

 Soar Tutorial

177

Part VI: Building Large Soar Programs: Soar Quakebot
This part of the tutorial describes the simple version of the Soar Quakebot, a Soar program that plays
Quake II against human players in deathmatches. It provides an example of a moderately large Soar
system. The version covered in this tutorial is simpler than the full Quakebot, which also includes
mapping and anticipation capabilities. More generally, it provides a detailed exemplar of how Soar can be
used to develop AI entities for real computer games.

This part is less of a tutorial and more overview documentation of the Soar Quakebot. Unfortunately the
Quakebot is no longer available for distribution. This tutorial does not cover in detail all of the rules used
in the system. The Soar Quakebot has over 300 rules, so that the purpose of this tutorial is to go over the
structure of the Quakebot's operators and the underlying data structures. For a technical examination of
the Soar Quakebot with emphasis on its ability to use anticipation (not covered in this tutorial) see my
paper from the AAAI 2000 Spring Symposium Series: Artificial Intelligence and Interactive Entertainment:
"It Knows What You're Going to Do: Adding Anticipation to a Quakebot"
(http://ai.eecs.umich.edu/people/laird/papers/Agents01.pdf).

1. The Quake II Environment

The current version of the Soar Quakebot runs on a separate computer from Quake II and you must buy
your own copy of Quake II. Soar interfaces to Quake via Socket I/O, which resides on both computers.
The two parts of Socket I/O communicate using working memory element-like structures. The Interface
DLL loads into Quake II and contains all of the code that accesses the Quake II functions and data
structures for simulating a Quakebot's perception and performing its actions. The DLL uses Socket I/O to
send input-link data structures to and receive the output-link action commands from Soar. The advantage
of Socket I/O is that it provides a task-independent interface for connecting Soar to other applications.
Only the code in the DLL must be changed (and the rules) when using Soar in another applications. The
details of the interface are completely hidden from the Soar side, with the Soar program getting input via
the input-link and sending commands to control the Quakebot via the output-link. Unfortunately the
current implementation cannot run both Soar and Quake II on a single computer. We are developing a
new vision that will allow multiple Soar entities to run on the same computer as Quake II.

1.1 Installing Quake II, and the Soar Quakebot
No longer available: The installation instructions for the Soar Quakebot can no longer be downloaded
from http://ai.eecs.umich.edu/~soarbot.

1.2 Playing Quake II
Our Quakebot plays the death match version of Quake II. In a death match, players exist in a "level",
which contains hallways and rooms. The players can move through the level, picking up objects and firing
weapons. The object of the game is to kill the other players as many times as possible in a given amount
of time. Each time a player is shot or is near an explosion, its health decreases, and when the player's
health hits zero the player dies. A dead player is "respawned" at one of the specific spawning sites within

Interface

DLL

Quake II

Soar Rules

Perception

Action

Socket
I/O

Socket

I/O

 Soar Tutorial

178

the level. Throughout the level are "powerups": weapons, health, armor, and ammo. Success in the game
depends on collecting these during a fight. When one of these objects is picked up (by moving to its
position) a new one will automatically appear in the same position in 30 seconds. When a player dies, the
currently selected weapon (except for the blaster), will appear near the body, but will disappear within 30
seconds if it is not picked up.

Weapons vary according to their range, accuracy, spread of damage, time to reload, type of ammo used,
and amount of damage they do. For example, the shotgun does a lot of damage in a broad area if used
close to an enemy, but does little or no damage if used from a distance. In contrast, the railgun can kill in
a single shot at any distance, but requires very precise aim because it has no spread. For more details of
Quake II, see sections 1.4-1.6 below and the Quake II manual.

1.3 Soar Quakebot Limitations
There are a number of limitations in the current Quakebot, some from the overall structure or our system
and some from limitations on the reasoning of the Quakebot. These are listed below:
1. Only one Quakebot fights one human at a time. This is a limitation of our overall software structure.

We are working on changing this so any number of Quakebots can fight any number of humans.
2. The more advanced Quakebot can map and navigate only two-dimensional levels that are made up

of rectangular rooms connected by hallways. This restriction comes from the method it uses to build
an internal map the level. The fighting, wandering and other behaviors use the internal map but could
be extended to work in more complex levels if the bot had a way to map it. The simple Quakebot
does not use a map, so it is more flexible, but less intelligent.

3. The Quakebot cannot negotiate lava or water.
4. The Quakebot does not crouch, and it aims only in two dimensions.
5. The Quakebot does not know how to use grenades.
6. The Quakebot does not know about buttons or switches.

1.4 Soar Quakebot Sensors
Each Quakebot continually sees and hears things in its environment. It has some additional sensing
abilities relating to distances from walls. It also senses aspects of its own state, aspects of the game, and
feedback from its actions. These structures are described in http://ai.eecs.umich.edu/~soarbot/ilink.html.
Below is a discussion of the most important aspects of the sensors. Each of these is an augmentation of
the input-link: (state <s> ^io.input-link <il>).

1.4.1 Game Data
The only game data currently available is the name of the current level, which is a string called the
mapname: (state <s> ^io.input-link.game.mapname <string>) . The name is defined when
the level is created using the level-editing tool and it is used by the Quakebot to retrieve the correct map
for the current level (assuming it has a map built for this level).

1.4.2 Agent Data
Agent data describes all of the data about the bot: (state <s> ^io.input-link.agent <agent>) .
It includes information on the bot's name, as well as its current position, orientation, velocity. It also
includes information on its health, armor level, whether it is dead or alive, which items it has, which item is
selected, which weapons it has, and which weapon is selected. The agent data also has information on
the current decision cycle and a random number that is updated every cycle and can be used by rules to
make random decisions (such as how long to camp out waiting for the enemy).

 Soar Tutorial

179

1.4.3 Entity Data
Sensory data for each visible entity in the game is created on: (state <s> ^io.input-link.entity
<entity>) . A Quakebot can sense all unobstructed powerups that are in its field of view. The same
goes for enemies and projectiles in flight. The diagram below shows which object a bot can see and its
field of view. In the figure there are two obstacles, one to the front-left, and one behind, and five objects
(A-E). The bot can see only object C. All of the others are either out of range (D), not in its view cone (B &
E), or occluded by an obstacle (A).

Status of the targets:
target inrange visible infront
A Yes No Yes
B Yes Yes No
C Yes Yes Yes
D No N/A N/A
E Yes No No

For each powerup that the bot sees, it senses the object's type, exact location, and its position relative to
the bot. For each enemy, it also senses its orientation, its health and death status, its name, velocity, and
currently selected weapon. For projectiles in flight, the Quakebot senses its type, its position relative to
the bot, and whether it is headed toward the bot and likely to hit. The sensing of projectiles is not yet used
by the Soar Quakebot (it seems to still have a few bugs in it).

1.4.4 Sound Data
A Quakebot can hear sounds, such as the human running nearby and explosions even through walls. For
each "sound", the bot gets the relative position of the sound and the type. The running of other players is
masked if the bot is running, but not if the bot is stopped or walking.

1.4.5 Map Data
The most difficult sensing for a bot is to sense the walls that make up the level. Within Quake II (and
similar games), there are no rooms with 3" thick walls. Instead there are thousands to millions of infinitely
thin polygons that when displayed give the illusions of walls. The information available to the bot is the
range from the bot to the nearest walls in front, behind, up, down, to the left, and to the right of the bot.
The bot also gets range information a few degrees to the left and right of its front. This information is used
to detect when it has caught its shoulder on a doorway, where the front sensor will show that it is clear,
but the bot cannot move forward.

 Soar Tutorial

180

1.4.6 Feedback Data
In contrast to Eaters and TankSoar, the Quakebot does not receive feedback on its actions through
augmentations on the output-link associated with its actions. The Quakebot receives all feedback on
input-link. This should be changed at some point.

1.5 Soar Quakebot Actions

The Quakebot has a variety of actions including moving through the world (thrust forward/backward/stop,
run/walk, turn left/right, sidestep left/right), attacking other players (attack, face-enemy/lead-enemy), and
selecting weapons.

1.6 Summary of Input-link and Output-link

 The details of these structures are in http://ai.eecs.umich.edu/~soarbot/ilink.html.

 Soar Tutorial

181

2. Soar Quakebot Overview

The Soar Quakebot's knowledge and goals are organized hierarchically; similar to the way they were
organized in TankSoar. At the top-level state there are a combination of goals (ambush, attack, chase,
collect-powerups, explore, hunt, predict-enemy, retreat, face-attack, and wander), and primitive operators
(die, spawn, record-enemy, select-enemy, remove-enemy, record-sound, remove-sound). Shared
implementations of operators that occur in multiple goals are in "common." Finally, rules used to elaborate
the current situation at the top level are found under "elaborations." The following description of the
Quakebot knowledge and goals is organized by activity, such as wandering, living and dying, building and
maintaining the map, collecting powerups, managing information about the enemy, pursuing the enemy,
attacking the enemy, predicting the enemy's behavior. The most complex parts of the Quakebot involve
building up the map; however, the map structure is by itself straightforward and is used by almost all other
activities. Therefore, although building the map is best put off to the end (and so far has been put off
completely), an overview of the data structure is best done before describing specific activities. The
activities themselves are presented in order of complexity, from simplest to most complex.

Although most of the operators in the Quakebot are organized hierarchically in terms of goals and
subgoals (or tasks and subtasks), there are some operators that can be selected at any level of the
operator hierarchy. These are often called "floating" operators and are kept in the all/ directory. These
operators perform tasks that need to be done no matter what top-level operator is being attempted, such
as selecting the best weapon, noticing that the bot just moved into a room, noticing the location of
powerups in the room, getting the bot unstuck, and noticing when the bot's health or armor decreases.

Below is a list of the main tactics the simple Quakebot uses. These are implemented across the top-level
operators.
• Collect-Powerups

• Pick up best weapons from spawn locations
• Remember when missing items will respawn
• Use shortest paths to get objects
• Get health/armor if low on health/armor
• Pickup up other good weapons/ammo if close by to deny enemy

• Attack
• Use circle-strafe
• Move to best distance for current weapon

• Chase
• Go after enemy based on sound of running
• Go after where enemy was last seen

• Ambush
• Wait in a corner that can’t be seen by enemy
• Wait by a door where an enemy is expected to come out

• Hunt
• At nearest spawn room after killing enemy
• At rooms enemy is often seen in

 Soar Tutorial

182

3. Map Data Structure

Much of the behavior of the Quakebot is driven by its knowledge of the map, which is built up using the
explore operator. The map is an augmentation of the top state. Some of the augmentations that are part
of the map data structure are used only during the creation of the map. Once exploration is complete,
only a few aspects of the map data structure are modified (such as the pointer to the current room). In this
section, only those parts of the map that are used after the map is created will be described. The explore
operator is not described in this tutorial.

3.1 Map Overview

The map consists of a set of room objects, with each room having wall and door objects. The map is an
augmentation of the top-state (<s> ^map <m>). The map has the following augmentations (there are
many more map augmentations that are used during exploration to build the map, but these are the most
important ones).
room A room in the level (there is a separate aug mentation for
 each room in the level).
current-room The room that the bot is currently in.
last-room The last room that the bot was in.
enemy-room The room that a sensed enemy is in (if not the current

room).
explored [true] Signifies that the map has been com pletely explored.
item A powerup that is noticed in the level durin g exploration.

The initialize-bot operator creates the map augmentation on the top state and other map related
augmentations.

The current-room is computed by an elaboration in elaborations/map.soar. It continually monitors the
Quakebot's current x, y location and finds the room with walls that enclose the Quakebot. This calculation
only works once the map of a room is created, so during exploration the Quakebot relies on a more
deliberate calculation of its current-room.

3.2 Rooms & Doors and Walls

3.2.1 Rooms
Each room has many augmentations. Below are the most important ones:

type [hall/room] The type of room. A hall connects rooms together.
room-number An integer that uniquely identifies th is room.
door One for each door in the room.
at-door The door that the bot is at (if it is at a door).
wall One for each of the walls that make up the r oom.
resurrect Contains the x, y location of a spawn lo cation in the room.
hiding-place Contains the x, y location of a hiding place in the room.
 Calculated by rules in elaboratio ns/hiding-place.soar
search Temporary information that is maintained abo ut the current

visit to a room - more details given below.
item A powerup that was found in the room during exploration.
enemy-visit-count The number of times an enemy has been seen in this room.
path Path information for this room to every othe r room. This

structure contains the distance to the other room a nd the
doorway to go through that leads to that room.

3.2.2 Doors

 Soar Tutorial

183

Below are the most important augmentations of each door object.

connecting-door The door object in the other room t hat connects to this

door. A door is specific to a room.
direction The cardinal side of the room that the d oor is on:

north, south, east or west.
number The number of the door - each door has a un ique number.
room The room that this door is in.
wall The wall that this door is part of.
x The x location of the middle of the door.
y The y location of the middle of the door.

3.2.3 Walls
Below are the most important augmentations of each wall object.

door One for each door in the wall.
side The cardinal side of the room that the wall is on:

north, south, …
x If the wall is east or west, the x location of the wall.
y If the wall is north or south, the y location o f the wall.

3.3 Search
A search object is created each time a room is entered and is deleted when the room is exited. It contains
temporary information that is useful during the visit to that room. The all/enter-room.soar operator creates
the search data structure whenever a room is entered, deletes the search data structure from the
previous room, and updates the last-room augmentation of the map (so the Quakebot can avoid going
back to the previous room when it is wandering).

hide-time The length of time to hide in a room.
recorded Information on an item that was noticed i n the room during

this visit to the room.

3.4 Items
All the powerups in the game, such as health, armor, weapons, and ammo, are called items. General
information on each type of item (ammo, armor, health, and weapons) is added to the parameters
augmentation of the top-level state by rules in elaborations/ammo, /armor, /health, and /weapons. An item
that is seen by the bot will be recorded as an ^item augmentation of a room. Each item will have the
following augmentations:

available [true] This is created if the item is exp ected to exist - it has
 not been detected to be missing.
classname The classname of the item.
regeneration-time The time when the item is expecte d to be regenerated if
 not currently available.
room The room the item is in.
type The type of the item: health, armor, weapons , or ammo.
x The x location of the object.
y The y location of the object.

Operators create the item data structures. During exploration, all/notice-item and all/record-explore-item
creates item augmentations that the Quakebot notices in rooms. Notice-item creates an initial item
augmentation of the map, and record-explore-item records it in the room once the room's walls are
known. These items are powerups that are part of the map and the bot remembers their locations. During
other top-level operators, such as wander, chase, collect-powerups and others, the Quakebot notices

 Soar Tutorial

184

items in rooms it visits and records them in the room search data structure by all/record-temp-item. It also
notices and records weapons that have been dropped by players when they are killed.

There are two additional operators that maintain the available and regeneration-time augmentations. The
all/notice-item-missing operator is proposed when the Quakebot is attempting to get an item, is in the
room where the item is supposed to be, is facing where the item should be, but does not see the object.
The Quakebot sets the regeneration-time, which is when it will consider that the object is available.
However, the regeneration-time that the Quakebot creates is only an estimate (because the Quakebot
does not know when the item was picked up) and so the all/notice-item-present operator is selected when
an item was thought to be missing, but is seen to exist. This operator resets the regeneration time, which
in turn makes the item available. The calculations for whether an item is available are done by rules in
elaborations/items.soar.

 Soar Tutorial

185

4. Quakebot Self
The Quakebot maintains a lot of information about itself as it plays the game. Many of these are on the
self augmentation of the top-state, which is created in elaborations/self.soar.

4.1 Movement
One of the nasty problems in controlling the Quakebot is that it is hard to tell when it gets stuck, such as
catching its shoulder on the edge of a door, which prevents it from moving. The only indication that the
Quakebot is stuck is that it is trying to move and it is not moving. Unfortunately, the calculation of being
stuck cannot be done immediately once the Quakebot starts to move because it takes time for the
Quakebot to start to move. The Quakebot uses the following augmentations and operators to detect if it is
stuck and attempt to become unstuck.

self.stopped [true] This augmentation is created by a rule in elaborations/self.soar when there is no
 velocity in any direction.
self.stuck [left right] This augmentation is created by a rule in elaborations/self.soar when the

Quakebot is trying to thrust forward or backward, but the Quakebot is stopped
and a sensor (leftlos/rightlos) indicates that there is an obstruction to one side,
but none in front.

self.stuck-time This augmentation is created by the all/record-stuck operator. This operator is
selected whenever the bot is stopped. It records a time in the future when the
Quakebot should have had enough time to get moving.
This augmentation is removed by the all/remove-stuck operator if the bot is no
longer stopped.

If the bot is stuck left or right and the current time is greater than stuck-time, then the all/sidestep operator
is proposed. This operator causes the bot to thrust backward and away from the side it is stuck. Once the
bot is no longer stuck, other operators should take over to make it go forward along its original path.

If the bot is stopped but is not stuck and is not waiting for an ambush, the operator all/start-moving will be
proposed, which will move the bot forward.

4.2 Wants and Needs

The Quakebot continually maintains a list of the powerups it thinks it wants (these are powerups that
would be good to have but it won't actively pursue them) and needs (it will actively pursue these). These
augmentations are created on the ^self augmentation of the top-state in elaborations/self.soar.

For health, the bot has predefined parameters (set as augmentations of the top-state.parameters) for the
level of health it has to have before it wants or needs more health. Similarly, it wants armor if its level of
armor is below some level. It also wants and needs ammo for its current gun. Finally, if there are better
weapons than the one it has, it will need those weapons.

The needs trigger the creation of a get-object augmentation of the self object if the bot thinks that there is
an item of the type needed available. The get-object differs from a need because it is instantiated with a
specific item that the bot knows about. The get-object then triggers the proposal of the collect-powerups
operator.

4.3 Retreat Information

Elaborations in elaborations/self.soar also recognize when the bot should attempt to retreat, either
because it has low health or is outmatched in terms of weapons. Even when the bot wants to retreat, the
retreat operator will be proposed only if the bot is near an exit and not near the enemy (otherwise it is too
easy to get shot).

 Soar Tutorial

186

4.4 Health & Armor

One shortcoming in the sensors for the bot is that it does not get any direct indication when it is hit by an
enemy's weapon. This is only important when the bot does not sense the enemy directly. Thus, the bot
must notice when its health or armor suddenly decreases from a shot in the back. Then it can turn and
face the enemy (and the normal attack operators will take over).

In order to notice that the health or armor has decreased, the bot records its initial health and armor on
the self augmentation as self.saved-health and self.saved-armor using a rule in elaborations/self.soar.
Whenever the bot's health or armor changes, the operators all/update-health and all/update-armor update
the saved values. However, if the current value is less than the stored value and there is no enemy
detected, then the face-attack operator is proposed, which causes the bot to turn 180 degrees (and
should cause it to see its enemy).

4.5 Current Weapon

Quake automatically switches to what it thinks is the best available weapon when a new weapon is picked
up. However, in some cases, the bot might have different priorities and all/select-weapon ensures that
the selected weapon is the one the bot thinks is best.

 Soar Tutorial

187

5. Die and Spawn
Sometimes, probably through a lucky shot by the human, the bot will be killed. In Quake, after a player is
killed, it is "spawned" at one of a few specific spawn locations on the current level. The bot gets
information over the input-link when it dies (io.input-link.agent.deadflag dead). When it dies, the top-level
die operator is selected. Once die is selected, the bot explicitly stops all actions (turns off attack, sidestep,
…), and marks that it is dead (<s> ^died true). It also removes the last-room structure, any retreat
structures, and any enemy structures.

When the bot is spawned, which it detects because it thinks it is dead (<s> ^died true), but the input-link
indicates it is alive (io.input-link.agent.deadflag dead), the spawn operator is selected. The spawn
operator resets the last-room to none, removes the (<s> ^died true) and records the spawn location if it is
not already recorded. The bot uses the spawn location in one of its tactics.

 Soar Tutorial

188

6. Enemies
A critical part of winning in Quake II is keeping track of enemies. Enemies can be seen visually, but when
they go out of view, they no longer come in via the input-link. The interface does preserve the "image" of
an enemy for 2 seconds after they disappear. That is enough time to select an operator to explicitly
remember the last position of the enemy. Other important aspects of enemies is that they can be heard if
the bot is not running. The sound sensor gives the bot a direction and range to the sound (as if the wall
were made of paper). The maximum range of the sound sensor is 1000 quake units.

In the remainder of this section, the details of the operators for selecting, recording, and forgetting
enemies. These descriptions also cover the enemy data structures.

6.1 Select-enemy
The select-enemy operator is proposed when an enemy is detected and there is not already an enemy
selected. A rule in elaborations/enemy.soar recognizes when there is a live enemy that is visible and in
front of the bot and augments the top-state with (<s> ^enemy-detected <e>), where <e> is the enemy
object on the input-link. If the enemy is in front of the bot, select-enemy will immediately start shooting,
otherwise, attacking the enemy is left up to the attack operator. The select-enemy operator is preferred to
most other top-state operators so that the bot can respond to the enemy ASAP. One exception is if the
enemy is not facing the bot and the bot has only the blaster and the enemy has a better weapon. In that
case, the bot will attempt to avoid the enemy. If there is more than one enemy, the bot will select the
closest enemy.

Once the select-enemy operator is selected, the bot creates an enemy object on the top-state, which in
turn has an augmentation (sensed-enemy) that points to the enemy data structure on the input-link. The
select-enemy operator also increments a counter for the number of times it has seen the enemy in the
current room. This count is used to predict where the enemy likes to hang out. After select-enemy is
applied, the attack operator will normally be selected.

6.2 Record-enemy
If the enemy disappears (but does not die), then the record-enemy operator is proposed. It is preferred to
most other top-state operators. When it is selected, it turns off shooting and augments the enemy data
structure with all of the information it last perceived concerning the enemy. In addition, a future time is
recorded for when this record is obsolete.

The attack/follow-enemy operator will then be selected to move to where the enemy was last seen.

6.3 Forget-enemy
If the record of the enemy becomes obsolete, or an enemy dies, then the forget-enemy operator is
proposed. It is preferred to most top-state operators. This operator removes the enemy augmentation
from the top state and turns off shooting. It also removes any retreat augmentations and creates an
augmentation on the top-state that the enemy-just-died. This augmentation cues the proposal of the hunt
operator.

6.4 Record-sound
If an enemy is not detected and a sound is heard, the record-sound operator is proposed. It is preferred to
most top-state operators. The action of this operator is to create a sound object on the top-state that
includes the type, range, and direction of the sound. A future time is also recorded for when the sound will
be obsolete. The sound object cues the proposal of the chase operator.

6.5 Forget-sound
This operator is selected when a sound becomes obsolete. It removes the sound object.

 Soar Tutorial

189

7. Wander
The wander operator is the default operator that is selected when the Quakebot has nothing else to do
(explore, attack, chase, ambush, …). It makes the bot wander from room to room by going through a door
in the current room using go-through-door as its only suboperator. If the bot sees a powerup or the
enemy, another top-level operator will be selected (such as select-enemy or collect-powerups). While
wandering, the bot walks so it can hear the enemy running nearby.

In proposing go-through-door, if there is only one door in the room, the bot will go through that door. If
there is more than one door, the bot will not go back to the room it just came from (saved in last-room). If
there are multiple doors to go through, the bot will prefer the door that leads to the room where it has
seen the enemy the most (assuming it has seen the enemy there at least enemy-visit-cutoff number of
times).

Although go-through-door is the only explicit suboperator of wander, other operators from the all/ folder
may be selected during wander. Specifically, enter-room will be preferred each time a new room is
entered. This operator updates last-room and initializes the search object for the current room (and
removes the search object for the previous room).

8. Collect-powerups
To win in Quake II, the bot should try to stay healthy and have the best weapon. The collect-powerup
operator takes the bot to the powerups that the bot has seen during exploration and picks them up. It is
proposed when there is some item that the bot needs (see Section 4.2). In general, all other top-state
operators are preferred to collect-powerups except for wander.

There is only one suboperator: get-item. Get-item is proposed for every item that the bot needs and any
item that the bot wants that it sees in the current room. Get-item is also proposed for ammo or good
weapons if they are close (parameter.close-ammo-range, parameter.close-weapon-range) even if they
are not needed or wanted. The idea is to deny them to the enemy and to have backup weapons and
ammo if they are needed in the future.

There are many selection rules (in common/get-item.soar) for deciding which item to pursue.
1. Prefer items that are close within the current room to items not in the current room.
2. Prefer items with higher priority (overridden by 1 above)

Weapons = priority 7
Health & Armor = priority 6
Close Ammo = priority 4

 Far Ammo = priority 3
3. For non-weapons, prefer items that are closer if they are of equal priority.
4. For weapons, prefer the better weapon.
5. For equal weapons, prefer the weapon that is closest.
The distance calculations are based on actual distance if the items can be seen, or number of rooms to
go through for items in different rooms.

9. Retreat
The retreat operator is only selected if there is a retreat structure on the self object (built by rules in
elaborations/self.soar) and the enemy is either far away (> parameter.retreat-range) or not visible. The
retreat operator attempts to run away from the enemy by going from room to room, avoiding returning to a
room it has been to during the retreat. The record-visited-room operator adds each room that is visited to
the retreat structure and then the go-through-door operator takes the bot through a door. The closest door
to the bot is preferred, except if the door takes the bot to a room it has been to during the retreat.

 Soar Tutorial

190

10. Chase
The chase operator is proposed if the Quakebot has recorded a sound, does not see an enemy, does not
need health, and has a weapon that is better than the blaster. This operator is better than wander,
explore, and collect-powerups. This operator will only be selected after record-sound and will be
displaced when the sound becomes obsolete by the selection of the remove-sound operator. Once the
operator is selected, there is an application rule that will update the sound objects whenever there are
any newly sensed sounds.

There are two suboperators for chase: turn and go-through-door. Turn is selected if the bot is not facing
the sound. It will turn the bot toward the sound. If this leads the bot to see the enemy, select-enemy will
displace chase, followed by attack. If no enemy is seen, then the bot will attempt to go to a room that is in
the direction of the sound using the go-through-door operator. The bot calculates the wall that the sound
is coming through and if there is a door on that wall, will go through it. If there are multiple doors, the bot
randomly selects one. If there is no door on that wall, the bot randomly selects a door from among those
that are on walls next to the wall with the sound, otherwise the bot exits through a door opposite the
sound.

11. Attack
The attack operator is proposed when an enemy has been selected. Once the attack operator is selected,
elaborations rules dynamically decide which type of attack to use. The Quakebot will use a direct attack if
the enemy is not facing the bot, otherwise it will use circle strafe. The following operators are used to
implement the attacks.

11.1 Select-target
Select-target sends a command to the Quakebot control system that the current target is the selected
enemy. This is used in medium and good aiming skill.

11.2 Face-enemy
Face-enemy uses three different techniques to aim at the enemy. None of these handles the third
dimension (I just haven't had time). The one used is determined by the aiming-skill parameter.
• Bad: The bot explicitly turns to face the enemy. There are no calculations to lead the enemy nor taken

into account the bot's movement.
• Medium: The bot uses a C-coded routine to continually face the enemy. This is faster than having the

bot do it, but it still does not lead the enemy.
• Good: The bot uses a C-coded routine to lead the enemy. This should be really tough but still misses

when the enemy or the bot moves.

11.3 Approach-enemy
Each weapon has a desired range of distance for use. Approach-enemy uses information from the
currently selected weapon to either approach or move away from the enemy. This could be refined by
looking at the enemy's weapon and picking a range that is best for the bot's weapon and worst for the
enemy's.

11.4 Charge-enemy
The charge-enemy operator is selected if the enemy is in a different room and there is no reason to
retreat. The bot will charge forward toward the enemy. Not clear that this is a good tactic, but it keeps the
bot engaged in the fighting and helps avoid losing track of the enemy.

 Soar Tutorial

191

11.5 Direct-Attack
If the enemy is not facing the bot, then the bot will stop sidestepping. This operator will move the bot
forward to get it to the mid-point of its optimal range. Approach enemy just tries to get it within the
maximum and minimum of the optimal range.

11.6 Circle-strafe
If the enemy is facing the bot, then the bot will circle strafe by continually sidestepping to the left or right
will aiming at the enemy. This makes it harder to hit the bot. Circle strafing will randomly switch directions
based on a timer and the bot also switches directions when it gets near a wall.

11.7 Get-item
Get-item allows the bot to pick up items that it needs while it is fighting. Get-item is selected only if the
object is close (parameters.attack-get-item-range) to the item.

11.8 Shoot
When the bot is either tracking the enemy, or is facing the enemy, it will start shooting.

11.9 Jump
If the enemy has the rocket launcher or the railgun, the bot will randomly jump.

11.10 Clean-up-enemy
If there is a recorded enemy structure that is obsolete, then delete it. This is important so that the bot
doesn't go after an old position of the enemy when it should be engaging an active enemy.

 Soar Tutorial

192

12. Predict-enemy
The predict-enemy operator attempts to predict what the enemy will do next. The result of this operator (a
prediction structure added to the enemy object) is then used by ambush, hunt, and deny-powerups to
defeat the enemy. The predict-enemy operator is proposed when the enemy is no longer visible, or is
facing away from the bot and is not too close. The idea being that in cases where the enemy is running
away it might be better to ambush the enemy than to try to run him down from behind. This will also work
on levels where the bot can see the enemy far away, but cannot immediately attack the enemy (we will
have to build some levels like that!).

Predict-enemy works by creating an internal state that appears to be just like the top-state but has the
information in it from the enemy's perspective (create-enemy-state). This information will be incomplete,
but sufficient to do some prediction. The bot then uses its own knowledge of tactics to predict what the
enemy will do next by just letting its operators get selected. Some additional knowledge must be added
so that the prediction moves forward through operator applications. This is done by rules that short-circuit
operators, such as go-through-door, by mentally tele-porting the bot through the door by changing internal
objects (predict-enemy/nternal-simulation.soar). During the simulation, the bot also keeps track of how far
the enemy goes in terms of number of rooms (also predict-enemy/internal-simulation.soar). When the
simulation gets to the point where either the distance traveled by the enemy will be more than the
distance that the bot needs to travel to get to get to the same location, or where there is indecision for the
enemy, then the simulation terminates, with the result being the last room the enemy will be in and the
door it went through to get to that room.

13. Hunt
The hunt operator is selected when the bot has a prediction as to which room the enemy will be in. One
prediction comes from predict-enemy and the other when it has just killed the enemy - it predicts the
enemy will be in a spawn room. Overall, hunt heads toward the room that it predicts the enemy will be in.
If it is already in a spawn room that it predicts the enemy will be in, it turns to the spawn point. Once at the
spawn point, the bot will forget about the enemy if the enemy is not there.

14. Ambush
The ambush operator is selected under two distinct circumstances.

If the bot is in a room with a hiding place, it will propose ambush. The ambush operator will be selected
only if there are no other more important operators to be selected, such as attack, collect-powerups, …
For this type of ambush, the bot goes to the hiding place and then turns and faces out into the room
(ambush/hide-in-corner)

If the bot has a prediction as to which door an enemy will come through for this room, the bot will hide off
to the side of the door (hide-by-door). The bot will select a hiding place (pick-hiding-place), move to that
hiding place (move-to-hiding-place), and then face the door where it expects the enemy to come through
(move-to-hiding-place). I should add that if there is sound and the bot has the rocket launcher or a
grenade, it should shoot into the hall before it sees the enemy.

For all of the ambushes, the bot determines a time to wait and will give up the ambush after that amount
of time.

15. Deny-powerups
If the enemy is predicted to go after a specific item, the bot will attempt to go to the room where the item
is and get it before the enemy does.

