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2. Document History

Version 1.0.1
Added HRL Discount parameter.

Version 1.0
Soar 9.0 release.

Version 0.1
Initial specification.



3. Soar-RL Motivation

Soar-RL is the architectural integration of reicfament learning (RL) with Soar. The
RL mechanism will automatically learn value funasoas a Soar agent executes. These
value functions represent, for a given working mgnstate and proposed operator, the
expected sum of future rewards the agent will rexdiit selects that operator.

Optimal behavior for an agent is defined by rewand a discount factor. The agent acts
S0 as to maximize the expected value:

rt+:L+ yrt+2 + y2r1+3 ...

whererw1, o, 43, ... are the rewards at future time steps, aisdthe discount factor.



4. Working Memory Structure

Upon creation of a new state within working memaing architecture will automatically
create a structure in working memory caltediard-link. Thereward-link contains

working memory elements populated by the agernt¢poasent reward values (dee
Rewardfor more details).



5. Reward

A Soar-RL programmer must provide reward informafior the agent to properly learn
behavior.

5.1. Reward Location

Rewards are numeric values in the rangeof). Soar-RL gets reward from a state’s
reward-link. The value function for an operator at a particlgvel in the state stack is
affected only by rewards at that level.

The location for a reward is a numeric elementhar éward attribute of thereward-
link (i.e. state.reward-link.reward.*). The elemerddd be either an integer or float.
For instance, the following reward attributions eoerect:

state “reward-link.reward.value 1.2

state “reward-link.reward.value -2

All non-numeric elements at this level, or any ea@bove/below this level, will be
ignored.

5.2. Environmental Reward

Thereward-link is not part of théo-link and is not modified directly by the
environment. Reward information from the enviromtnghould be copied from the
input-link to thereward-link.

5.3. Accumulation of Reward

Rewards will be collected (and summed if therenandtiple rewards) at the beginning of
each decision phase. Rewards are not removedviarking memory as they are
recorded, so, for instance, an o-supported rewdld¢ontinue to be counted until it is
explicitly removed.

As special cases, reward accumulation will occunediately after &alt and
immediately before sub-state retraction (8&e Hierarchical Learniny



6. Soar-RL Rules

The reinforcement learning algorithm aggregatesatient’s experience into the Q-
function. This functionQ(s,a), is a mapping from a state-operator pair (desdripea
working memory state and a reference to a partiqraposed operator) to a real number
(the Q-value). The Q-value represents the expatissunted sum of future rewards if
the agent selects the given operator and contitouiedlow its current policy. RL learns
successively closer approximations to the true [Qes Soar-RL stores this value
function in productions so that the Q-value of gerator is computed from all rules that
create numeric preferences for it during a decision

6.1. Rule Format

The value function is computed through numericqnesices. Numeric preferences take
the following form:

(<state variable> “operator <operator variable> = n umber)

wherenumber is a numeric constant.

The value function is stored in Soar-RL rules, whace Soar productions asserting a
single numeric preference. Most simply:

sp {my*reinforcement*learning*rule
(state <s> “operator <0> +)

>
(<s> "operator <0> = 2.3)

}

Soar-RL rules are identified by syntax. A rul@iSoar-RL rule if and only if its right
hand side (RHS) consists of a single numeric peefsr (and it is not a template rule,
described later). This format exists to ease teahnequirements of identifying/updating
Soar-RL rules, as well as to make it easy for thenaiprogrammer to add/maintain RL
capabilities within an agent.

Consider the following [non-Soar-RL] rules:

sp {multiple*preferences
(state <s> “operator <0> +)
-->
(<s> "operator <o> =5, >)

}

sp {variable*binding
(state <s> “operator <o0> +
value <v>)
>
(<s> "operator <0> = <v>)



The first rule proposes multiple preferences ferphoposed operator and thus does not
comply with the rule format. The second rule doesscomply because it does not
provide aconstantfor the numeric preference value.

6.2. Rule Behavior

In the simplest case, a single Soar-RL producti@s fand matches a particular operator.
The estimated Q-value for the operator is the vafube numeric preference. This case
corresponds to a tabular or state-aggregation septation of the Q-function.

In more complicated cases, multiple Soar-RL ruley fire for a single operator,
proposing multiple numeric preferences for thatrafme. In this situation, the estimated
Q-value for the operator is a function of the pregubnumeric preferences. This function
is controlled in Soar using the following command:

numeric-indifferent-mode [--sum|--avg]

where thesum option (default) sums over all the numeric prefiees andivg averages
them.

Soar-RL rules are Soar productions, with one unmyoperty: Soar-RL rules are updated
in production memory by Soar-RL. These updatescmlged later, change tinember
in the numeric preference, leaving the rest ofrthe unaffected.

6.3. Template Format

Template rules have variables that are filled igeoerate Soar-RL rules for state-
operator pairs that the agent actually encount€msider the following template rule:

sp {sample*template*rule
template
(state <s> “operator <o0> +
value <v>)
>
(<s> "operator <0> = 2.3)

}

The:template flag means to use the rule to make new Soar-Risroy filling in those
variables that match constartv% in this case) in working memory. Without the
:template flag, this would have been a single Soar-RL rb& tvould match to multiple
states.

A rule is a template rule if and only if it has thhemplate flag and, in all other respects,
adheres to the format of a Soar-RL rule. Howew#erein a Soar-RL rule may only use
constants as the numerical preference value, aagemole may use a variable. Consider
the following template rule:



sp {sample*template*rule2
template
(state <s> ~operator <o> +
value <v>)
>
(<s> "operator <0> = <v>)

In this case, Soar-RL will create new productiofmge numerical preference values are
initialized to the value okv> at the time this template rule first matches.atfthis time,
the value okv> is non-numeric, the numerical preference valugiiglized to zero.

6.4. Template Behavior

Upon adding a production to production memory, S®archecks for the existence of a
:template flag. If a rule contains this flag and validatesa template rule, it is
categorized as a template. If a rule containsfkagsbut is not a valid rule, it is
immediately excised.

During the proposal phase, a valid template rutigplied to the matcher as would any
other rule. Matched instances of the rule, howedemot directly contribute
preferences. Instead, they are used to creaté&SnawRL productions. Each matched
instance is compared against existing Soar-RL riiiése LHS of the instance is not
unique, the instance is ignored. If the LHS ofitieance is unique, a new Soar-RL rule
is added to production memory. It should be ndtedl the current process of identifying
unique template match instances can become qupEnewe in long agent runs. For
performance reasons, if all Soar-RL productionshmpredicted at agent design time, it
is recommended to pre-generate them manually, &g sgp command, or via custom
scripting.

A Soar-RL rule created from a template has twoigpebaracteristics: production name
and constant replacement. The new production’sredtheres to the following pattern:
ri*template-name*id, whereid is a unique identifier angémplate-name is the name of
the originating template rule. The unique ideatifs an incrementing counter
maintained automatically for the agent. When a psvduction is generated, it receives
anid value greater than the greatest identifier in pobidn memory. The counter is
updated during every successful instantiation 8bar-RL rule from a template, as well
as creation of productions (such as when sourainggent) that match the above naming
scheme.

All variables in the new production that map to stamts (as opposed to structures) are
replaced with these constant values. This replacéapplies to both the LHS
conditions, as well as numerical preference value.

For example, considesample*template*rule2 above. Assume that the first time this

template matches the value<of> is 3.2. The following new Soar-RL rule is added to
production memory during the proposal phase:

10



sp {rl*sample*template*rule2*1
(state <s> ~operator <o> +
“value 3.2)
>

(state “operator <o> = 3.2)

}

As with other Soar-RL rules, the value32 on the RHS of this rule may be updated
later by Soar-RL, whereas the value3&f on the LHS will remain unchanged.

11



7. Reinforcement Learning Algorithm

The Soar-RL algorithm has the following major comeots: operator selection,
preference updates, gaps in rule coverage, eligiliaces, and hierarchical learning.

7.1. Operator Selection

The purpose of learning a Q-function is that theragan act optimally by selecting the
operator with the highest Q-value. Numeric prefees participate in Soar’s existing
operator selection methods. The decision phafsstieer complicated by the
exploration/exploitation needs of reinforcementi&ag.

7.1.1. Numeric and Symbolic Preferences

Symbolic preferences take precedence over numezierpnces. Symbolic preferences
are processed first, and only if there are tiedatpes remaining, are numeric preferences
examined. Consider the following example set efgnences:

01>02
01=0
02=21

In this situation©O1 would be selected.

7.1.2. Exploration Policies

When operator selection comes down to numeric prées, the decision mechanism
should usually choose the operator with the highasteric preferences, that is, the
highest estimated Q-value. However, for reinforertiiearning to discover the optimal
policy, it is necessary that the agent sometimessh an action that does not have the
maximum predicted value. Such exploration is nemgsbecause actions may be
undervalued. This situation can occur both dutirgginitial learning of a task and as a
result of change in the dynamics or reward strectiira task.

The exploration policy is selected using thdifferent-selection command:
indifferent-selection <policy>

The following are available policies:

-b, --boltzmann If the agent has proposed operatoss..., O, with expected
valuesQ(s, O3), ..., Q(s, Oy), then the probability of operator
Oj being selected is

eQ(SOi%
Zn: eQ(SOj%

=1

12



wheret (temperature), controls the peakedness of this
probability distribution.

-g, --epsilon-greedy With probabilitye (epsilon) the agent selects an action at
random (with uniform probability). Otherwise thgeat takes
the action with the highest expected value.

-X, --softmax Select an operator at random from the set of miytual
indifferent proposals, with the selection biaseababilistically
by any existing numeric preferences. Preferencésnen-
positive numeric indifferent values are ignoretindn-positive
numeric indifferent values are encountered, a gusgidom
selection is made.

Note: the softmax policy is analogous to the forfreandom”
option of the indifferent-selection command.

-f, --first Deterministic. Select the first indifferent objécm Soar’s
internal list.

-l, --last Deterministic. Select the last indifferent objercih Soar’s
internal list.

In an effort to maintain backwards compatibilityetdefault exploration policy is
softmax. However, the first time that Soar-RL is enablbe, architecture changes this
policy toepisilon-greedy (a more suitable default for RL agents) and issuegssage to
the trace.

Calling theindifferent-selection command with no parameters returns the curremtypol
For example, assuming defaults and Soar-RL is edabl

>indifferent-selection
epsilon-greedy

If the exploration policy requires temperinggdifferent-selection uses an exploration
rate parameter. Configuration of these paramerexseeds as follows:

indifferent-selection <parameter command> <value>

The following are available parameters:

Parameter Name Parameter Command Range of Values Default Value
epsilon -e, --epsilon [0,1] 0.1
temperature -t, --temperature (O, ) 25

Calling theindifferent-selection command with the parameter name and no valuenstur
the current parameter value. For example, assudefaylt values:

13



>indifferent-selection --epsilon
0.1

It should be noted that deliberate configuratiothefepsilon parameter while using the
epsilon-greedy exploration policy can achieve two extreme behavidf epsilon is set

to a value of zero (0), there is no chance for @gion and the highest valued operator is
always chosen (with random selection amongst tptaiors). lepsilon is set to a

value of one (1), a uniform random selection isslsvmade from amongst the
candidates.

With regard to reinforcement learning, the literatauggests that reduction of the
exploration rate over time results in convergerahe Q-function to optimal. The
indifferent-selection command allows for a reduction policy of each exation rate
parameter. The reduction policy (paired with acdeeduction rates) defines how the
exploration rate parameter is reduced each cyaiaglwhich it is relevant (as defined by
the currently selectediffer ent-selection policy). Selection of reduction policy
proceeds as follows:

indifferent-selection [-p|--reduction-policy]
<parameter name> <reduction policy>

The<parameter name> comes from the parameter table above. The fotigwaire
available reduction policies:

exponential Exploration rate parameter decays exponentiallfa(dg.
linear Exploration rate parameter decays linearly (vala@):

For example, setting the reduction policy for épeilon parameter tbinear would entail
the following:

>indifferent-selection --reduction-policy epsilon | inear

A call to thereduction-policy switch with a parameter name, but no reductiofcppl
will return the current reduction policy for therpmeter. For example, after the
command above:

>indifferent-selection --reduction-policy epsilon
linear

Configuring the reduction rate for a parameter pagicular reduction policy proceeds as
follows:

indifferent-selection [-r|--reduction-rate]
<parameter name> <reduction policy> <reduction rat e>

The range and default reduction rates for eachpeter are defined based upon the
reduction policy as follows:

14



Reduction Policy Range of Values Default Value
exponential [0,1] 1
linear [0, ) 0

For example, setting the reduction rateyadilon while using dinear reduction policy to
5 proceeds as follows:

>indifferent-selection --reduction-rate epsilon lin ear 5

A call to thereduction-rate switch with a parameter name and reduction pobay,no
reduction rate, will return the current reductiaterfor the parameter in the reduction
policy. For example, after the command above:

>indifferent-selection --reduction-rate epsilon lin ear
5

As an example of reduction policies, consider tiilWwing sequence of commands.
Assume that an agent has been pre-loaded usirsguhee command, and the agent has
been initiated and is in the proposal phase:

>indifferent-selection --epsilon 0.5

>indifferent-selection --reduction-policy epsilon e xponential
>indifferent-selection --reduction-rate epsilon exp onential 0.9
>step

>indifferent-selection --epsilon

0.45

>step

>indifferent-selection --epsilon

0.405

Note that after each decision phase the valueedilon exploration rate reduces
exponentially by a factor @f.9.

Many agents will not require automatic reductioregploration parameters (or may
require greater degrees of flexibility/customizajio Thus, thendiffer ent-selection
command with thauto-reduce switch controls this functionality:

indifferent-selection [-a|--auto-reduce] <setting>

Thesetting parameter can be eitham or off. A call to theauto-reduce switch without a
setting parameter will output the current automatic popeyameter reduction setting.
For example:

>indifferent-selection --auto-reduce
off

>indifferent-selection --auto-reduce on
>indifferent-selection --auto-reduce
on

Note that for performance purposes, the defauiingefior auto-reduce is off.

15



For convenience, calling thediffer ent-selection command with thetats switch will
output a complete set of exploration policy infotioa. For example, assuming defaults
and Soar-RL is enabled:

>indifferent-selection --stats
Exploration Policy: epsilon-greedy
Automatic Policy Parameter Reduction: off

epsilon: 0.1
epsilon Reduction Policy: exponential
epsilon Reduction Rate (exponential/linear): 1/0

temperature: 25
temperature Reduction Policy: exponential
temperature Reduction Rate (exponential/linear): 1/ 0

7.2. Preference Updates

Soar-RL does TD-learning: the estimated Q-valueat, Q(s,a&), is updated in the
direction of a later estimate of this quantity.r Btesum reward accumulation mode, the
Q-value update, whereis the learning rate, is the following equation:

Current Estimate += o(Target Estimate — Current Estimate)

The update is computed in decision phasg and then is apportioned to the Soar-RL
rules that fired for the operator selected in deniphasen in a least mean squares
(LMS), gradient-descent fashion.

Updating a Soar-RL rule involves changing the valtigs numeric preference. For
example:

1. Indecision phase, Soar-RL rulesl-1 andrl-2 fire for operatoiO2. They have
the following numeric preferences:

rl-1: (<s> ~operator <o0> = 2.3)
rl-2: (<s> ~operator <o> = -1)

O2is selected.
In decision phase+1, updated.2 is computed.
rl-1 andrl-2 are updated with the following numeric preferences

Pwn

RL-1: (<s> “operator <0> = 2.4)
RL-2: (<s> “operator <0> = -0.9)

Note that the update value is divided amongst aptied equally to all
contributing numeric preferences originating frooaGRL rules.

16



7.2.1. Target Estimate Calculation

The target estimate is the result of applying distimg to accumulated reward. The
discount factory(), configured using thdiscount-rate parameter, allows the agent to
value immediate rewards over more distant rewafidee value that is chosen for
discount is configured by tHear ning-policy parameter.

7.2.2. Learning Calculation

The learning ratex(), configured using thkear ning-r ate parameter, dictates the speed
by which updates affect agent behavior.

7.2.3. Update Calculation
With respect to intermediate calculations, thelfuradate is calculated as follows:

Current Estimate =Q(s t,ay)

NextValue =  F( learning-policy, t, Q-function )
Target Estimate =r w1 *+ Y(NextValue )

Update = C(( Target Estimate — Current Estimate)

Theupdate is then applied as described above.

7.3. Gaps in Rule Coverage

Since TD updates are transmitted backwards thrthugtored Q-function, it is tempting
to think that the function must be well-represerigdoar-RL rules at each decision
cycle: if there are no Soar-RL rules to fire foe thperator at step N in your task, then the
steps prior to N will never receive updates; ifrthare Soar-RL rules at step N, but they
are overly general, then the steps prior to N reitleive inaccurate updates.

However, needing a Q-value stored for every degisiplies that Soar-RL rules must be
provided even for operator selections that arestdéxided by symbolic preferences.
Maintaining this level of discipline can be difficfior agent programmers, particularly
when operators are required that do not represeps & a task, but perform
management of working memory. For example, insgrain operator simply to remove
some o-supported structure requires providing Siarules, sufficiently specific Soar-
RL rules to distinguish different Q-values for tile states in which it may be selected.

To address this practical issue, Soar-RL provideBrpinary support for automatic
propagation of updates over “gaps.” A gap is dafias one or more contiguous decision
cycles during which no Soar-RL rules fire. By défaSoar-RL will automatically
propagate updates over gaps, discounted expongiyethediscount-rate parameter

with respect to the length of the gap (definechasnumber of decision cycles). This
behavior can be enabled/disabled by manipulatiegethpor al-extension parameter. If
thetempor al-extension parameter is set wf, no updates will propagate across gaps.
For tools in identifying gaps, see 10.1. Trace timfation.

17



7.4. Eligibility Traces

By keeping a trace of state-action pairs encoudi¢he agent can update Q-values for
these stored pairs based on a combination of rstgp-targets. This can speed learning,
particularly when the reward horizon is long. Nhsliep updates are averaged together
according to theligibility-trace-decay-rate () parameter and discounted according to
thediscount-rate (y) parameter.

Eligibility traces are implemented by keeping (S&4rrule, eligibility trace) pairs for all
RL rules with non-negligible traces (as definedlseligibility-trace-tolerance
parameter). Memory usage for eligibility tracesiigimal when theligibility-trace-
decay-rate parameter is set to 0, and grows with increaskdrparameter, but is never
larger tharO(# of Soar-RL rules).

The eligibility trace implementation Soar-RL usepends upon the current value of the
lear ning-policy parameter:

Learning Policy  Eligibility Trace Implementation
sarsa Sarsal)
g-learning Watkin’sQ(\)

The Sarsa() algorithm is described below as implemented iarSoL. Assume that
represents the list of (Soar-RL rule, eligibilitpde) pairs for all non-negligible traces
(initially empty),0 is an operator associated with a Soar-RL milepresents the number
of Soar-RL rules that contributed to the selectbn, andQ represents the numeric
preference values associated with Soar-RL ruleseé&sed by operator id).

Initialize reward r =0
Repeat (for each Soar cycle):

Select operator o]

Repeat (for each oin e):
if ( e[ o] < [eligibility trace tolerance ])
remove e[ 0]

increnent =1/ n

if( efo])

e[ o]+=i ncrement
else

e[ o]=i ncrenent

Repeat (for each oin e):

{ o]+=(learning rate) *(update) ee[ o]

e[ o]*=(discount rate) «(eligibility trace decay rate)
Apply operator 0

Observe reward r

The WatkinsQ()) algorithm is equivalent to Saraan terms of calculation. However, if
the selected operatar, was not the proposed operator with greatest coaslbinumeric
preference values (i.e. the “greedy” choice), Edjilgility traces are re-initialized to zero.

In the calculations above, ahgibility-trace-decay-rate parameter set @ will result in
eligibility trace values always being removed, #mas Q-values never decaying.

18



Consequently, Soar-RL interprets such a settirgd#fault) as disabling eligibility
traces.

7.5. Hierarchical Learning

Hierarchical reinforcement learning (HRL) is reirfement learning done over a
hierarchically decomposed task structure. Learnargbe applied both to improving the
implementation of a subtask and to the selectioorgnsubtasks. Compared to flat RL,
HRL can demonstrate faster learning on a singledad can learn policies that are easier
to transfer to related tasks.

7.5.1. Operator No-Change Impasses

Hierarchical reinforcement learning in Soar-RL usltoon Soar’s operator no-change
impasse, which has traditionally been used for saligg and hierarchical task
decomposition. Consider the following operatocéravhere operatddl is selected and
impassed at stat&l, with operator©11, 012, andO13 being selected and applied at
Substates2:

o1 02
S1 I I I 2

o1 o1 o1
rl r2 r3

v

2 | | |
011 012 013

Soar-RL will treat the operator selectiorfsdtandS2 as two separate RL problen®il (
andS2 have independemewar d-link structures):

SI: Rewards abl1 while O1 is impassed are attributed®d. By default, these
rewards and the next-state prediction are discdumyehe number of decision

cycles thaD1 has been impassed. So if rewartlsr2, andr 3 are the rewards
received a1 while Ol is impassed, the target estimate@{f1, O1) is

rL+y(r2) +y’(r3) +y°[ Q(SL, 02) ]

This model maintains the definition of the Q-functias representing the
expected discounted sum of future reward receifted selecting an operator.

Setting thehrl-discount parameter toff will change this behavior, such that the
number of cycle®1 has been impassed will be ignored. Thus the tagjenate
for Q(S1, O1) would be

ri+r2+r3+y[ Q(S1, 02)]

19



S2:  After applyingO13, immediately before the sta® is removed, the architecture
checks for reward at S2. The target estimate f@(S2, O13) is justr.

7.5.2. Other Soar Impasses

For impasses other than operator no-change, thevlmelof Soar-RL at top-stat&l and
substates2 is as follows:

SI: During these impasses, there is no operataoalladtatS1. If Ol is the last
operator selected before the impassbge reward received in the decision cycle
immediately followingO1, andO2 the first operator selected after the impasse,
thenOL1 is updated with the targett y[ Q(S1, O2) ]. In other words, Soar-RL
acts as if the impasse hadn’t occurred.

S2:  Soar-RL acts exactly as it does for an opemadechange: the substate is treated
as an episodic task.

Note: in the final version of Soar-RL, all Soar iasges will be treated identically. In the
case of an impasse other than operator no-chadmgéne period at the superstate during
which no operator is selected will be treated gga” in rule coverage, and perceived
reward will be discounted with respect to decisigales passed.
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8. Soar-RL Parameters
Soar-RL is configured using tmécommand.

8.1. Parameter Configuration

Individual configuration parameters are retrievad emanipulated using thget andset
switches of thel command:

rl [-g|--get] <parameter>
rl [-s|--set] <parameter> <value>

Agents can retrieve and change parameters in tleaof rules using themd function.
8.2. Parameter Descriptions
8.2.1. General

Soar-RL

Purpose Enable or disable Soar-RL
Parameter learning

Values on Enable Soar-RL
off Disable Soar-RL
Default off

Temporal Extension

Purpose Direct how Soar-RL should behave during gagoar-RL rule coverage
Parameter temporal-extension
Values on Automatically propagate discounted updates
of f Do not propagate updates across gaps
Default on

8.2.2. Reward Discount

Discount Rate

Purpose  Set the discount ratg)(
Parameter discount-rate

Values Numeric[0,1]

Default 0.9

8.2.3. Learning

Learning Rate

Purpose  Set the learning rate)
Parameter learning-rate

Values Numeric|0,1]

Default 0.3
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Learning Policy

Purpose Modify the type of TD-learning used by SRhr
Parameter |earning-policy

Values sarsa On-policy, SARSA{) — update from the next action
SeleCted1 targe'ttﬂ + y[ Q(St+1’ at+1)
g-learning Off-policy, Q-learning— update from the next candidate

action with best estimate,,, + y[ma><a[Q(s1+1,a[+1)]
Default sarsa

HRL Discount

Purpose Direct how Soar-RL should discount rewaithpassed states
Parameter hrl-discount

Values on Reward received at an impassed state is discobyted
the number of cycles of impasse
of f Reward is not discounted by the number of cycles of
impasse

Default on
8.2.4. Eligibility Traces

Eligibility Trace Decay Rate

Purpose  Set the eligibility trace decay rate)(
Parameter dligibility-trace-decay-rate

Values Numeric[0,1]

Default 0

Eligibility Trace Tolerance

Purpose Sets the level at which eligibility traaes considered negligible
Parameter €ligibility-trace-tolerance

Values Numeric, (0, o)

Default 0.001
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8.3. Full Parameter Configuration
Entering simply thel command (with no switches) will return full paraere

configuration information. For example, assumiefadlt configuration, the result of

executing| is as follows:

rl
Soar-RL learning: off
temporal-extension: on

Discount

discount-rate: 0.9

Learning

learning-policy: sarsa
learning-rate: 0.3

Eligibility Traces

eligibility-trace-decay-rate: 0
eligibility-trace-tolerance: 0.001
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8.4. Parameter Behavior

This section details two fundamental charactessticparameter behavior: parameter
configuration timing and handling of invalid paraerevalues. Additionally, there are
some special cases to discuss.

8.4.1. Parameter Configuration Timing

In order for parameter configuration to affect bahavior of Soar-RL during cycle
parameter configuration must be completed befaestart of thelecisionphase of cycle
n.

8.4.2. Invalid Parameter Values

Upon attempting teet a Soar-RL parameter, the new value is validatethe value is
found to be invalid, the system will use the pregioalue.

8.4.3. Special Cases

At the beginning of theecisionphase of each cycle, the value for lttee ning-policy
parameter is checked. If this value has changext ghe last cycle, all eligibility traces
on the current state are re-initialized.
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9. Soar-RL Statistics

Feedback from the Soar-RL system is retrieved usiaegats switch of therl command:
rl [-S|--stats] <statistic>

If a statistic argument is provided, the command returns theevafa specific statistic.
The validstatistic arguments are listed below.

Statistic update-error
Description  The difference between tiaeget estimate and thecurrent estimate in
the most recent update (sé@.3. UpdateCalculation).

Statistic total-reward
Description  The total accumulated reward (with eg$po theaccumulation-mode)
in the most recent update (s€2.1. TargeEstimate Calculation).

Statistic global-reward
Description  The total accumulated reward (with eg$po theaccumulation-mode)
since agent initialization (sée2.1. TargeEstimate Calculation).

Agents can retrieve specific statistics in ruleats using themd function.

Entering the'| --stats command with natatistic, or an invalidstatistic, will return all
statistics. A sample execution may look as follows

>r| --stats

Error from last update: 0.8
Total reward in last cycle: 7
Global reward since init: 51
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10. Trace and Command Information

This section details debugging tools, includingéraformation, print switches, excise
switches, and decision cycle commands.

10.1. Trace Information

Viewing of numeric preferences for each operator lwa accomplished using the
following watch switch:

watch [-i|--indifferent-selection]

This watch function is not enabled by default aotlgh any watch level. Use of the
prefer ences command provides further information about opesateferenced with this
trace.

To view firing of templates, use the following wiatswitch:

watch [-T|--template]

This watch function is not enabled by default, isugnabled at watch level three (3).

To view Soar-RL debugging information, use thedaling watch switch:
watch [-R|--rl]

This function is not enabled by default or throwagly watch level. At present, this watch
level provides trace information about starting anding of gaps in Soar-RL rule
coverage.

10.2. Print Switch
Soar-RL introduces two new switches to gnent command:

print [-r|--rl]
print [-T|--template]

Therl switch to thegprint command provides detailed information about alrS8L

rules. The output displays the rule name, the rerrobupdates (potentially fractional, if
updated by an eligibility trace), and the currealue. For example, if

my*reinfor cement*lear ning*rule were the only Soar-RL rule in an agent and had bee
updated 4 times with a current value of 3.7, tiseilitevould be as follows:

>print --rl

my*reinforcement*learning*rule 4. 3.7
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Thetemplate switch to theprint command provides the names of all template rufes.
example, ifsample*template*rule were the only Soar-RL template rule in an agém, t
result would be as follows:

>print --template

sample*template*rule

Both new switches adhere to existprgnt command switches. For instance, to view
information about a specific rule or template, diyripdicate its name as a parameter.
Also, to view the complete rule, use flodl switch. The following examples illustrate
some common usages:

>print --rl --full

sp {my*reinforcement*learning*rule
(state <s> “operator <0> +)

>
(<s> "operator <o0> = 2.3)

}

>print --template --full

sp {sample*template*rule
:template
(state <s> “operator <o> +
value <v>)
-->
(<s> "operator <0> = 2.3)

>print --name my*reinforcement*learning*rule

my*reinforcement*learning*rule 4. 3.7

>print --full sample*template*rule

sp {sample*template*rule
template
(state <s> “operator <o> +
value <v>)
>
(<s> "operator <0> = 2.3)

>print --all

my*reinforcement*learning*rule 4, 3.7
sample*template*rule
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10.3. Excise Switch
Soar-RL introduces two new switches to &xeise command:

excise [-r]--rl]
excise [-T|--template]

Therl switch to theexcise command removes all Soar-RL rules (including thosated
from templates) from production memory. For examgimy*rl*rule were the only
Soar-RL rule in an agent, the result would be dewis:

>excise --rl
1 production excised.
>print --rl

Thetemplate switch to theexcise command removes all Soar-RL templates, preventing
further creation of new Soar-RL rule instantiatiof®r example, imy*rl*template
were the only template rule in an agent, the regaitld be as follows:

>excise --template
1 production excised.

>print --template

10.4. Decision Cycle Commands
Soar-RL introduces two new commands to debug thisida cycle of an agent:

predict
select <id>

Thepredict command determines, based upon current operaipogals, which operator
will be chosen during the next decision phaseorélict determines an operator tie will
be encounteredie is returned. Ipredict determines no operator will be selected (state
no-change)none s returned. Ipredict determines a conflict will arise during the
decision phaseponflict is returned. Ipredict determines a constraint failure will occur,
constraint is returned. Otherwiseredict will return the id of the operator to be chosen.
If operator selection will require probabilistideetion, and no alterations to the
probabilities are made between the caltedict and decision phaspredict will
manipulate the random number generator to enfesqaediction.

Theselect command will force the selection of an operatdrpge id is supplied as an
argument (case-insensitive), during the next degiphase. If the argument is not a
proposed operator in the next decision phase,ranisrraised and operator selection
proceeds as if theglect command had not been called. Otherwise, the mgopperator
will be selected as the next operator, regardlépsaderences. Iéelect is called with no
id argument, the command returns the operator icotlyrforced for selection (by a
previous call teselect), if one exists.
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11. Soar-RL Programmer Reference

The following tables list basic information aboach of the Soar-RL related commands.

It is not intended to substitute for this documénit, a quick reference for commonly

used commands and options.

11.1. Soar-RL

Useful Commands

Commant
rl

rl [-g|--get] <parameter>

rl [-s|--set] <parameter> <value>

rl [-S|--stats] <statistic>

print [-r]--rl]

print [-T|--template]
watch [-R|--rl]

watch [-T|--template]

excise [-r|--rl]
excise [-T|--template]

Soar-RL Parameters

General

Parameter Nan
learning

temporal-extension

Reward Discount

Parameter Nan
discount-rate

Learning
Parameter Nan

learning-rate
learning-policy

hrl-discount

Eligibility Traces
Parameter Nan
eligibility-trace-decay-rate
eligibility-trace-tolerance

[0,1]

Descriptiot
Summary table of parameter setti

Retrieve a So-RL parameter vall
Set a So«RL parameter valt
Access So«RL statistic

Print Soa-RL rules

Print Soa-RL template
Soa-RL debugging trac
Soa-RL template firing trac:

Excise SoeRL rules
Excise SoeRL template

Acceptable Value Defauli
on off
off
on on
off
Acceptable Value Defauli
[0,1] 0.9
Acceptable Value Defauli
[0,1] 0.3
sarsa sarsa
g-learning
on on
off
Acceptable Value Defauli
0
(0, ) 0.001
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11.2. Operator Selection

Useful Commands

Comman Destiption

indifferent-selection [-s|--stats] Summary of setting
indifferent-selection Current exploration polic
indifferent-selection <policy> Set exploration polic
indifferent-selection <parameter> <value> Get/Set exploration policy paramet
predict Predict the next selected oper:
select <id> Force the next selected oper:

Exploration Policies

Policy Nam Descriptiot

[-bl--boltzmann] Tempered softmax (uses temperai
[-g|--epsilon-greedy] Tempered greedy (uses epsi

[-x]--softmax] Random, biased by numeric indifferent va
[-fl-first] Deterministic, first indifferent preference is sax
[-I]--last] Deterministic, last indifferent preference is sede

Exploration Parameters

Parameter Nan Acceptdle Value: Defauli
[-e]--epsilon] [0,1] 0.1
[-t|--temperature] (0, ) 25
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