
 1

Soar-SMem Manual
Version 0.2.3

6 February 2010

Contributors

Nate Derbinsky

Nicholas Gorski

John Laird

Bob Marinier

Yongjia Wang

Sam Wintermute

Joseph Xu

 2

Table of Contents

1. Document History .. 3

2. Soar-SMem Motivation ... 4

3. Working Memory Structure .. 5

4. Storing Semantic Concepts .. 6

4.1. Agent Storage ... 6

4.2. Long-Term Identifiers .. 6

4.3. Manual Storage .. 6

4.4. Soar-SMem Storage ... 7

5. Retrieving Concepts .. 8

5.1. Soar-SMem Retrieval Commands .. 8

5.2. Non-Cue-Based Retrievals ... 8

5.3. Cue-Based Retrievals .. 8

6. Soar-SMem Parameters .. 11

6.1. Parameter Configuration .. 11

6.2. Parameter Descriptions .. 11

6.2.1. General .. 11

6.2.2. Storage .. 11

6.2.3. Performance ... 12

6.3. Full Parameter Configuration .. 13

6.4. Parameter Behavior .. 13

7. Soar-SMem Statistics ... 14

8. Soar-SMem Timers ... 16

9. Trace Information .. 18

10. Soar-SMem Performance ... 19

10.1. Performance Tweaking .. 19

11. Other Useful Features ... 21

11.1. Reinitializing Soar-SMem .. 21

11.2. Visualizing the Semantic Store ... 21

12. Soar Integration ... 22

12.1. Working Memory ... 22

12.2. Procedural Memory .. 22

12.3. Episodic Memory .. 22

13. Soar-SMem Programmer Reference ... 23

13.1. Useful Commands .. 23

13.2. Parameters ... 23

13.3. Agent Commands ... 25

13.4. Retrieval Agent Meta-Data ... 25

 3

1. Document History

Version 0.2

Added:

- init command

- vis command

- command-specific status

- @ preface when printing LTIs

- more performance parameters, stats, and timers

- integration section

- thresh parameter

Version 0.1

Pilot version.

 4

2. Soar-SMem Motivation
Soar-SMem is a task-independent, architectural integration of an artificial semantic

memory (SMem) with Soar. The SMem mechanism facilitates deliberate recording and

querying of semantic chunks as a Soar agent executes.

 5

3. Working Memory Structure
Upon creation of a new state within working memory, the architecture will automatically

create a structure in working memory called smem. Within this structure, agents issue

requests to Soar-SMem by populating the command identifier with working memory

elements (WMEs) and process Soar-SMem generated WMEs in the result identifier.

 6

4. Storing Semantic Concepts
This section details Soar-SMem storage, including the agent API, long-term identifiers,

declarative storage, and format details.

4.1. Agent Storage

An agent stores a concept in semantic memory by issuing a store command:

state.smem.command.store <identifier>

Multiple store commands can be issued in parallel during a single cycle. Storage

commands are processed at the end of every phase of every decision cycle. Storage is

guaranteed to succeed:

state.smem.result.success <identifier>

Soar-SMem will store all WMEs rooted at the identifier. Storing deeper levels of working

memory is achieved through multiple store commands.

4.2. Long-Term Identifiers

When an identifier is stored in semantic memory it is converted into a long-term identifier

(LTI). The specific letter-number combination that labels the identifier (i.e. S5 or C7) is

now permanently associated with the stored concept. Any future retrievals of the concept

are guaranteed to return the associated letter-number pair. For clarity, when printed, a

long-term identifier is prefaced with the @ symbol (i.e. @S5 or @C7).

Subsequent storage of an LTI will overwrite previous contents within semantic memory. It

should be noted that between issuing store commands it is possible to have children of a

concept in working memory be inconsistent with the long-term children stored in semantic

memory.

4.3. Manual Storage

Soar-SMem provides the ability to manually store concepts via the add switch of the smem

command. The format of the command is nearly identical to the working memory

manipulation components of the RHS of a Soar production (i.e. no RHS-functions). For

instance:

smem --add {
 (<arithmetic> ^add10-facts <a01> <a02> <a03>)
 (<a01> ^digit1 1 ^digit-10 11)
 (<a02> ^digit1 2 ^digit-10 12)
 (<a03> ^digit1 3 ^digit-10 13)
}

Unlike agent storage, declarative storage is automatically recursive. Thus, this command

instance will add a new concept (represented by the temporary “arithmetic” variable) with

three children. Each child will be its own concept with two constant attribute/value pairs.

Declarative storage can be arbitrarily complex and use standard dot-notation.

 7

Declarative concepts are stored immediately. Thus, storage parameters (such as database

and path) should be set before issuing any add commands.

4.4. Soar-SMem Storage

SMem currently uses SQLite to facilitate efficient and standardized storage and querying of

episodes. The episodic store can be maintained in memory or on disk (per the database

and path parameters). If the store is located on disk, users can use any standard SQLite

programs/components to access/query its contents.

The lazy-commit parameter is a performance optimization. If set to on (default), disk

databases will not reflect semantic memory changes until the Soar instance ends, to save

disk I/O costs.

 8

5. Retrieving Concepts
This section details the agent interface to Soar-SMem retrievals, including command

protocol, non-cue-based (NCB) retrievals, cue-based (CB) retrievals, and retrieval meta-

data.

5.1. Soar-SMem Retrieval Commands

An agent issues a retrieval command to the Soar-SMem system by populating appropriate

WMEs on the command identifier of a state’s smem structure. At the end of each output

phase, after concept storage, Soar-SMem processes each state’s SMem command structure.

Results, meta-data, and errors are placed on the result identifier of that state’s smem

structure.

Only one type of retrieval command (which may consist of multiple WMEs) can be issued in

a single decision cycle (though multiple states may issue commands). Malformed

commands (including attempts at multiple commands) will result in an error:

state.smem.result.bad-cmd state.smem.command

After a command has been processed, Soar-SMem will ignore it until some aspect of the

command structure changes (via addition/removal of WMEs). When this occurs, the

result structure is cleared and the new command (if one exists) is processed.

5.2. Non-Cue-Based Retrievals

An NCB retrieval is a request to retrieve the direct children of a long-term identifier:

state.smem.command.retrieve <lti>

If the supplied identifier is not a long-term identifier, an error will result:

state.smem.result.failure <lti>

Otherwise, two new WMEs will be placed on the result structure:

state.smem.result.success <lti>

state.smem.result.retrieved <lti>

If there are WMEs rooted at the LTI in Working Memory, the retrieved LTI will reflect

these contents. Otherwise, its direct children will be populated from semantic memory.

5.3. Cue-Based Retrievals

CB retrieval commands are used to search for a concept in the store that exactly matches an

agent-supplied cue, while potentially adhering to optional modifiers.

A cue is composed of WMEs that describe a concept’s direct children. A cue WME with a

constant value (symbolic or numeric) demands an exact match of both attribute and value.

A cue WME with an LTI as its value demands an exact match as well. A cue WME with a

non-long-term identifier as its value requires an exact match of attribute, but with any

value (constant or identifier).

 9

A cue is issued on the command structure as a query identifier:

state.smem.command.query <cue>

For instance, consider the following query:

sp {sample*query
 (state <s> ^smem.command <sc>
 ^lti <lti>
 ^input-link.foo <bar>)
-->
 (<sc> ^query <q>)
 (<q> ^name <any-name>
 ^foo <bar>
 ^associate <lti>
 ^age 25)
}

In this example, assume that the “^lti <lti>” match will be an LTI and the value of “foo” from

the input-link will be a constant. Thus, the query requests retrieval of a long-term

identifier with ALL of the following:

• A child with attribute “name” and ANY value

• A child with attribute “foo” and value equal to the value of variable “<bar>” at the

time this rule fires

• A child with attribute “associate” and value referring to the long-term identifier

“<lti>” at the time this rule fires

• A child with attribute “age” and integer value 25

If no long-term identifier meets ALL of these qualifications, an error is returned:

state.smem.result.failure <cue>

Otherwise, two WMEs are added:

state.smem.result.success <cue>

state.smem.result.retrieved <lti>

During a cue-based retrieval it is possible that the retrieved LTI is not in Working Memory.

If this is the case, Soar-SMem will create a new identifier with letter-number pair as was

originally stored.

As with NCB retrievals, if there exist WMEs in Working Memory rooted at the LTI, these are

not overwritten. Otherwise the direct children of the LTI in Semantic Memory are added to

Working Memory.

It is possible that multiple concepts match the cue equally well. In this case, Soar-SMem

will retrieve the LTI that was most recently stored/retrieved.

The CB retrieval process can be further tempered using optional modifiers:

 10

• The prohibit command requires that the LTI of the retrieved episode is not equal to

a supplied LTI:

state.smem.command.prohibit <bad-lti>

Multiple prohibit command WMEs may be issued as modifiers to a single CB

retrieval. This method can be used to iterate over all matching concepts.

 11

6. Soar-SMem Parameters
The following sections discuss how to configure the Soar-SMem parameters discussed in

previous sections.

6.1. Parameter Configuration

Individual configuration parameters are retrieved and manipulated using the get and set

switches of the smem command:

smem [-g|--get] <parameter>
smem [-s|--set] <parameter> <value>

Agents can retrieve and change parameters in the actions of rules using the cmd function.

6.2. Parameter Descriptions

All Soar-SMem parameters are organized below. The Protected field is discussed in Section

6.4).

6.2.1. General

Purpose Enable or disable Soar-SMem

Parameter learning

Values off Disable Soar-SMem

on Enable Soar-SMem

Default off

Protected no

6.2.2. Storage

Purpose Specifies whether the semantic store will be maintained in memory or on disk

Parameter database

Values file Semantic store is maintained on disk

memory Semantic store is maintained in memory

Default memory

Protected yes

Purpose Specifies where on disk the semantic store will be saved

Parameter path

Values <empty> Soar-SMem will create a temporary database file on disk

during execution (and delete it after use)

<valid path> Soar-SMem will use the specified path for its database file

on disk - if the file doesn’t exist, it will be created

Default <empty>

Protected yes

 12

Purpose Specifies how often the semantic store is saved to disk

Parameter lazy-commit

Values off Updates to the store are saved as they occur

on Updates remain in memory until the Soar instance ends

Default on

Protected yes

6.2.3. Performance

Purpose Specifies a threshold for activation locality

Parameter thresh

Values Integer, [0, ∞∞∞∞]

Default 100

Protected yes

Purpose Specifies the maximum amount of memory used for SQLite cache

Parameter cache

Values large 100MB

medium 20MB

small 5MB

Default large

Protected yes

Purpose Specifies architectural focus in data safety vs. epmem performance

Parameter optimization

Values performance Data store on disk is left vulnerable to corruption the case

of application/OS/hardware malfunction

safety Data store on disk is guaranteed to be consistent

Default performance

Protected yes

Purpose Declares the level to which Soar-SMem timers are enabled (akin to watch

levels)

Parameter timers

Values off Timers are disabled

one Only total Soar-SMem time is recorded

two High-level timers are enabled (smem_*)

three Detailed timers are enabled (three_*)

Default off

Protected no

 13

6.3. Full Parameter Configuration

Entering simply the smem command (with no switches) will return full parameter

configuration information. For example, assuming default configuration, the result of

executing smem is as follows:

>smem

SMem learning: off

Storage

database: memory
path:
lazy-commit: on

Performance

thresh: 100
cache: large
optimization: performance
timers: off

6.4. Parameter Behavior

Upon attempting to set a Soar-SMem parameter, the new value is validated. If the value is

found to be invalid, the system will use the previous value.

The set of parameters listed above that have a “yes” in the Protected field cannot be

changed once the Soar-SMem system has been “initialized.” The Soar-SMem system

initializes during execution of the first storage/retrieval or issuing the init switch of the

smem command.

 14

7. Soar-SMem Statistics
Feedback from the Soar-SMem system is retrieved using the stats switch of the smem

command:

smem [-S|--stats] <statistic>

If a statistic argument is provided, the command returns the value of a specific statistic.

The valid statistic arguments are listed below.

Statistic mem_usage

Description Current SQLite memory usage in bytes

Label Memory Usage

Statistic mem_high

Description Greatest SQLite memory usage in bytes since last database initialization

Label Memory Highwater

Statistic retrieves

Description Number of times the retrieve command has been issued

Label Retrieves

Statistic queries

Description Number of times the query command has been issued

Label Queries

Statistic stores

Description Number of times the store command has been issued

Label Stores

Statistic nodes

Description Number of nodes in the semantic store

Label Nodes

Statistic edges

Description Number of edges in the semantic store

Label Edges

Agents can retrieve specific statistics in rule actions using the cmd function.

Note that SQLite memory stats are shared amongst all SQLite databases, meaning these

numbers include memory used by episodic memory (Soar-EpMem).

 15

Entering the smem --stats command with no statistic, or an invalid statistic, will return all

statistics. A sample execution may look as follows:

>smem --stats
Memory Usage: 0
Memory Highwater: 0
Retrieves: 0
Queries: 0
Stores: 0
Nodes: 0
Edges: 0

 16

8. Soar-SMem Timers
Time spent on Soar-SMem operations is retrieved using the timers switch of the smem

command:

smem [-t|--timers] <timer>

If a timer argument is provided, the command returns the value of a specific timer. The

valid statistic arguments are listed below (with their associated level, respecting the

timers parameter).

Timer _total

Description Total time spent by Soar-SMem

Level one

Timer smem_api

Description Time spent validating agent commands

Level two

Timer smem_hash

Description Time spent hashing symbols

Level two

Timer smem_init

Description Time spent initializing the semantic store

Level two

Timer smem_ncb_retrieval

Description Time spent adding concepts (and children) to working memory

Level two

Timer smem_query

Description Time spent searching for cues

Level two

Timer smem_storage

Description Time spent storing concepts

Level two

 17

Timer three_activation

Description Time spent maintaining storage/retrieval recency information

Level three

Agents can retrieve specific timer values in rule actions using the cmd function. Timer

values are re-initialized at the same time points as Soar timers.

Entering the smem --timers command with no timer will return all timers. A sample

execution may look as follows:

>smem --timers
_total: 0
smem_api: 0
smem_hash: 0
smem_init: 0
smem_ncb_retrieval: 0
smem_query: 0
smem_storage: 0
three_activation: 0

 18

9. Trace Information
To view Soar-SMem debugging information, use the following watch switch:

watch [-s|--smem]

This function is not enabled by default or through any watch level. At present, this watch

level does not serve a function.

 19

10. Soar-SMem Performance
Initial empirical results with the arithmetic demo agent show that SMem queries carry up

to a 40% overhead as compared to comparable rete matching. However, Soar-SMem

implements some basic query optimization: statistics are maintained about all concept

storage. When a query is issued, Soar-SMem re-orders the cue such as to minimize

expected query time. Because only perfect matches are acceptable, semantic memory

retrievals will not suffer the same combinatorial search space as the rete. Preliminary

empirical study shows that Soar-SMem maintains sub-millisecond retrieval time in very

large stores (millions of nodes/edges).

Once the number of concepts overcomes initial overhead (~1000 nodes/edges), initial

empirical study shows that semantic storage requires about 70-90 bytes per node/edge.

10.1. Performance Tweaking

When using a database stored to disk, several parameters become crucial to performance.

The first is lazy-commit which controls when the database is actually committed to disk.

The default setting (on) will keep all writes in memory and only commit to disk upon re-

initialization (quitting the agent or issuing the init command). The off setting will write

each change to disk and thus incurs massive I/O delay.

The next parameter is thresh. This has to do with the locality of storing/updating

activation information with semantic concepts. By default, activation is stored sorted with

edges. Because these edges are already sorted by activation, retrievals are independent of

cue selectivity. However, each activation update (such as after a retrieval) incurs an update

cost linear in the number of outgoing edges from the node. If the number of edges is large,

this cost can be prohibitive. Thus, the thresh parameter sets the upper bound of outgoing

edges, after which activation is stored with the node. There is a balance to achieve between

activation updates and cue selectivity. As long as the threshold is greater than the number

of outgoing edges of most nodes, performance should be fine (as it will bound the effects of

selectivity).

The next parameter is cache. Greater settings afford SQLite greater amounts of memory in

which to store B-Tree nodes, thus reducing disk I/O for searches. This memory is not pre-

allocated, so short/small runs will not automatically make use of this space. Some

situations may benefit from smaller cache allocation, to reduce memory allocation calls.

The next parameter is optimization. The safety parameter setting will use SQLite default

settings. If data integrity is of importance, this setting is ideal. The performance setting

will make use of lesser data consistency guarantees for significantly greater performance.

First, writes are no longer synchronous with the OS (synchronous pragma), thus Soar-

EpMem won’t wait for writes to complete before continuing execution. Second, transaction

journaling is turned off (journal_mode pragma), thus groups of modifications to the

episodic store are not atomic (and thus interruptions due to application/os/hardware

failure could lead to inconsistent database state). Finally, upon initialization, Soar-EpMem

maintains an continuous exclusive lock to the database (locking_mode pragma), thus other

 20

applications/agents cannot make simultaneous read/write calls to the database (thereby

reducing the need for potentially expensive system calls to secure/release file locks).

Finally, timers are currently very expensive in Soar. The Soar-EpMem timers use Soar

timer code. Thus, these should be enabled with caution and understanding of their

limitations. First, they will affect performance, depending on the level (set via the timers

parameter). A level of three, for instance, times every modification to node recency

statistics. Furthermore, because these iterations are relatively cheap (typically a single

step in the linked-list of a b-tree), timer values are typically unreliable (depending upon the

system, resolution is 1 microsecond more).

 21

11. Other Useful Features

11.1. Reinitializing Soar-SMem

For Soar-SMem to be reinitialized, all reference to long-term identifiers in all of Soar’s

memories must be removed. Consequently, the init command was introduced to

reinitialize all memories: episodic, semantic, procedural, and working:

smem [-i|--init]

Internally, this command closes the episodic store (epmem --close), closes the semantic

store, and excises all productions (excise --all), which in turn reinitializes Soar (init-soar).

11.2. Visualizing the Semantic Store

For debugging purposes, Soar-SMem supports a visualization command:

smem [-v|--viz] <lti> <depth>

This command will output the contents of the semantic store in Graphvis

(http://www.graphviz.org) format. By optionally specifying an lti (does not have to exist

in working memory), visualization is rooted at the specified long-term identifier.

Optionally specifying a depth will depth-limit the visualization (akin to the --depth switch

of the print command).

The output of the command will be text and is likely of little use within Soar. Thus,

combining visualization with the Soar command-to-file command is ideal. Below is the

rendered form of the following command issued during the arithmetic demo:

smem -v a1

 22

12. Soar Integration
Integrating long-term identifiers in Soar presents a number of theoretical and

implementation challenges. This section discusses the state of integration with each of

Soar’s memories/learning mechanisms.

12.1. Working Memory

Long-term identifiers exist as peers with short-term identifiers in Working Memory. For

clarity, long-term identifiers, when printed, are prefaced with an @ symbol.

12.2. Procedural Memory

Soar’s production parser (i.e. the sp command) has been modified to allow specification of

long-term identifiers (prefaced with an @ symbol) in any context where a variable is valid.

Once added to the rete, the long-term identifier is treated as a constant for matching

purposes. If specified as the value of a WME in an action, an LTI will be added to working

memory if it does not already exist. There is also preliminary support for chunking over

long-term identifiers.

It is currently possible to create production actions wherein the id of a new WME is an LTI

that exists neither in the production conditions, nor as the attribute or value of a prior

action. Such rules will wreak havoc within Soar and are not supported. They will be

detected and disallowed in future versions of Soar-SMem.

12.3. Episodic Memory

Episodic memory faithfully captures short- vs. long-term identifiers, including the episode

of transition. Cues are handled in much the same way as SMem (see the Soar-EpMem

manual for more detail).

 23

13. Soar-SMem Programmer Reference
The following tables list basic information about each of the Soar-SMem related commands.

It is not intended to substitute for this document, but a quick reference for commonly used

commands and options.

13.1. Useful Commands

Command Description
smem Summary table of parameter settings
smem [-g|--get] <parameter> Retrieve a Soar-SMem parameter value
smem [-s|--set] <parameter> <value> Set a Soar-SMem parameter value
smem [-S|--stats] <statistic> Access Soar-SMem statistics
smem [-t|--timers] <timer> Access Soar-SMem timers
smem [-a|--add] Declaratively store concepts
smem [-v|--viz] <lti> <depth> Output semantic store in Graphvis format
smem [-i|--init] Reinitialize all Soar memories

watch [-s|--smem] Soar-SMem debugging trace

13.2. Parameters

Parameters noted with a * are protected.

General
Parameter Name Acceptable Values Default
learning on

off
 off

Storage
Parameter Name Acceptable Values Default
database* file

memory
 memory

path* <empty>

<system path>
 <empty>

lazy-commit* off

on
 on

Performance
Parameter Name Acceptable Values Default
thresh* [0-∞] 100

cache* large

medium
small

 large

optimization* performance

safety
 performance

timers off

one
two

 off

 24

three

 25

13.3. Agent Commands

Storage

state.smem.command.store <identifier>

NCB Retrieval

state.smem.command.retrieve <lti>

CB Retrieval

state.smem.command.query <cue>

CB Retrieval Optional Modifiers

state.smem.command.prohibit <bad-lti>

13.4. Retrieval Agent Meta-Data
state.smem.result

 ^retrieved <lti>
^<< success failure bad-cmd >> <identifier>

