rete-net - Save the current Rete net, or restore a previous one.

set-library-location - Set the top level directory containing demos/help/etc.

source - Load and evaluate the contents of a file.

The source command is used for nearly every Soar program. The directory functions are
important to understand so that users can navigate directories/folders to load/save the files of
interest. Soar applications that include a graphical interface or other simulation environment
will often require the use of echo .

5.5.1 cd

Change directory.

Synopsis

cd [directory]

Options

directory The directory to change to, can be relative or full path.

Description

Change the current working directory. If run with no arguments, returns to the directory
that the command line interface was started in, often referred to as the home directory.

142 CHAPTER 5. THE SOAR USER INTERFACE

Examples

To move to the relative directory named ../home/soar/agents

cd ../home/soar/agents

Default Aliases

Alias Maps to
chdir cd

See Also

dirs ls pushd popd source pwd

5.5.2 clog

Record all user-interface input and output to a file.

Synopsis

clog -[Ae] filename

clog -a string

clog [-cdoq]

Options

filename Open filename and begin logging.
-c, --close, -o, --off, -d, --disable Stop logging, close the file.
-a, --add string Add the given string to the open log file.
-q, --query Returns open if logging is active or

closed if logging is not active.
-A, --append, -e, --existing Opens existing log file named filename

and logging is added at the end of the
file.

Description

The clog command allows users to save all user-interface input and output to a file. When
Soar is logging to a file, everything typed by the user and everything printed by Soar is
written to the file (in addition to the screen).

5.5. FILE SYSTEM I/O COMMANDS 143

Invoke clog with no arguments (or with -q) to query the current logging status. Pass a
filename to start logging to that file (relative to the command line interface’s home directory
(see the home command)). Use the close option to stop logging.

Examples

To initiate logging and place the record in foo.log:

clog foo.log

To append log data to an existing foo.log file:

clog -A foo.log

To terminate logging and close the open log file:

clog -c

Known Issues

Does not log everything when structured output is selected.

See also

command-to-file

5.5.3 command-to-file

Dump the printed output and results of a command to a file.

Synopsis

command-to-file [-a] filename command [args]

Options

-a, --append Append if file exists.
filename The file to log the results of the command to
command The command to log
args Arguments for command

144 CHAPTER 5. THE SOAR USER INTERFACE

Description

This command logs a single command. It is almost equivalent to opening a log using clog,
running the command, then closing the log, the only difference is that input isn’t recorded.

Running this command while a log is open is an error. There is currently not support for
multiple logs in the command line interface, and this would be an instance of multiple logs.

This command echos output both to the screen and to a file, just like clog.

See also

clog

5.5.4 dirs

List the directory stack

Synopsis

dirs

Options

No options.

Description

This command lists the directory stack. Agents can move through a directory structure by
pushing and popping directory names. The dirs command returns the stack.

The command pushd places a new “agent current directory” on top of the directory stack
and cd’s to it. The command popd removes the directory at the top of the directory stack
and cd’s to the previous directory which now appears at the top of the stack.

See Also

cd ls pushd popd source pwd

5.5. FILE SYSTEM I/O COMMANDS 145

5.5.5 echo

Print a string to the current output device.

Synopsis

echo string

Options

string The string to print.

Description

This command echos the args to the current output stream. This is normally stdout but can
be set to a variety of channels. If an arg is –nonewline then no newline is printed at the end
of the printed strings. Otherwise a newline is printed after printing all the given args. Echo
is the easiest way to add user comments or identification strings in a log file.

Examples

This example will add these comments to the screen and any open log file.

echo This is the first run with disks = 12

See Also

clog

5.5.6 ls

List the contents of the current working directory.

Synopsis

ls

Options

No options.

146 CHAPTER 5. THE SOAR USER INTERFACE

Description

List the contents of the working directory.

Default Aliases

Alias Maps to
dir ls

See Also

cd dirs pushd popd source pwd

5.5.7 popd

Pop the current working directory off the stack and change to the next directory on the
stack. Can be relative pathname or fully specified path.

Synopsis

popd

Options

No options.

Description

This command pops a directory off of the directory stack and cd’s to it. See the dirs command
for an explanation of the directory stack.

See Also

cd dirs ls pushd source pwd

5.5.8 pushd

Push a directory onto the directory stack, changing to it.

5.5. FILE SYSTEM I/O COMMANDS 147

Synopsis

pushd directory

Options

directory Directory to change to, saving the current directory on to the stack.

Description

Maintain a stack of working directories and push the directory on to the stack. Can be
relative path name or fully specified.

See Also

cd dirs ls popd source pwd

5.5.9 pwd

Print the current working directory.

Synopsis

pwd

Options

No options.

Description

Prints the current working directory of Soar.

Default Aliases

Alias Maps to
topd pwd

148 CHAPTER 5. THE SOAR USER INTERFACE

5.5.10 rete-net

Save the current Rete net, or restore a previous one.

Synopsis

rete-net -s|l filename

Options

-s, --save Save the Rete net in the named file. Cannot be saved
when there are justifications present. Use excise -j

-l, -r, --load, --restore Load the named file into the Rete network. working
memory and production memory must both be empty.
Use excise -a

filename The name of the file to save or load.

Description

The rete-net command saves the current Rete net to a file or restores a Rete net previously
saved. The Rete net is Soar’s internal representation of production and working memory; the
conditions of productions are reordered and common substructures are shared across different
productions. This command provides a fast method of saving and loading productions since
a special format is used and no parsing is necessary. Rete-net files are portable across
platforms that support Soar.

Normally users wish to save only production memory. Note that justifications cannot be
present when saving the Rete net. Issuing an init-soar before saving a Rete net will remove
all justifications and working memory elements.
If the filename contains a suffix of “.Z”, then the file is compressed automatically when it is
saved and uncompressed when it is loaded. Compressed files may not be portable to another
platform if that platform does not support the same uncompress utility.

Default Aliases

Alias Maps to
rn rete-net

See Also

excise init-soar

5.5. FILE SYSTEM I/O COMMANDS 149

5.5.11 set-library-location

Set the top level directory containing demos/help/etc.

Synopsis

set-library-location [directory]

Options

directory The new desired library location.

Description

Invoke with no arguments to query what the current library location is. The library location
should contain at least the help/ subdirectory and the command-names file for help to work.

See Also

help

5.5.12 source

Load and evaluate the contents of a file.

Synopsis

source -[adv] filename

Options

filename The file of Soar productions and commands to load.
-a, --all Enable a summary for each file sourced
-d, --disable Disable all summaries
-v, --verbose Print excised production names

150 CHAPTER 5. THE SOAR USER INTERFACE

Description

Load and evaluate the contents of a file. The filename can be a relative path or a fully
qualified path. source will generate an implicit push to the new directory, execute the
command, and then pop back to the current working directory from which the command
was issued.

After the source completes, the number of productions sourced and excised is printed:

agent> source demos/mac/mac.soar

Total: 18 productions sourced.

Source finished.

agent> source demos/mac/mac.soar

#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*

Total: 18 productions sourced. 18 productions excised.

Source finished.

This can be disabled by using the -d flag:

agent> source demos/mac/mac.soar -d

Source finished.

agent> source demos/mac/mac.soar -d

#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*

Source finished.

A list of excised productions is available using the -v flag:

agent> source demos/mac/mac.soar -v

#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*

Total: 18 productions sourced. 18 productions excised.

Excised productions:

mac*detect*state*success

mac*evaluate*state*failure*more*cannibals

monitor*move-boat

monitor*state*left

...

A separate summary for each file sourced can be enabled using the -a flag:

agent> source demos/mac/mac.soar -a

_firstload.soar: 0 productions sourced.

all_source.soar: 0 productions sourced.

**

goal-test.soar: 2 productions sourced.

monitor.soar: 3 productions sourced.

5.6. SOAR I/O COMMANDS 151

search-control.soar: 4 productions sourced.

top-state.soar: 0 productions sourced.

elaborations_source.soar: 0 productions sourced.

_readme.soar: 0 productions sourced.

**

initialize-mac.soar: 2 productions sourced.

move-boat.soar: 7 productions sourced.

mac_source.soar: 0 productions sourced.

mac.soar: 0 productions sourced.

Total: 18 productions sourced.

Source finished.

Combining the -a and -v flag adds excised production names to the output for each file.

See Also

cd dirs ls pushd popd pwd

5.6 Soar I/O Commands

This section describes the commands used to manage Soar’s Input/Output (I/O) system,
which provides a mechanism for allowing Soar to interact with external systems, such as a
computer game environment or a robot.

Soar I/O functions make calls to add-wme and remove-wme to add and remove elements to
the io structure of Soar’s working memory.

The specific commands described in this section are:

Summary

add-wme - Manually add an element to working memory.

remove-wme - Manually remove an element from working memory.

These commands are used mainly when Soar needs to interact with an external environment.
Users might take advantage of these commands when debugging agents, but care should
be used in adding and removing wmes this way as they do not fall under Soar’s truth
maintenance system.

5.6.1 add-wme

Manually add an element to working memory.

152 CHAPTER 5. THE SOAR USER INTERFACE

Synopsis

add-wme id [^]attribute value [+]

Options

id Must be an existing identifier.
^ Leading ˆ on attribute is optional.
attribute Attribute can be any Soar symbol. Use * to have Soar create a new

identifier.
value Value can be any soar symbol. Use * to have Soar create a new identifier.
+ If the optional preference is specified, its value must be + (acceptable).

Description

Manually add an element to working memory. add-wme is often used by an input function
to update Soar’s information about the state of the external world.

add-wme adds a new wme with the given id, attribute, value and optional preference. The
given id must be an existing identifier. The attribute and value fields can be any Soar
symbol. If * is given in the attribute or value field, Soar creates a new identifier (symbol)
for that field. If the preference is given, it can only have the value + to indicate that an
acceptable preference should be created for this wme.

Note that because the id must already exist in working memory, the WME that you are
adding will be attached (directly or indirectly) to the top-level state. As with other WME’s,
any WME added via a call to add-wme will automatically be removed from working memory
once it is no longer attached to the top-level state.

Examples

This example adds the attribute/value pair “message-status received” to the identifier (sym-
bol) S1:

add-wme S1 ^message-status received

This example adds an attribute/value pair with an acceptable preference to the identifier
(symbol) Z2. The attribute is “message” and the value is a unique identifier generated by
Soar. Note that since the ˆ is optional, it has been left off in this case.

add-wme Z2 message * +

5.6. SOAR I/O COMMANDS 153

Default Aliases

Alias Maps to
aw add-wme

Warnings

Be careful how you use this command. It may have weird side effects (possibly even includ-
ing system crashes). For example, the chunker can’t backtrace through wmes created via
add-wme , nor will such wmes ever be removed thru Soar’s garbage collection. Manually
removing context/impasse wmes may have unexpected side effects.

See Also

remove-wme

5.6.2 remove-wme

Manually remove an element from working memory.

Synopsis

remove-wme timetag

Options

timetag A positive integer matching the timetag of an existing working memory ele-
ment.

Description

The remove-wme command removes the working memory element with the given timetag.
This command is provided primarily for use in Soar input functions; although there is no
programming enforcement, remove-wme should only be called from registered input functions
to delete working memory elements on Soar’s input link.

Beware of weird side effects, including system crashes.

154 CHAPTER 5. THE SOAR USER INTERFACE

Default Aliases

Alias Maps to
rw remove-wme

See Also

add-wme

Warnings

remove-wme should never be called from the RHS: if you try to match a wme on the LHS
of a production, and then remove the matched wme on the RHS, Soar will crash.

If used other than by input and output functions interfaced with Soar, this command may
have weird side effects (possibly even including system crashes). Removing input wmes or
context/impasse wmes may have unexpected side effects. You’ve been warned.

5.7 Miscellaneous

The specific commands described in this section are:

Summary

alias - Define a new alias, or command, using existing commands and arguments.

edit-production - Fire event to Move focus in an open editor to this production.

soarnews - Prints information about the current release.

srand - Seed the random number generator.

time - Uses a default system clock timer to record the wall time required while
executing a command.

unalias - Remove an existing alias.

version - Returns version number of Soar kernel.

5.7.1 alias

Define a new alias, or command, using existing commands and arguments.

5.7. MISCELLANEOUS 155

Synopsis

alias name [cmd <args>]

alias

Options

No options.

Description

This command defines new aliases by creating Soar procedures with the given name. The
new procedure can then take an arbitrary number of arguments which are post-pended to
the given definition and then that entire string is executed as a command. The definition
must be a single command, multiple commands are not allowed. The alias procedure checks
to see if the name already exists, and does not destroy existing procedures or aliases by
the same name. Existing aliases can be removed by using the unalias command. With no
arguments, alias returns the list of defined aliases. With only the name given, alias returns
the current definition.

Examples

The alias wmes is defined as:

alias wmes print -i

If the user executes a command such as:

wmes {(* ^superstate nil)}

it is as if the user had typed this command:

print -i {(* ^superstate nil)}

To check what a specific alias is defined as, you would type

alias wmes

Default Aliases

Alias Maps to
a alias

156 CHAPTER 5. THE SOAR USER INTERFACE

See Also

unalias

5.7.2 edit-production

Move focus in an editor to this production.

Synopsis

edit-production production_name

Options

production name The name of the production to edit.

Description

If an editor (currently limited to Visual Soar) is open and connected to Soar, this command
causes the editor to open the file containing this production and move the cursor to the start
of the production. If there is no editor connected to Soar, the command does nothing. In
order to connect Visual Soar to Soar, launch Visual Soar and choose Connect from the Soar
Runtime menu. Then open the Visual Soar project that you’re working on. At that point,
you’re set up and edit-production will start to work.

Examples

edit-production my*production*name

See Also

sp

5.7.3 srand

Seed the random number generator.

5.7. MISCELLANEOUS 157

Synopsis

srand [seed]

Options

seed Random number generator seed.

Description

Seeds the random number generator with the passed seed. Calling srand without providing
a seed will seed the generator based on the contents of /dev/urandom (if available) or else
based on time() and clock() values.

Examples

srand 0

See Also

5.7.4 soarnews

Prints information about the current release.

Synopsis

soarnews

Default Aliases

Alias Maps to
sn soarnews

5.7.5 time

Use a default system clock timer to record the wall time required while executing a command.

158 CHAPTER 5. THE SOAR USER INTERFACE

Synopsis

time command [arguments]

Options

command The command to execute.
arguments Optional command arguments.

Description

5.7.6 unalias

Undefine an existing alias

Synopsis

unalias name

Options

No options.

Description

This command undefines a previously created alias. This command takes exactly one argu-
ment: the name of the alias to remove. Use the alias command by itself to list all defined
aliases.

Examples

unalias varprint

Default Aliases

Alias Maps to
un unalias

5.7. MISCELLANEOUS 159

See Also

alias

5.7.7 version

Returns the version number of the Soar kernel.

Synopsis

version

Options

No options

Description

This command gives version information about the current Soar kernel. It returns the version
number and build date which can then be stored by the agent or the application.

160 CHAPTER 5. THE SOAR USER INTERFACE

Appendix A

The Blocks-World Program

###
###
File : blocks.soar
Original author(s): John E. Laird <laird@eecs.umich.edu>
Organization : University of Michigan AI Lab
Created on : 15 Mar 1995, 13:53:46
Last Modified By : Clare Bates Congdon <congdon@eecs.umich.edu>
Last Modified On : 17 Jul 1996, 16:35:14
Soar Version : 7
###
Description : A new, simpler implementation of the blocks world
with just three blocks being moved at random.
###
Notes:
CBC, 6/27: Converted to Tcl syntax
CBC, 6/27: Added extensive comments
###

###
Create the initial state with blocks A, B, and C on the table.
#
This is the first production that will fire; Soar creates the initial state
as an architectural function (in the ’zeroth’ decision cycle), which will
match against this production.
This production does a lot of work because it is creating (preferences for)
all the structure for the initial state:
1. The state has a problem-space named ’blocks’. The problem-space limits
the operators that will be selected for a task. In this simple problem,
it isn’t really necessary (there is only one operator), but it’s a
programming convention that you should get used to.
2. The state has four ’things’ -- three blocks and the table.
3. The state has three ’ontop’ relations
4. Each of the things has substructure: their type and their names. Note that
the fourth thing is actually a ’table’.
5. Each of the ontop relations has substructure: the top thing and the
bottom thing.
Finally, the production writes a message for the user.

161

162 APPENDIX A. THE BLOCKS-WORLD PROGRAM

#
Note that this production will fire exactly once and will never retract.

sp {blocks-world*elaborate*initial-state
(state <s> ^superstate nil)

-->
(<s> ^problem-space blocks

^thing <block-A> <block-B> <block-C> <table>
^ontop <ontop-A> <ontop-B> <ontop-C>)

(<block-A> ^type block ^name A)
(<block-B> ^type block ^name B)
(<block-C> ^type block ^name C)
(<table> ^type table ^name TABLE)
(<ontop-A> ^top-block <block-A> ^bottom-block <table>)
(<ontop-B> ^top-block <block-B> ^bottom-block <table>)
(<ontop-C> ^top-block <block-C> ^bottom-block <table>)
(write (crlf) |Initial state has A, B, and C on the table.|)}

###
State elaborations - keep track of which objects are clear
There are two productions - one for blocks and one for the table.
###

###
Assert table always clear
#
The conditions establish that:
1. The state has a problem-space named ’blocks’.
2. The state has a thing of type table.
The action:
1. creates an acceptable preference for an attribute-value pair asserting
the table is clear.
#
This production will also fire once and never retract.

sp {elaborate*table*clear
(state <s> ^problem-space blocks

^thing <table>)
(<table> ^type table)

-->
(<table> ^clear yes)}

###
Calculate whether a block is clear
#
The conditions establish that:
1. The state has a problem-space named ’blocks’.
2. The state has a thing of type block.
3. There is no ’ontop’ relation having the block as its ’bottom-block’.
The action:
1. create an acceptable preference for an attribute-value pair asserting
the block is clear.
#
This production will retract whenever an ’ontop’ relation for the given block

163

is created. Since the (<block> ^clear yes) wme only has i-support, it will
be removed from working memory automatically when the production retracts.

sp {elaborate*block*clear
(state <s> ^problem-space blocks

^thing <block>)
(<block> ^type block)
-(<ontop> ^bottom-block <block>)

-->
(<block> ^clear yes)}

###
Suggest MOVE-BLOCK operators
#
This production proposes operators that move one block ontop of another block.
The conditions establish that:
1. The state has a problem-space named ’blocks’
2. The block moved and the block moved TO must be both be clear.
3. The block moved is different from the block moved to.
4. The block moved must be type block.
5. The block moved must not already be ontop the block being moved to.
The actions:
1. create an acceptable preference for an operator.
2. create acceptable preferences for the substructure of the operator (its
name, its ’moving-block’ and the ’destination).

sp {blocks-world*propose*move-block
(state <s> ^problem-space blocks

^thing <thing1> {<> <thing1> <thing2>}
^ontop <ontop>)

(<thing1> ^type block ^clear yes)
(<thing2> ^clear yes)
(<ontop> ^top-block <thing1>

^bottom-block <> <thing2>)
-->

(<s> ^operator <o> +)
(<o> ^name move-block

^moving-block <thing1>
^destination <thing2>)}

###
Make all acceptable move-block operators also indifferent
#
The conditions establish that:
1. the state has an acceptable preference for an operator
2. the operator is named move-block
The actions:
1. create an indifferent prefererence for the operator

sp {blocks-world*compare*move-block*indifferent
(state <s> ^operator <o> +)
(<o> ^name move-block)

-->
(<s> ^operator <o> =)}

164 APPENDIX A. THE BLOCKS-WORLD PROGRAM

###
Apply a MOVE-BLOCK operator
#
There are two productions that are part of applying the operator.
Both will fire in parallel.
###

###
Apply a MOVE-BLOCK operator
(the block is no longer ontop of the thing it used to be ontop of)
#
This production is part of the application of a move-block operator.
The conditions establish that:
1. An operator has been selected for the current state
a. the operator is named move-block
b. the operator has a ’moving-block’ and a ’destination’
2. The state has an ontop relation
a. the ontop relation has a ’top-block’ that is the same as the
’moving-block’ of the operator
b. the ontop relation has a ’bottom-block’ that is different from the
’destination’ of the operator
The actions:
1. create a reject preference for the ontop relation

sp {blocks-world*apply*move-block*remove-old-ontop
(state <s> ^operator <o>

^ontop <ontop>)
(<o> ^name move-block

^moving-block <block1>
^destination <block2>)

(<ontop> ^top-block <block1>
^bottom-block { <> <block2> <block3> })

-->
(<s> ^ontop <ontop> -)}

###
Apply a MOVE-BLOCK operator
(the block is now ontop of the destination)
#
This production is part of the application of a move-block operator.
The conditions establish that:
1. An operator has been selected for the current state
a. the operator is named move-block
b. the operator has a ’moving-block’ and a ’destination’
The actions:
1. create an acceptable preference for a new ontop relation
2. create (acceptable preferences for) the substructure of the ontop
relation: the top block and the bottom block

sp {blocks-world*apply*move-block*add-new-ontop
(state <s> ^operator <o>)

165

(<o> ^name move-block
^moving-block <block1>
^destination <block2>)

-->
(<s> ^ontop <ontop>)
(<ontop> ^top-block <block1>

^bottom-block <block2>)}

###
###
Detect that the goal has been achieved
#
The conditions establish that:
1. The state has a problem-space named ’blocks’
2. The state has three ontop relations
a. a block named A is ontop a block named B
b. a block named B is ontop a block named C
c. a block named C is ontop a block named TABLE
The actions:
1. print a message for the user that the A,B,C tower has been built
2. halt Soar

sp {blocks-world*detect*goal
(state <s> ^problem-space blocks

^ontop <AB>
{ <> <AB> <BC>}
{ <> <AB> <> <BC> <CT> })

(<AB> ^top-block <A> ^bottom-block)
(<BC> ^top-block ^bottom-block <C>)
(<CT> ^top-block <C> ^bottom-block <T>)
(<A> ^type block ^name A)
(^type block ^name B)
(<C> ^type block ^name C)
(<T> ^type table ^name TABLE)

-->
(write (crlf) |Achieved A, B, C|)
(halt)}

###
###
Monitor the state: Print a message every time a block is moved
#
The conditions establish that:
1. An operator has been selected for the current state
a. the operator is named move-block
b. the operator has a ’moving-block’ and a ’destination’
2. each block has a name
The actions:
1. print a message for the user that the block has been moved to the
destination.

sp {blocks-world*monitor*move-block
(state <s> ^operator <o>)

166 APPENDIX A. THE BLOCKS-WORLD PROGRAM

(<o> ^name move-block
^moving-block <block1>
^destination <block2>)

(<block1> ^name <block1-name>)
(<block2> ^name <block2-name>)

-->
(write (crlf) |Moving Block: | <block1-name>

| to: | <block2-name>) }

Appendix B

Grammars for production syntax

This appendix contains the BNF grammars for the conditions and actions of productions.
(BNF stands for Backus-Naur form or Backus normal form; consult a computer science
book on theory, programming languages, or compilers for more information. However, if you
don’t already know what a BNF grammar is, it’s unlikely that you have any need for this
appendix.)

This information is provided for advanced Soar users, for example, those who need to write
their own parsers.

B.1 Grammar of Soar productions

A grammar for Soar productions is:

<soar-production> ::= sp "{" <production-name> [<documentation>] [<flags>]

<condition-side> --> <action-side> "}"

<documentation> ::= """ [<string>] """

<flags> ::= ":" (o-support | i-support | chunk | default)

B.1.1 Grammar for Condition Side

Below is a grammar for the condition sides of productions:

<condition-side> ::= <state-imp-cond> <cond>*

<state-imp-cond> ::= "(" (state | impasse) [<id_test>]

<attr_value_tests>+ ")"

<cond> ::= <positive_cond> | "-" <positive_cond>

<positive_cond> ::= <conds_for_one_id> | "{" <cond>+ "}"

<conds_for_one_id> ::= "(" [(state|impasse)] <id_test>

<attr_value_tests>+ ")"

<id_test> ::= <test>

167

168 APPENDIX B. GRAMMARS FOR PRODUCTION SYNTAX

<attr_value_tests> ::= ["-"] "^" <attr_test> ("." <attr_test>)*

<value_test>*

<attr_test> ::= <test>

<value_test> ::= <test> ["+"] | <conds_for_one_id> ["+"]

<test> ::= <conjunctive_test> | <simple_test>

<conjunctive_test> ::= "{" <simple_test>+ "}"

<simple_test> ::= <disjunction_test> | <relational_test>

<disjunction_test> ::= "<<" <constant>+ ">>"

<relational_test> ::= [<relation>] <single_test>

<relation> ::= "<>" | "<" | ">" | "<=" | ">=" | "=" | "<=>"

<single_test> ::= <variable> | <constant>

<variable> ::= "<" <sym_constant> ">"

<constant> ::= <sym_constant> | <int_constant> | <float_constant>

Notes on the Condition Side

• In an <id test>, only a <variable> may be used in a <single test>.

B.1.2 Grammar for Action Side

Below is a grammar for the action sides of productions:

<rhs> ::= <rhs_action>*

<rhs_action> ::= "(" <variable> <attr_value_make>+ ")"

| <func_call>

<func_call> ::= "(" <func_name> <rhs_value>* ")"

<func_name> ::= <sym_constant> | "+" | "-" | "*" | "/"

<rhs_value> ::= <constant> | <func_call> | <variable>

<attr_value_make> ::= "^" <variable_or_sym_constant>

("." <variable_or_sym_constant>)* <value_make>+

<variable_or_sym_constant> ::= <variable> | <sym_constant>

<value_make> ::= <rhs_value> <preference_specifier>*

<preference-specifier> ::= <unary-preference> [","]

| <unary-or-binary-preference> [","]

| <unary-or-binary-preference> <rhs_value> [","]

<unary-pref> ::= "+" | "-" | "!" | "~" | "@"

<unary-or-binary-pref> ::= ">" | "=" | "<" | "&"

Appendix C

The Calculation of O-Support

This appendix provides a description of when a preference is given O-support by an instan-
tiation (a preference that is not given O-support will have I-support). Soar has four possible
procedures for deciding support, which can be selected among with the o-support-mode com-
mand (see page 133). However, only o-support modes 3 & 4 can be considered current to
Soar 8, and o-support mode 4 should be considered an improved version of mode 3. The
default o-support mode is mode 4.

In O-support modes 3 & 4, support is given production by production; that is, all preferences
generated by the RHS of a single instantiated production will have the same support.

In both modes, a production must meet the following two requirements to create o-supported
preferences:

1. The RHS has no operator proposals, i.e. nothing of the form

(<s> ^operator <o> +)

2. The LHS has a condition that tests the current operator, i.e. something of the form 1

(<s> ^operator <o>)

In condition 1, the variable <s> must be bound to a state identifier. In condition 2, the
variable <s> must be bound to the lowest state identifier. That is to say, each (positive)
condition on the LHS takes the form (id ∧attr value), some of these id’s match state
identifiers, and the system looks for the deepest matched state identifier. The tested current
operator must be on this state. For example, in the production-

sp {elaborate*state*operator*name

(state <s> ^superstate <s1>)

(<s1> ^operator <o>)

1Sometimes, o-support mode 3 does not notice that this condition is true. This is a bug, which is unlikely
to be fixed, since users are encouraged to use mode 4.

169

170 APPENDIX C. THE CALCULATION OF O-SUPPORT

(<o> ^name <name>)

-->

(<s> ^name something)}

the RHS action gets i-support. Of course, the state bound to <s> is destroyed when (<s1>
∧operator <o>) retracts, so o-support would make little difference. On the other hand, the
production-

sp {operator*superstate*application

(state <s> ^superstate <s1>)

(<s> ^operator <o>)

(<o> ^name <name>)

-->

(<s1> ^sub-operator-name <name>)}

gives o-support to its RHS action, which remains after the substate bound to <s> is destroyed.

There is a third condition that determines support, and it is in this condition that modes 3 &
4 differ. An extension of condition 1 is that operator augmentations should always receive i-
support. Soar has been written to recognize augmentations directly off the operator (ie, (<o>
∧augmentation value)), and to attempt to give them i-support. However, there was some
confusion about what to do about a production that simultaneously tests an operator, doesn’t
propose an operator, adds an operator augmentation, and adds a non-operator augmentation,
such as-

sp {operator*augmentation*application

(state <s> ^task test-support

^operator <o>)

-->

(<o> ^new augmentation)

(<s> ^new augmentation)}

In o-support mode 3, both RHS actions receive o-support; in o-support mode 4, both receive
i-support. In either case, Soar will print a warning on firing this production, because this is
considered bad coding style.

Appendix D

The Resolution of Operator
Preferences

During the decision phase, operator preferences are evaluated in a sequence of eight steps,
in an effort to select a single operator. Each step handles a specific type of preference,
as illustrated in Figure D.1. (The figure should be read starting at the top where all the
operator preferences are collected and passed into the procedure. At each step, the procedure
either exits through a arrow to the right, or passes to the next step through an arrow to the
left.)

Input to the procedure are the set of current operator preferences, and the output consists
of:

1. a subset of the candidate operators, either the empty set, a set consisting of a sin-
gle, winning candidate, or a larger set of candidates that may be conflicting, tied, or
indifferent.

2. an impasse-type, possibly NONE IMPASSE TYPE.

The procedure has several potential exit points. Some occur when the procedure has detected
a particular type of impasse. The others occur when the number of candidates has been
reduced to one (necessarily the winner) or zero (a no-change impasse).

Each step in Figure D.1 is described below:

RequireTest (!) This test checks for required candidates in preference memory and also
constraint-failure impasses involving require preferences (see Section 2.6 on page 23).

• If there is exactly one candidate operator with a require preference and that
candidate does not have a prohibit preference, then that candidate is the winner
and preference semantics terminates.

• Otherwise — If there is more than one required candidate, then a constraint-
failure impasse is recognized and preference semantics terminates by returning
the set of required candidates.

171

172 APPENDIX D. THE RESOLUTION OF OPERATOR PREFERENCES

RequireTest

AcceptableCollect

ProhibitFilter

RejectFilter

BetterWorseFilter

BestFilter

WorstFilter

IndifferentTes

All operator
preferences

else

all acceptable
candidates are
passed on

all nonprohibited
candidates are
passed on

all nonrejected
candidates are
passed on

pass along only
candidates that
are not worse

pass along only
candidates that are
best; if none, pass
on all candidates

all nonworst
candidates are
passed on

one required operator

multiple required operators

require is also prohibited

one candidate remaining

no candidates remaining

all candidates are
worse than another

remining candidates are
ALL mutually indifferen

remaining candidates are
NOT mutually indifferen

one candidate remaining

no candidates remaining

Outcome of
preference
resolution

winner returned

constraintfailure
impasse

winner returned

none selected
(no-change impasse)

conflict impass

winner returned

winner will be
chosen based on
userselect setting

tie impasse

none selected
(no-change impasse)

}

Preference resolution:
 -all operator preferences are input to the resolution procedure
 -each step may add or remove some operator candidates
 -only some steps may exit

Figure D.1: An illustration of the preference resolution process. There are eight steps; only five
of these provide exits from the resolution process.

• Otherwise — If there exists a required candidate that is also prohibited, a constraint-
failure impasse with the required/prohibited value is recognized and preference
semantics terminates.

• Otherwise — The candidates are passed to AcceptableCollect.

AcceptableCollect (+) This operation builds a list of operators for which there is an
acceptable preference in preference memory. This list of candidate operators is passed

173

to the ProhibitFilter.

ProhibitFilter (∼) This filter removes the candidates that have prohibit preferences in
memory. The rest of the candidates are passed to the RejectFilter.

RejectFilter (−) This filter removes the candidates that have reject preferences in mem-
ory.

• At this point, if the set of remaining candidates is either empty or has one member,
preference semantics terminates and this set is returned.

• Otherwise, the remaining candidates are passed to the BetterWorseFilter.

BetterWorseFilter (>), (<) This filter removes any candidates that are worse than an-
other candidate.

• If the set of remaining candidates is empty, a conflict impasse is created returning
the set of conflicted operators (all candidates passed to this filter).

• Otherwise, pass any remaining candidates to the BestFilter.

BestFilter (>) If some remaining candidate has a best preference, this filter removes any
candidates that do not have a best preference. If there are no best preferences for any
of the current candidates, the filter has no effect. The remaining candidates are passed
to the WorstFilter.

WorstFilter (<) If all remaining candidates have worst preferences, this filter has no
effect. Otherwise, the filter removes any candidates that have a worst preference.

• Once again, if the set of remaining candidates is either empty or has one member,
preference semantics terminates and this set is returned.

• Otherwise, the remaining candidates are passed to the IndifferentTest.

IndifferentTest (=) This operation traverses the remaining candidates and marks each
candidate for which one of the following is true:

• the candidate has a unary indifferent preference

• the candidate has a numeric indifferent preference

• the candidate is binary indifferent to all of the remaining candidate operators

If some candidate is left unmarked, then the procedure signals a tie impasse and returns
the complete set of candidates that passed into the IndifferentTest. Otherwise, the
candidates are mutually indifferent, in which case an operator is chosen according to
the method set by the indifferent-selection command, described on page 124.

174 APPENDIX D. THE RESOLUTION OF OPERATOR PREFERENCES

Appendix E

A Goal Dependency Set Primer1

This document briefly describes the Goal Dependency Set (GDS), which was introduced
with Soar 8. There are three sections: a brief discussion of the motivation for the GDS,
a discussion of the consequences of the GDS from a behavior developer/modeler’s point of
view, and some details on the kernel implementation of the GDS, for anyone working at
the architecture level. This document is by no means complete, but introduces the GDS in
Soar-specific terms.

Why the GDS was needed

As a symbol system, Soar attempts to approximate the knowledge level but will necessar-
ily always fall short . We can informally think of the way in which Soar falls short of the
knowledge level as its peculiar “psychology.” Those interested in using Soar to model human
psychology would like Soar’s “psychology” to approximate human psychology. Those using
Soar to create agent systems would like to make Soar’s processing approximate the knowledge
level as closely as possible. However, Soar 7 had a number of symbol-level “quirks” that ap-
peared inconsistent with human psychology and that made building large-scale, knowledge-
based systems in Soar more difficult than necessary. Bob Wray’s thesis 2 addressed many of
these symbol-level problems in Soar, among them logical inconsistency in symbol manipula-
tions, non-contemporaneous constraints in chunks , race conditions in rule firings and in the
decision process, and contention between original task knowledge and learned knowledge .

The Goal Dependency Set implements a solution to logical inconsistencies between persistent
(o-supported) working memory elements (WMEs) in a substate and its “context”. The
context consists of all the WMEs in any superstates above the local goal/state3. In Soar,
any action (application) of an operator receives an o-support preference. This preference

1A preliminary draft by Robert Wray, contact at wrayre@acm.org.
2Robert E. Wray. Ensuring Reasoning Consistency in Hierarchical Architectures. PhD thesis, University

of Michigan, 1998.
3This report will use “state,” not “goal.” At the kernel level, states are still called “goals” and “goal” is

often still used to refer to states. As a result, a confusion in terminology results, with “Goal Dependency
Set” a specific example, even though “goals” have not been an explicit, behavior-level Soar construct since

175

176 APPENDIX E. A GOAL DEPENDENCY SET PRIMER

makes the resulting WME persistent: it will remain in memory until explicitly removed (or
until its local state is removed), regardless of whether it continues to be justified.

Persistent WMEs are pervasive in Soar, because operators are the main unit of problem
solving. Persistence is necessary for taking any non-monotonic step in a problem space.
However, persistent WMEs also are dependent on WMEs in the superstate context. The
problem in Soar 7, especially when trying to create large-scale systems like TacAir-Soar , is
that the knowledge developer must always think about which dependencies can be “ignored”
and which need to result in a reconsideration of the persistent WME. For example, imagine
an exploration robot that makes a persistent decision to travel to some distant destination
based, in part, on its power reserves. Now suppose that the agent notices that its power
reserves have failed. If this change is not communicated to the state where the travel decision
was made, the agent will continue to act as if its full power reserves were still available.

Of course, for this specific example, the knowledge designer can encode some knowledge to
react to this inconsistency. The fundamental problem is that the knowledge designer has
to consider all possible interactions between all o-supported WMEs and all contexts. Soar
systems often use the architecture’s impasse mechanism to realize a form of decomposition.
These potential interactions mean that the knowledge developer cannot focus on individ-
ual problem spaces when creating knowledge, which makes knowledge development more
difficult. Further, in all but the simplest systems, the knowledge designer will miss some
potential interactions. The result is agents are that were unnecessarily brittle, failing in
difficult-to-understand, difficult-to-duplicate ways.

The GDS also solves the the problem of non-contemporaneous constraints in chunks. A
non-contemporaneous constraint refers to two or more conditions that never co-occur simul-
taneously. An example might be a driving robot that learned a rule that attempted to match
“red light” and “green light” simultaneously. Obviously, for functioning traffic lights, this
rule would never fire. By ensuring that local persistent elements are always consistent with
the higher-level context, non-contemporaneous constraints in chunks are guaranteed not to
happen.

The GDS captures context dependencies during processing, meaning the architecture will
identify and respond to inconsistencies automatically. The knowledge designer then does
not have to consider potential inconsistencies between local, o-supported WMEs and the
context. The following sections describe further how the GDS works and how to use the
GDS in behavior systems, as well as how the GDS is implemented in the Soar kernel.

Behavior-level view of the Goal Dependency Set

This section discusses what the GDS does, and how that impacts production knowledge
design and implementation.

Soar 6

177

A A’

1 2 3

3

As A’

I-Supported Feature

O-Supported Feature

s

Figure E.1: Simplified Representation of the context dependencies (above the line), local
os-upported WMEs (below the line), and the generation of a result. In Soar 7, this situation
led to non-contemporaneous constraints in the chunk that generates 3.

Operation of the Goal Dependency Set

Whenever a feature is created (added to working memory) in the Soar 7 architecture, that
feature will persist for some time. The persistence of features may differ with respect to how
long the features remain in memory, and more importantly, what circumstances cause the
feature to be removed. The Soar 7 architecture utilizes three primary types of persistence:
i-support, o-support, and c-support.

The weakest persistence is instantiation support. An i-supported feature exists in memory
only as long as the production which lead to the feature’s creation remains instantiated.
Thus, the WME depends upon this production instantiation (and, more specifically, the
features the instantiation tests). When one of the conditions in the production instantiation
no longer matches, the instantiation is retracted, resulting in the loss of the acceptable
preference for the WME.4 I-support is illustrated in Figure E.1. A copy of A in the subgoal,
As, is retracted automatically when A changes to A’. The substate WME persists only
as long as it remains justified by A. This justification is called “instantiation support” (I-
support) in Soar (and should not be confused with result justifications.)

In the broadest sense, we can say that some feature is “dependent” upon another
element <a> if <a> was used in the creation of , i.e., if <a> was tested in the production
instantiation that created . Further, a dependent change with respect to feature
is a change to any of its instantiating features. In Figure E.1, the change from A to A’ is a

4Importantly, in a technical sense, the WME is only retracted when it loses instantiation support, not
when the creating production is retracting. For example, a WME could receive i-support from several
different instantiations and the retraction of one would not lead to the retraction of the WME. However, the
the following generally discusses direct dependency unmediated by preferences, ignoring this complication
for clarity.

178 APPENDIX E. A GOAL DEPENDENCY SET PRIMER

dependent change for feature 1 because A was used to create 1.

In Soar 7, some features are insensitive to dependent changes. These features are often
referred to as “persistent WMEs” because, unlike i-supported WMEs, they remain in memory
until explicitly removed. There are two different types of this stronger persistence: o-support
and c-support.

Any feature created by the action of an operator receives “operator support.” An o-supported
feature remains in memory until explicitly rejected (or until the superstructure to which it
is attached is removed). Removal is architecturally independent of the WME’s instantiating
conditions.

Context-support affects the persistence of an operator itself, rather than its effects. Once a
unique operator has been chosen by the decision procedure, the choice persists until explicitly
re-decided (via a reconsider preference). C-support ensures that the WME for a selected
operator remains available even if the production that proposed the operator is no longer
instantiated. Soar 8 eliminates c-support, so that operators now persist only as long as
they receive instantiation support. This change was integral to the overall solution Soar 8
provides, but is distinct from the GDS.

The GDS provides a solution to the first problem. When A changes, the persistent WME
1 may be no longer consistent with its context (e.g., A’). The specific solution is inspired
by the chunking algorithm. In Soar 8, whenever an o-supported WME is created in the
local state, the superstate dependencies of that new feature are determined and added to
the goal dependency set (GDS) of that state. Conceptually speaking, whenever a working
memory change occurs, the dependency sets for every state in the context hierarchy are
compared to working memory changes.5 If a removed element is found in a GDS, the state is
removed from memory (along with all existing substructure). The dependency set includes
only dependencies for o-supported features. For example, in Figure E.2, at time t0, because
only i-supported features have been created in the subgoal, the dependency set is empty.

Three types of features can be tested in the creation of an o-supported feature. Each requires
a slightly different type of update to the dependency set.

Elements in the superstate: WMEs in the superstate are added directly to the goal’s
dependency set. In Figure E.2, the persistent subgoal item 3 is dependent upon A
and D. These superstate WMEs are added to the subgoal’s dependency set when 3 is
added to working memory at time t1. It does not matter that A is i-supported and D
o-supported.6

Local I-Supported Features: Local i-supported features are not added to the goal depen-
dency set. Instead, the superstate WMEs that led to the creation of the i-supported
feature are determined and added to the GDS. In the example, when 4 is created,
A, B and C must be added to the dependency set because they are the superstate

5The implementation is slightly different, trading additional memory overhead to avoid scanning all the
goal dependency sets after each WM change. See the next section.

6In addition, superstate WMEs can also include context slot preferences, which are represented in the
architecture as working memory elements.

179

A B C D E

1 2 4

3

5

E¢

t1 t2 t3

A¢

t0 Dependency Set:
t0 = Æ
t1 = (A, D)
t2 = (A, B, C, D)
t3 = (A, B, C, D)

D´

Figure E.2: The Dependency Set in Soar 8.

features that led to 1, which in turn led to 2 and finally 4. However, because item A
was previously added to the dependency set at t1, it is unnecessary to add it again.

Local O-Supported Features: The dependencies of a local o-supported feature have al-
ready been added to the state’s GDS. Thus, tests of local o-supported WMEs do not
require additions to the dependency set. In Figure E.2, the creation of element 5 does
not change the dependency set because it is dependent only upon persistent items 3
and 4, whose features had been previously added to the GDS.

In Soar 8, any change to the current dependency set will cause the retraction of all subgoal
structure. Thus, any time after time t1, either the D to D’ or A to A’ transition would
cause the removal of the entire subgoal. The E to E’ transition causes no retraction because
E is not in the goal’s dependency set.

The role of the GDS in agent design

The GDS places some design time constraints on operator implementation. These constraints
are:

• Operator actions that are used to remember a previous state/situation should be as-
serted in the top state

• All operator elaborations should be i-supported

• Any operator with local actions should be designed to be re-entrant

This section describes these issues.

180 APPENDIX E. A GOAL DEPENDENCY SET PRIMER

Soar says any operator effect is o-supported, regardless of whether that assertion is entailed
by the current situation, or whether it reflects an assumption about it. The GDS adds
additional (needed) constraint. Because any context dependencies for subgoal, o-supported
assertions will be added to the GDS, the developer must decide if an o-supported element
should be represented in a substate or the top state.

This decision is straightforward if the functional role of the persistent element is considered.
Four important capabilities that require persistence are:

1. Reasoning hypothetically: Some assertions may need to reflect hypothetical
states. Such assertions are “assumptions” because a hypothetical inference cannot
always be grounded in the current context. In other problem solvers with truth main-
tenance, only assumptions are persistent.

2. Reasoning non-monotonically: Sometimes the result of an inference changes one
of the assertions on which the inference is dependent. As an example, consider the
task of counting. Each newly counted item replaces the old value of the count.

3. Remembering: Agents oftentimes need to remember an external situation or stim-
ulus, even when that perception is no longer available.

4. Avoiding Expensive Computations: In some situations, an agent may have
the information needed to assert some belief in a new world state but the expense of
performing the computation necessary for the assertion, given what is already known,
makes the computation avoidable. For example, in dynamic, complex domains, deter-
mining when to make an expensive calculation is often formulated as an explicit agent
task .

When remembering or avoiding an expensive computation, the agent/designer is making
a commitment to retain something even though it might not be supported in the current
context. In Soar 8, these WMEs should be asserted in the top state. For many Soar systems,
especially those focused on execution in a dynamic environment, most o-supported elements
will need to be stored on the top state.

For any kind of local, non-monotonic reasoning about the context (counting, projection
planning), features should be stored locally. When a dependent context change occurs,
the GDS interrupts the processing by removing the state. While this may seem like a
severe over-reaction, formal and empirical analysis have suggested that this solution is less
computationally expensive than attempting to identify the specific dependent assumption .

Operator Elaborations

Operator elaborations (i.e., placing some information on an operator WME) should be i-
supported when using Soar 8, since this information is, by definition, temporary/not persis-
tent (because it’s located on the non-persistent operator). However, the kernel itself hasn’t
kept up with this change. Prior to Soar 8.5, Soar’s o-support modes computed operator

181

elaborations as o-supported, resulting in the context conditions being added to the GDS.
This often leads to unwanted/unnecessary retractions. If you are using a version prior to
Soar 8, you should declare any operator elaborations i-supported (i.e., using :i-support).

Kernel-level view of the Goal Dependency Set

The actual implementation of the GDS in the Soar kernel is slightly more complex than the
conceptual description of the previous section (but not significantly so).

Elements are added to the GDS via elaborate_gds(), a procedure in decide.c that mim-
ics the chunking backtrace function. The algorithm is shown in Figure E.3. When an
o-supported preference is asserted, elaborate gds() is called. Conditions in a production
instantiation that are located in a higher context can be added directly to the GDS (1).
For local conditions, elaborate_gds() first checks whether the tested WME is o-supported,
or if it has been previously been back traced through (2). If either of these are true, the
WME can be ignored because it’s dependencies have been added to the GDS previously. If
not, elaborate_gds() is called recursively, to find the context dependencies for the local,
contributing WME, c (3).

When WME changes occur, each goal/state must be checked to determine if the WME
appeared on that goal’s GDS. Because WME changes occur in nearly every Soar elaboration
cycle, we chose to extend the WME data structure to avoid this scanning. Figure E.4
illustrates the relationship. Each GDS structure consists of a pointer to its goal and a
pointer to a linked list of WMEs. The gds_next and gds_prev pointers on the WME
structure define the GDS WMEs for a particular GDS and the GDS pointer provides a link
back from each GDS WME to the GDS data structure.

When a WME is removed, the GDS pointer can be checked to determine immediately if the
goal should be removed. No scanning is necessary.

Other implementation issues

• Allocating memory for the GDS
The GDS memory is created for each goal when the goal is created. The GDS is
deallocated when the goal is removed. A NIL WME pointer for the GDS indicates a
goal has no WMEs in its GDS.

• Updating a WME GDS pointer
A WME should appear in only the GDS of the highest goal for which it is dependent.
If a WME is determined to already be in a GDS lower than the current goal, its GDS
pointer is updated to the higher goal, it is removed from the gds WME DLL of the
lower goal, and added to the higher one. If there are no other WMEs on the gds WME
DLL of the lower goal, its WME pointer is set to NIL (the GDS itself is retained,
because we don’t want to have to reallocate memory for the GDS if we need to add to
it later.)

182 APPENDIX E. A GOAL DEPENDENCY SET PRIMER

PROC create new assertion(. . .)
Whenever a new o-supported element is asserted, the GDS is updated
to include any new context dependencies.
. . .
Ainst ← instantiation that asserted acceptable preference for A
IF A is an o-supported WME

G is the goal/state in which A is asserted
GGDS ← append(GGDS, elaborate GDS(A))

. . .
END

PROC elaborate GDS(assertion A)
S ← {NIL}
FOR Each assertion c in Ainst, the instantiation supporting A

©1 IF {GoalLevel(c) closer to top state than GoalLevel(A)}
append(c, S) (append context dependency to GDS)

©2 ELSEIF {GoalLevel(c) same as GoalLevel(A) AND
c is NOT an o-supported WME AND
c has not previously been inspected }

©3 S ← append(S, elaborate GDS(c))
(compute GDS dependencies for c and add to goal’s GDS)

©4 cinspected ← true
(c’s context dependencies have been added to the GDS;

no need to consider it again for this GDS)
return S, the list of new dependencies in the GDS

END

PROC GoalLevel(assertion A)
Return the goal level associated with assertion A

Figure E.3: The algorithm for determining members of the GDS.

183

Figure E.4: The GDS and WME data structures
.

184 APPENDIX E. A GOAL DEPENDENCY SET PRIMER

Index

!, 58, 171
&, 58
+, 48, 58, 173
-, 45, 58, 173
., 50
<, 43, 58, 173
<< >>, 44, 49
<=, 43
<=>, 43
<>, 43
=, 43, 58, 173
>, see best preference, 43, 58, 173
>=, 43
@, 58
∧(carat symbol), 33
~, 58, 173

, 29

acceptable preference, 48, 173
action side of production, 56
action-side grammar, 168
add-wme, 151
alias, 154
arithmetic operations, 60
attribute, 8, 13, 14, 33, 34

multi-valued attribute, 35
augmentation, see working memory element

backtracing, 75, 76
best preference, see best preference, 173
better preference, 173
bottom-up chunking, 74

capitalize-symbol, 63
carriage return, line feed, 60
cd, 141
chunk, 30

overgeneral, 27
chunk-name-format, 107
chunking, see learning, 73

actions, 75

bottom-up, 74
conditions, 76, 77
creation, 73
determining actions, 75
determining conditions, 76
duplicate chunks, 74
incorrect chunks, 78
negated conditions, 75, 79
ordering conditions, 77
overgeneral, 78
refractory inhibition, 77
variablization, 77
when active, 73

clog, 142
cmd, 65
command-to-file, 143
comments, 40
compute, 60
concat, 64
condition

acceptable preference , 48
condition side, 41
condition-side grammar, 167
Conditions, 41
conflict impasse, 24, 66
conjunctive

conditions, 44
negation, 46

constant, 34, 168
constraint-failure impasse, 24, 66, 171
crlf, 60

decision
procedure, 19, 66, 171

decision cycle, 7, 21
pseudo code, 23

decision procedure, 7, 23
default-wme-depth, 94
desirability preference, 76, 78
dirs, 144
disjunction of constants, 44

185

186 INDEX

disjunctions of attributes, 49
dont-learn, 65
dot notation, 50

echo, 145
edit-production, 156
elaboration

phase, 66
excise, 83
exec, 64
exhaustion, 67, 74, 79
explain-backtraces, 122

firing-counts, 108
float, 62
floating-point constants, 34
floating-point number, 60
force-learn, 65

GDS, 175
gds-print, 95
goal

examples, 67
representation, 8
result, see result
stack, 25
subgoal, 23, 24, 30
termination, 28, 66

gp, 84
grammar, 167
grammar, action side, 168
grammar, condition side, 167

halt, 59
help, 85

I-support, 18
of result, 27

i-support, 169
I/O, 11, 31, 68

input functions, 68
input links, 68
io attribute, 68
output functions, 68
output links, 68

identifier, 13, 14, 33, 34, 36
variablization of, 77

impasse, 7, 23, 66
conflict, 24
constraint-failure, 24

elimination, 28
examples, 67
no-change, 24
operator no-change, 24
resolution, 28, 66
state no-change, 24
tie, 24
types, 66

incorrect chunks, 78
indifferent-selection, 20, 124
init-soar, 86
int, 61
integer, 34
interface, 81
internal-symbols, 96
interrupt, 59
item (attribute), 67
item-count (attribute), 67

justification, 27
creation, 27
overgeneral, 27

learn, 73, 126
learning, 30, 73

overgeneral, 27
LHS of production, 41
link, 14, 36
linked

chunk action, 75
Linux, 3
ls, 145

Macintosh, 3
make-constant-symbol, 62
matcher, 77
matches, 97
max-chunks, 128
max-elaborations, 129
max-memory-usage, 130
max-nil-output-cycles, 131
memories, 99
motor commands, see I/O
multi-attribute, see multi-valued attribute
multi-attributes, 132
multi-valued attribute, 14, 47, 77

necessity preference, 78
negated

conditions, 45, 79

INDEX 187

conjunctions, 46
negated conditions, 75
no-change impasse, 24, 66
not equal test, 43
numeric comparisons, 43
numeric-indifferent-mode, 132

O-support, 18
of result, 27
reject, 18

o-support, 169
o-support-mode, 133
object, 36
Operating System, 3
operator

application, 11
comparison, 10
proposal, 10
representation, 8
selection, 10
support, 18

operator no-change impasse, 24
ordering chunk conditions, 77
overgeneral chunk, 76, 78

path notation, 50
persistence, 18, 19, 169
Personal Computer, 3
popd, 146
predicates, 43
predict, 134
preference, 19, 36, 57

acceptable, 19, 21, 36, 173
acceptable as condition, 48
best, 20, 173
better, 19, 173
indifferent, 20
numeric-indifferent, 20
persistence, see persistence
prohibit, 20, 76, 78, 173
reject, 19, 173
require, 20, 21, 76, 78, 171
semantics, 19
syntax, 38
worse, 19, 173
worst, 20, 173

preference memory, 19
syntax, 38

preferences, 100, 171

print, 102
problem solving

external, 11
functions, 6
internal, 11

problem space, 12
representation, 8

production, 6, 16
condition, 41
firing, 16
instantiation, 17
LHS, 41
match, 6
RHS, 56
roles, 17
structured values, 54
syntax, 38

production actions, 18
production memory, 16

syntax, 38
production-find, 105
prohibit preference, 76, 78, 173
pushd, 146
pwatch, 109
pwd, 147

quiescence, 21
quiescence t (augmentation), 67, 74, 79
quit, 87

refractory inhibition of chunks, 77
reject preference, 173
remove-wme, 153
require preference, 76, 78, 171
result, 23, 25, 73–75
rete-net, 148
RHS of production, 56
rl, 135
run, 88

save-backtraces, 136
select, 137
set-library-location, 149
set-stop-phase, 138
soarnews, 157
source, 149
sp, 90
srand, 156
stack, see goal
state, 15

188 INDEX

representation, 8
state no-change impasse, 24
stats, 110
stop-soar, 92
structured value notation, 54
subgoal, see goal, 25, 66, 73

augmentations, 66
result, 74
termination, 66

subgoal result, 75
superstate, 66
support, 169
symbol, 34
symbolic constant, 34

tie impasse, 24, 66
time, 157
timers, 139
timestamp, 62
timetag, 35
top-state

for I/O, 71
trace

memory, 75
type comparisons, 43

unalias, 158
Unix, 3

value, 13, 14, 33, 34
structured notation, 54

variable, 168
action side, 56

variables, 42
variablization, 77
verbose, 113
version, 159

waitsnc, 140
warnings, 113
watch, 114
watch-wmes, 119
Windows, 3
WME, see working memory element
working memory, 13, 13

acceptable preference, 36
object, 14
syntax, 33
trace, 75

working memory element, 13

syntax, 33
timetag, see timetag

worse preference, 173
worst preference, 173
write, 60

189

Summary of Soar Aliases and Functions

Predefined Aliases

There are a number of Soar “commands” that are shorthand for other Soar commands:

Alias Summary Page
? Alias for help. 85
a Alias for alias 154
aw Alias for add-wme 151
chdir Alias for cd. 141
d Alias for run -d 1; runs by decision cycles. 88
dir Alias for ls. 145
e Alias for run -e 1; runs by elaboration cycles. 88
eb Alias for explain-backtraces. 122
ex Alias for excise. 83
exit Alias for quit. 87
fc Alias for firing-counts. 108
gds print Alias for gds-print. 95
h Alias for help. 85
inds Alias for indifferent-selection. 124
init Alias for init-soar. 86
interrupt Alias for stop-soar. 92
is Alias for init-soar. 86
l Alias for learn. 126
man Alias for help. 85
p Alias for the print command. 102
pc Alias for print --chunks. 102
pr Alias for preferences. 100
pw Alias for pwatch. 109
rn Alias for rete-net. 148
rw Alias for remove-wme. 153
set-default-depth Alias for default-wme-depth. 94
sn Alias for soarnews. 157
ss Alias for stop-soar. 92
st Alias for stats. 110
step Alias for run 1. 88
stop Alias for stop-soar. 92
topd Alias for pwd. 147
un Alias for alias -d. 154
unalias Alias for alias -d. 154
w Alias for watch. 114
wmes Alias for print -i. 102

190

Summary of Soar Functions

The following table lists the commands in Soar. See the referenced page number for a complete
description of each command.

Command Summary Page
add-wme Manually add an element to working memory. 151
alias Define a new command using existing com-

mands and arguments.
154

cd Change directory. 141
chunk-name-format Specify format of the name to use for new

chunks.
107

clog Record all user-interface input and output to a
file.

142

default-wme-depth Set the level of detail used to print WMEs. 94
dirs List the directory stack. 144
echo Print a string to the current output device. 145
excise Delete Soar productions from production mem-

ory.
83

explain-backtraces Print information about chunk and justification
backtraces.

122

firing-counts Print the number of times each production has
fired.

108

gds-print Print the WMEs in the goal dependency set for
each goal.

95

gp Define a pattern used to generate and source a
set of Soar productions

84

help Provide formatted, on-line information about
Soar commands.

85

indifferent-selection Controls indifferent preference arbitration. 124
init-soar Reinitialize Soar so a program can be rerun from

scratch.
86

internal-symbols Print information about the Soar symbol table. 96
learn Set the parameters for chunking, Soar’s learning

mechanism.
126

ls List the contents of the current working direc-
tory.

145

matches Print information about the match set and par-
tial matches.

97

max-chunks Limit the number of chunks created during a
decision cycle.

128

max-elaborations Limit the maximum number of elaboration cy-
cles.

129

max-nil-output-cycles Limit the maximum number of decision cycles. 131
memories Print memory usage for production matches. 99

191

Command Summary Page
multi-attributes Declare multi-attributes so as to increase Rete

matching efficiency.
132

numeric-indifferent-mode Select method for combining numeric prefer-
ences.

132

o-support-mode Choose experimental variations of o-support. 133
popd Pop a directory off of the directory stack, chang-

ing to it.
146

predict Predict the next selected operator. 134
preferences Examine items in preference memory. 100
print Print items in working memory or production

memory.
102

production-find Find productions that contain a given pattern. 105
pushd Push a directory onto the directory stack, chang-

ing to it.
146

pwatch Trace firings and retractions of specific produc-
tions.

109

pwd Print the current working directory. 147
quit Close log file, terminate Soar, and return user

to the operating system.
87

remove-wme Manually remove an element from working
memory.

153

rete-net Save the current Rete net, or restore a previous
one.

148

rl Get/Set Soar-RL parameters and statistics 135
run Begin Soar’s execution cycle. 88
save-backtraces Save trace information to explain chunks and

justifications.
136

select Force the next selected operator 137
set-library-location Set the top level directory containing de-

mos/help/etc.
149

soarnews Print information about the current release of
Soar.

157

source Load and evaluate the contents of a file. 149
sp Create a production and add it to production

memory.
90

stats Print information on Soar’s runtime statistics. 110
stop-soar Interrupt a running Soar program. 92
time Use the system clock to record the time required

to execute the next command.
157

timers Toggle on or off the internal timers used to pro-
file Soar.

139

version Print the version information for the Soar kernel. 159
waitsnc Generate a wait state rather than a state-no-

change impasse.
140

warnings Toggle whether or not warnings are printed. 113
watch Control the information printed as Soar runs. 114
watch-wmes Trace WMEs matching specific patterns. 119

	Contents
	Introduction
	Using this Manual
	Contacting the Soar Group
	A Note on Different Platforms and Operating Systems

	The Soar Architecture
	An Overview of Soar
	Problem-Solving Functions in Soar
	An Example Task: The Blocks-World
	Representation of States, Operators, and Goals
	Proposing candidate operators
	Comparing candidate operators: Preferences
	Selecting a single operator
	Applying the operator
	Making inferences about the state
	Problem Spaces

	Working memory: The Current Situation
	Production Memory: Long-term Knowledge
	The structure of a production
	Architectural roles of productions
	Production Actions and Persistence

	Preference memory: Selection Knowledge
	Preference semantics

	Soar's Execution Cycle: Without Substates
	Impasses and Substates
	Impasse Types
	Creating New States
	Results
	Removal of Substates: Impasse Resolution
	Soar's Cycle: With Substates

	Learning
	Input and Output

	The Syntax of Soar Programs
	Working Memory
	Symbols
	Objects
	Timetags
	Acceptable preferences in working memory
	Working Memory as a Graph

	Preference Memory
	Production Memory
	Production Names
	Documentation string (optional)
	Production type (optional)
	Comments (optional)
	The condition side of productions (or LHS)
	The action side of productions (or RHS)

	Impasses in Working Memory and in Productions
	Impasses in working memory
	Testing for impasses in productions

	Soar I/O: Input and Output in Soar
	Overview of Soar I/O
	Input and output in working memory
	Input and output in production memory

	Learning
	Chunk Creation
	Determining Conditions and Actions
	Determining a chunk's actions
	Tracing the creation and reference of working memory elements
	Determining a chunk's conditions

	Variablizing Identifiers
	Ordering Conditions
	Inhibition of Chunks
	Problems that May Arise with Chunking
	Using search control to determine correctness
	Testing for local negated conditions
	Testing for the substate
	Mapping multiple superstate WMEs to one local WME
	Revising the substructure of a previous result

	The Soar User Interface
	Basic Commands for Running Soar
	excise
	gp
	help
	init-soar
	quit
	run
	sp
	stop-soar

	Examining Memory
	default-wme-depth
	gds-print
	internal-symbols
	matches
	memories
	preferences
	print
	production-find

	Configuring Trace Information and Debugging
	chunk-name-format
	firing-counts
	pwatch
	stats
	verbose
	warnings
	watch
	watch-wmes

	Configuring Soar's Runtime Parameters
	explain-backtraces
	indifferent-selection
	learn
	max-chunks
	max-elaborations
	max-memory-usage
	max-nil-output-cycles
	multi-attributes
	numeric-indifferent-mode
	o-support-mode
	predict
	rl
	save-backtraces
	select
	set-stop-phase
	timers
	waitsnc

	File System I/O Commands
	cd
	clog
	command-to-file
	dirs
	echo
	ls
	popd
	pushd
	pwd
	rete-net
	set-library-location
	source

	Soar I/O Commands
	add-wme
	remove-wme

	Miscellaneous
	alias
	edit-production
	srand
	soarnews
	time
	unalias
	version

	Appendices
	The Blocks-World Program
	Grammars for production syntax
	Grammar of Soar productions
	Grammar for Condition Side
	Grammar for Action Side

	The Calculation of O-Support
	The Resolution of Operator Preferences
	A Goal Dependency Set Primer
	Index
	Summary of Soar Aliases, Variables, and Functions

