
Soar-RL Manual
Version 1.0.1
March 25, 2010

Contributors
Nate Derbinsky
Nick Gorski
John Laird
Bob Marinier
Yongjia Wang

 2

1. Table of Contents
1. Table of Contents .. 2
2. Document History ... 4
3. Soar-RL Motivation .. 5
4. Working Memory Structure .. 6
5. Reward .. 7

5.1. Reward Location .. 7
5.2. Environmental Reward .. 7
5.3. Accumulation of Reward ... 7

6. Soar-RL Rules ... 8
6.1. Rule Format ... 8
6.2. Rule Behavior .. 9
6.3. Template Format .. 9
6.4. Template Behavior ... 10

7. Reinforcement Learning Algorithm .. 12
7.1. Operator Selection ... 12

7.1.1. Numeric and Symbolic Preferences .. 12

7.1.2. Exploration Policies .. 12
7.2. Preference Updates .. 16

7.2.1. Target Estimate Calculation .. 17
7.2.2. Learning Calculation ... 17
7.2.3. Update Calculation.. 17

7.3. Gaps in Rule Coverage .. 17
7.4. Eligibility Traces .. 18
7.5. Hierarchical Learning .. 19

7.5.1. Operator No-Change Impasses ... 19
7.5.2. Other Soar Impasses ... 20

8. Soar-RL Parameters .. 21
8.1. Parameter Configuration .. 21
8.2. Parameter Descriptions .. 21

8.2.1. General .. 21
8.2.2. Reward Discount ... 21
8.2.3. Learning .. 21
8.2.4. Eligibility Traces ... 22

8.3. Full Parameter Configuration .. 23
8.4. Parameter Behavior .. 24

8.4.1. Parameter Configuration Timing .. 24
8.4.2. Invalid Parameter Values .. 24
8.4.3. Special Cases .. 24

9. Soar-RL Statistics ... 25
10. Trace and Command Information ... 26

10.1. Trace Information .. 26
10.2. Print Switch .. 26
10.3. Excise Switch ... 28
10.4. Decision Cycle Commands .. 28

 3

11. Soar-RL Programmer Reference ... 29
11.1. Soar-RL .. 29
11.2. Operator Selection ... 30

 4

2. Document History
Version 1.0.1
Added HRL Discount parameter.

Version 1.0
Soar 9.0 release.

Version 0.1
Initial specification.

 5

3. Soar-RL Motivation
Soar-RL is the architectural integration of reinforcement learning (RL) with Soar. The
RL mechanism will automatically learn value functions as a Soar agent executes. These
value functions represent, for a given working memory state and proposed operator, the
expected sum of future rewards the agent will receive if it selects that operator.

Optimal behavior for an agent is defined by reward and a discount factor. The agent acts
so as to maximize the expected value:

rt +1 + γrt +2 + γ 2rt +3 +K

where r t+1, r t+2, r t+3, … are the rewards at future time steps, and γ is the discount factor.

 6

4. Working Memory Structure
Upon creation of a new state within working memory, the architecture will automatically
create a structure in working memory called reward-link. The reward-link contains
working memory elements populated by the agent to represent reward values (see 5.
Reward for more details).

 7

5. Reward

A Soar-RL programmer must provide reward information for the agent to properly learn
behavior.

5.1. Reward Location
Rewards are numeric values in the range (-∞,∞). Soar-RL gets reward from a state’s
reward-link. The value function for an operator at a particular level in the state stack is
affected only by rewards at that level.

The location for a reward is a numeric element on the reward attribute of the reward-
link (i.e. state.reward-link.reward.*). The element should be either an integer or float.
For instance, the following reward attributions are correct:

state ^reward-link.reward.value 1.2

state ^reward-link.reward.value -2

All non-numeric elements at this level, or any values above/below this level, will be
ignored.

5.2. Environmental Reward
The reward-link is not part of the io-link and is not modified directly by the
environment. Reward information from the environment should be copied from the
input-link to the reward-link.

5.3. Accumulation of Reward
Rewards will be collected (and summed if there are multiple rewards) at the beginning of
each decision phase. Rewards are not removed from working memory as they are
recorded, so, for instance, an o-supported reward will continue to be counted until it is
explicitly removed.

As special cases, reward accumulation will occur immediately after a halt and
immediately before sub-state retraction (see 7.5. Hierarchical Learning).

 8

6. Soar-RL Rules
The reinforcement learning algorithm aggregates the agent’s experience into the Q-
function. This function, Q(s,a), is a mapping from a state-operator pair (described by a
working memory state and a reference to a particular proposed operator) to a real number
(the Q-value). The Q-value represents the expected discounted sum of future rewards if
the agent selects the given operator and continues to follow its current policy. RL learns
successively closer approximations to the true Q-values. Soar-RL stores this value
function in productions so that the Q-value of an operator is computed from all rules that
create numeric preferences for it during a decision.

6.1. Rule Format
The value function is computed through numeric preferences. Numeric preferences take
the following form:

(<state variable> ^operator <operator variable> = n umber)

where number is a numeric constant.

The value function is stored in Soar-RL rules, which are Soar productions asserting a
single numeric preference. Most simply:

sp {my*reinforcement*learning*rule
 (state <s> ^operator <o> +)
-->
 (<s> ^operator <o> = 2.3)
}

Soar-RL rules are identified by syntax. A rule is a Soar-RL rule if and only if its right
hand side (RHS) consists of a single numeric preference (and it is not a template rule,
described later). This format exists to ease technical requirements of identifying/updating
Soar-RL rules, as well as to make it easy for the agent programmer to add/maintain RL
capabilities within an agent.

Consider the following [non-Soar-RL] rules:

sp {multiple*preferences
 (state <s> ^operator <o> +)
-->
 (<s> ^operator <o> = 5, >)
}

sp {variable*binding
 (state <s> ^operator <o> +
 ^value <v>)
-->
 (<s> ^operator <o> = <v>)
}

 9

The first rule proposes multiple preferences for the proposed operator and thus does not
comply with the rule format. The second rule does not comply because it does not
provide a constant for the numeric preference value.

6.2. Rule Behavior
In the simplest case, a single Soar-RL production fires and matches a particular operator.
The estimated Q-value for the operator is the value of the numeric preference. This case
corresponds to a tabular or state-aggregation representation of the Q-function.

In more complicated cases, multiple Soar-RL rules may fire for a single operator,
proposing multiple numeric preferences for that operator. In this situation, the estimated
Q-value for the operator is a function of the proposed numeric preferences. This function
is controlled in Soar using the following command:

numeric-indifferent-mode [--sum|--avg]

where the sum option (default) sums over all the numeric preferences and avg averages
them.

Soar-RL rules are Soar productions, with one unique property: Soar-RL rules are updated
in production memory by Soar-RL. These updates, described later, change the number
in the numeric preference, leaving the rest of the rule unaffected.

6.3. Template Format
Template rules have variables that are filled in to generate Soar-RL rules for state-
operator pairs that the agent actually encounters. Consider the following template rule:

sp {sample*template*rule
 :template
 (state <s> ^operator <o> +
 ^value <v>)
-->
 (<s> ^operator <o> = 2.3)
}

The :template flag means to use the rule to make new Soar-RL rules by filling in those
variables that match constants (<v> in this case) in working memory. Without the
:template flag, this would have been a single Soar-RL rule that would match to multiple
states.

A rule is a template rule if and only if it has the :template flag and, in all other respects,
adheres to the format of a Soar-RL rule. However, wherein a Soar-RL rule may only use
constants as the numerical preference value, a template rule may use a variable. Consider
the following template rule:

 10

sp {sample*template*rule2
 :template
 (state <s> ^operator <o> +
 ^value <v>)
-->
 (<s> ^operator <o> = <v>)
}

In this case, Soar-RL will create new productions whose numerical preference values are
initialized to the value of <v> at the time this template rule first matches. If, at this time,
the value of <v> is non-numeric, the numerical preference value is initialized to zero.

6.4. Template Behavior
Upon adding a production to production memory, Soar-RL checks for the existence of a
:template flag. If a rule contains this flag and validates as a template rule, it is
categorized as a template. If a rule contains this flag but is not a valid rule, it is
immediately excised.

During the proposal phase, a valid template rule is supplied to the matcher as would any
other rule. Matched instances of the rule, however, do not directly contribute
preferences. Instead, they are used to create new Soar-RL productions. Each matched
instance is compared against existing Soar-RL rules. If the LHS of the instance is not
unique, the instance is ignored. If the LHS of the instance is unique, a new Soar-RL rule
is added to production memory. It should be noted that the current process of identifying
unique template match instances can become quite expensive in long agent runs. For
performance reasons, if all Soar-RL productions can be predicted at agent design time, it
is recommended to pre-generate them manually, using Soar’s gp command, or via custom
scripting.

A Soar-RL rule created from a template has two special characteristics: production name
and constant replacement. The new production’s name adheres to the following pattern:
rl*template-name*id, where id is a unique identifier and template-name is the name of
the originating template rule. The unique identifier is an incrementing counter
maintained automatically for the agent. When a new production is generated, it receives
an id value greater than the greatest identifier in production memory. The counter is
updated during every successful instantiation of a Soar-RL rule from a template, as well
as creation of productions (such as when sourcing an agent) that match the above naming
scheme.

All variables in the new production that map to constants (as opposed to structures) are
replaced with these constant values. This replacement applies to both the LHS
conditions, as well as numerical preference value.

For example, consider sample*template*rule2 above. Assume that the first time this
template matches the value of <v> is 3.2. The following new Soar-RL rule is added to
production memory during the proposal phase:

 11

sp {rl*sample*template*rule2*1
 (state <s> ^operator <o> +
 ^value 3.2)
-->
 (state ^operator <o> = 3.2)
}

As with other Soar-RL rules, the value of 3.2 on the RHS of this rule may be updated
later by Soar-RL, whereas the value of 3.2 on the LHS will remain unchanged.

 12

7. Reinforcement Learning Algorithm
The Soar-RL algorithm has the following major components: operator selection,
preference updates, gaps in rule coverage, eligibility traces, and hierarchical learning.

7.1. Operator Selection
The purpose of learning a Q-function is that the agent can act optimally by selecting the
operator with the highest Q-value. Numeric preferences participate in Soar’s existing
operator selection methods. The decision phase is further complicated by the
exploration/exploitation needs of reinforcement learning.

7.1.1. Numeric and Symbolic Preferences
Symbolic preferences take precedence over numeric preferences. Symbolic preferences
are processed first, and only if there are tied operators remaining, are numeric preferences
examined. Consider the following example set of preferences:

O1 > O2
O1 = 0
O2 = 2.1

In this situation, O1 would be selected.

7.1.2. Exploration Policies
When operator selection comes down to numeric preferences, the decision mechanism
should usually choose the operator with the highest numeric preferences, that is, the
highest estimated Q-value. However, for reinforcement learning to discover the optimal
policy, it is necessary that the agent sometimes choose an action that does not have the
maximum predicted value. Such exploration is necessary because actions may be
undervalued. This situation can occur both during the initial learning of a task and as a
result of change in the dynamics or reward structure of a task.

The exploration policy is selected using the indifferent-selection command:

indifferent-selection <policy>

The following are available policies:

-b, --boltzmann If the agent has proposed operators O1, ..., On with expected

values Q(s, O1), …, Q(s, On), then the probability of operator
Oi being selected is

e
Q(s,Oi)

τ

e
Q(s,O j)

τ

j=1

n

∑

 13

where τ (temperature), controls the peakedness of this
probability distribution.

-g, --epsilon-greedy With probability ε (epsilon) the agent selects an action at
random (with uniform probability). Otherwise the agent takes
the action with the highest expected value.

-x, --softmax Select an operator at random from the set of mutually
indifferent proposals, with the selection biased probabilistically
by any existing numeric preferences. Preferences with non-
positive numeric indifferent values are ignored. If non-positive
numeric indifferent values are encountered, a purely random
selection is made.

Note: the softmax policy is analogous to the former “--random"
option of the indifferent-selection command.

-f, --first Deterministic. Select the first indifferent object from Soar’s
internal list.

-l, --last Deterministic. Select the last indifferent object from Soar’s
internal list.

In an effort to maintain backwards compatibility, the default exploration policy is
softmax. However, the first time that Soar-RL is enabled, the architecture changes this
policy to episilon-greedy (a more suitable default for RL agents) and issues a message to
the trace.

Calling the indifferent-selection command with no parameters returns the current policy.
For example, assuming defaults and Soar-RL is enabled:

>indifferent-selection
epsilon-greedy

If the exploration policy requires tempering, indifferent-selection uses an exploration
rate parameter. Configuration of these parameters proceeds as follows:

indifferent-selection <parameter command> <value>

The following are available parameters:

Parameter Name Parameter Command Range of Values Default Value
epsilon -e, --epsilon [0,1] 0.1

temperature -t, --temperature (0, ∞∞∞∞) 25

Calling the indifferent-selection command with the parameter name and no value returns
the current parameter value. For example, assuming default values:

 14

>indifferent-selection --epsilon
0.1

It should be noted that deliberate configuration of the epsilon parameter while using the
epsilon-greedy exploration policy can achieve two extreme behaviors. If epsilon is set
to a value of zero (0), there is no chance for exploration and the highest valued operator is
always chosen (with random selection amongst tied operators). If epsilon is set to a
value of one (1), a uniform random selection is always made from amongst the
candidates.

With regard to reinforcement learning, the literature suggests that reduction of the
exploration rate over time results in convergence of the Q-function to optimal. The
indifferent-selection command allows for a reduction policy of each exploration rate
parameter. The reduction policy (paired with a set of reduction rates) defines how the
exploration rate parameter is reduced each cycle during which it is relevant (as defined by
the currently selected indifferent-selection policy). Selection of reduction policy
proceeds as follows:

indifferent-selection [-p|--reduction-policy]

<parameter name> <reduction policy>

The <parameter name> comes from the parameter table above. The following are
available reduction policies:

exponential Exploration rate parameter decays exponentially (default).
linear Exploration rate parameter decays linearly (value >= 0).

For example, setting the reduction policy for the epsilon parameter to linear would entail
the following:

>indifferent-selection --reduction-policy epsilon l inear

A call to the reduction-policy switch with a parameter name, but no reduction policy,
will return the current reduction policy for the parameter. For example, after the
command above:

>indifferent-selection --reduction-policy epsilon
linear

Configuring the reduction rate for a parameter in a particular reduction policy proceeds as
follows:

indifferent-selection [-r|--reduction-rate]
 <parameter name> <reduction policy> <reduction rat e>

The range and default reduction rates for each parameter are defined based upon the
reduction policy as follows:

 15

Reduction Policy Range of Values Default Value

exponential [0,1] 1
linear [0, ∞∞∞∞) 0

For example, setting the reduction rate of epsilon while using a linear reduction policy to
5 proceeds as follows:

>indifferent-selection --reduction-rate epsilon lin ear 5

A call to the reduction-rate switch with a parameter name and reduction policy, but no
reduction rate, will return the current reduction rate for the parameter in the reduction
policy. For example, after the command above:

>indifferent-selection --reduction-rate epsilon lin ear
5

As an example of reduction policies, consider the following sequence of commands.
Assume that an agent has been pre-loaded using the source command, and the agent has
been initiated and is in the proposal phase:

>indifferent-selection --epsilon 0.5
>indifferent-selection --reduction-policy epsilon e xponential
>indifferent-selection --reduction-rate epsilon exp onential 0.9
>step
>indifferent-selection --epsilon
0.45
>step
>indifferent-selection --epsilon
0.405

Note that after each decision phase the value of the epsilon exploration rate reduces
exponentially by a factor of 0.9.

Many agents will not require automatic reduction of exploration parameters (or may
require greater degrees of flexibility/customization). Thus, the indifferent-selection
command with the auto-reduce switch controls this functionality:

indifferent-selection [-a|--auto-reduce] <setting>

The setting parameter can be either on or off. A call to the auto-reduce switch without a
setting parameter will output the current automatic policy parameter reduction setting.
For example:

>indifferent-selection --auto-reduce
off
>indifferent-selection --auto-reduce on
>indifferent-selection --auto-reduce
on

Note that for performance purposes, the default setting for auto-reduce is off.

 16

For convenience, calling the indifferent-selection command with the stats switch will
output a complete set of exploration policy information. For example, assuming defaults
and Soar-RL is enabled:

>indifferent-selection --stats
Exploration Policy: epsilon-greedy
Automatic Policy Parameter Reduction: off

epsilon: 0.1
epsilon Reduction Policy: exponential
epsilon Reduction Rate (exponential/linear): 1/0

temperature: 25
temperature Reduction Policy: exponential
temperature Reduction Rate (exponential/linear): 1/ 0

7.2. Preference Updates
Soar-RL does TD-learning: the estimated Q-value at time t, Q(st,at), is updated in the
direction of a later estimate of this quantity. For the sum reward accumulation mode, the
Q-value update, where α is the learning rate, is the following equation:

Current Estimate += α(Target Estimate – Current Estimate)

The update is computed in decision phase n+1 and then is apportioned to the Soar-RL
rules that fired for the operator selected in decision phase n in a least mean squares
(LMS), gradient-descent fashion.

Updating a Soar-RL rule involves changing the value of its numeric preference. For
example:

1. In decision phase n, Soar-RL rules rl-1 and rl-2 fire for operator O2. They have
the following numeric preferences:

rl-1: (<s> ^operator <o> = 2.3)
rl-2: (<s> ^operator <o> = -1)

2. O2 is selected.
3. In decision phase n+1, update 0.2 is computed.
4. rl-1 and rl-2 are updated with the following numeric preferences:

RL-1: (<s> ^operator <o> = 2.4)
RL-2: (<s> ^operator <o> = -0.9)

Note that the update value is divided amongst and applied equally to all
contributing numeric preferences originating from Soar-RL rules.

 17

7.2.1. Target Estimate Calculation
The target estimate is the result of applying discounting to accumulated reward. The
discount factor (γ), configured using the discount-rate parameter, allows the agent to
value immediate rewards over more distant rewards. The value that is chosen for
discount is configured by the learning-policy parameter.

7.2.2. Learning Calculation
The learning rate (α), configured using the learning-rate parameter, dictates the speed
by which updates affect agent behavior.

7.2.3. Update Calculation
With respect to intermediate calculations, the final update is calculated as follows:

Current Estimate = Q(s t ,a t)
Next Value = F(learning-policy, t, Q-function)

Target Estimate = r t+1 + γ(Next Value)
Update = α(Target Estimate – Current Estimate)

The update is then applied as described above.

7.3. Gaps in Rule Coverage
Since TD updates are transmitted backwards through the stored Q-function, it is tempting
to think that the function must be well-represented by Soar-RL rules at each decision
cycle: if there are no Soar-RL rules to fire for the operator at step N in your task, then the
steps prior to N will never receive updates; if there are Soar-RL rules at step N, but they
are overly general, then the steps prior to N will receive inaccurate updates.

However, needing a Q-value stored for every decision implies that Soar-RL rules must be
provided even for operator selections that are to be decided by symbolic preferences.
Maintaining this level of discipline can be difficult for agent programmers, particularly
when operators are required that do not represent steps in a task, but perform
management of working memory. For example, inserting an operator simply to remove
some o-supported structure requires providing Soar-RL rules, sufficiently specific Soar-
RL rules to distinguish different Q-values for all the states in which it may be selected.

To address this practical issue, Soar-RL provides preliminary support for automatic
propagation of updates over “gaps.” A gap is defined as one or more contiguous decision
cycles during which no Soar-RL rules fire. By default, Soar-RL will automatically
propagate updates over gaps, discounted exponentially by the discount-rate parameter
with respect to the length of the gap (defined as the number of decision cycles). This
behavior can be enabled/disabled by manipulating the temporal-extension parameter. If
the temporal-extension parameter is set to off, no updates will propagate across gaps.
For tools in identifying gaps, see 10.1. Trace Information.

 18

7.4. Eligibility Traces
By keeping a trace of state-action pairs encountered, the agent can update Q-values for
these stored pairs based on a combination of multi-step targets. This can speed learning,
particularly when the reward horizon is long. Multi-step updates are averaged together
according to the eligibility-trace-decay-rate (λ) parameter and discounted according to
the discount-rate (γ) parameter.
Eligibility traces are implemented by keeping (Soar-RL rule, eligibility trace) pairs for all
RL rules with non-negligible traces (as defined by the eligibility-trace-tolerance
parameter). Memory usage for eligibility traces is minimal when the eligibility-trace-
decay-rate parameter is set to 0, and grows with increase in the parameter, but is never
larger than O(# of Soar-RL rules).

The eligibility trace implementation Soar-RL uses depends upon the current value of the
learning-policy parameter:

Learning Policy Eligibility Trace Implementation
sarsa Sarsa(λ)
q-learning Watkin’s Q(λ)

The Sarsa(λ) algorithm is described below as implemented in Soar-RL. Assume that e
represents the list of (Soar-RL rule, eligibility trace) pairs for all non-negligible traces
(initially empty), o is an operator associated with a Soar-RL rule, n represents the number
of Soar-RL rules that contributed to the selection of o, and Q represents the numeric
preference values associated with Soar-RL rules (accessed by operator id).

Initialize reward r = 0
Repeat (for each Soar cycle):

Select operator o

 Repeat (for each o in e):
 if (e[o] < [eligibility trace tolerance])
 remove e[o]

 increment = 1/ n

if (e[o])
 e[o]+= increment
 else
 e[o]= increment

 Repeat (for each o in e):

Q[o]+=(learning rate) •(update) •e[o]
e[o]*=(discount rate) •(eligibility trace decay rate)

 Apply operator o
 Observe reward r

The Watkins Q(λ) algorithm is equivalent to Sarsa(λ) in terms of calculation. However, if
the selected operator, o, was not the proposed operator with greatest combined numeric
preference values (i.e. the “greedy” choice), all eligibility traces are re-initialized to zero.

In the calculations above, an eligibility-trace-decay-rate parameter set to 0 will result in
eligibility trace values always being removed, and thus Q-values never decaying.

 19

Consequently, Soar-RL interprets such a setting (the default) as disabling eligibility
traces.

7.5. Hierarchical Learning
Hierarchical reinforcement learning (HRL) is reinforcement learning done over a
hierarchically decomposed task structure. Learning can be applied both to improving the
implementation of a subtask and to the selection among subtasks. Compared to flat RL,
HRL can demonstrate faster learning on a single task and can learn policies that are easier
to transfer to related tasks.

7.5.1. Operator No-Change Impasses
Hierarchical reinforcement learning in Soar-RL is built on Soar’s operator no-change
impasse, which has traditionally been used for subgoaling and hierarchical task
decomposition. Consider the following operator trace where operator O1 is selected and
impassed at state S1, with operators O11, O12, and O13 being selected and applied at
substate S2:

Soar-RL will treat the operator selection at S1 and S2 as two separate RL problems (S1
and S2 have independent reward-link structures):

S1: Rewards at S1 while O1 is impassed are attributed to O1. By default, these

rewards and the next-state prediction are discounted by the number of decision
cycles that O1 has been impassed. So if rewards r1, r2, and r3 are the rewards
received at S1 while O1 is impassed, the target estimate for Q(S1, O1) is

r1 + γ(r2) + γ2(r3) + γ3[Q(S1, O2)]

This model maintains the definition of the Q-function as representing the
expected discounted sum of future reward received after selecting an operator.

Setting the hrl-discount parameter to off will change this behavior, such that the
number of cycles O1 has been impassed will be ignored. Thus the target estimate
for Q(S1, O1) would be

 r1 + r2 + r3 + γ[Q(S1, O2)]

S1

S2

O1
r1

O1
r2

O1

O1
r3

O2

O11 O12 O13

 20

S2: After applying O13, immediately before the state S2 is removed, the architecture

checks for reward r at S2. The target estimate for Q(S2, O13) is just r.

7.5.2. Other Soar Impasses
For impasses other than operator no-change, the behavior of Soar-RL at top-state S1 and
substate S2 is as follows:

S1: During these impasses, there is no operator installed at S1. If O1 is the last

operator selected before the impasse, r the reward received in the decision cycle
immediately following O1, and O2 the first operator selected after the impasse,
then O1 is updated with the target r + γ[Q(S1, O2)]. In other words, Soar-RL
acts as if the impasse hadn’t occurred.

S2: Soar-RL acts exactly as it does for an operator no-change: the substate is treated

as an episodic task.

Note: in the final version of Soar-RL, all Soar impasses will be treated identically. In the
case of an impasse other than operator no-change, the time period at the superstate during
which no operator is selected will be treated as a “gap” in rule coverage, and perceived
reward will be discounted with respect to decision cycles passed.

 21

8. Soar-RL Parameters
Soar-RL is configured using the rl command.

8.1. Parameter Configuration
Individual configuration parameters are retrieved and manipulated using the get and set
switches of the rl command:

rl [-g|--get] <parameter>
rl [-s|--set] <parameter> <value>

Agents can retrieve and change parameters in the actions of rules using the cmd function.

8.2. Parameter Descriptions

8.2.1. General

Soar-RL
Purpose Enable or disable Soar-RL
Parameter learning
Values on Enable Soar-RL

off Disable Soar-RL

Default off

Temporal Extension
Purpose Direct how Soar-RL should behave during gaps in Soar-RL rule coverage
Parameter temporal-extension
Values on Automatically propagate discounted updates

off Do not propagate updates across gaps

Default on

8.2.2. Reward Discount

Discount Rate
Purpose Set the discount rate (γ)
Parameter discount-rate
Values Numeric, [0,1]
Default 0.9

8.2.3. Learning

Learning Rate
Purpose Set the learning rate (α)
Parameter learning-rate
Values Numeric, [0,1]
Default 0.3

 22

Learning Policy
Purpose Modify the type of TD-learning used by Soar-RL
Parameter learning-policy
Values sarsa On-policy, SARSA(λ) – update from the next action

selected, target rt +1 + γ ⋅ Q(st +1,at +1)
q-learning Off-policy, Q-learning – update from the next candidate

action with best estimate, rt +1 + γ ⋅ maxa Q(st +1,at +1)[]

Default sarsa

HRL Discount
Purpose Direct how Soar-RL should discount reward at impassed states
Parameter hrl-discount
Values on Reward received at an impassed state is discounted by

the number of cycles of impasse
off Reward is not discounted by the number of cycles of

impasse

Default on

8.2.4. Eligibility Traces

Eligibility Trace Decay Rate
Purpose Set the eligibility trace decay rate (λ)
Parameter eligibility-trace-decay-rate
Values Numeric, [0,1]
Default 0

Eligibility Trace Tolerance
Purpose Sets the level at which eligibility traces are considered negligible
Parameter eligibility-trace-tolerance
Values Numeric, (0, ∞∞∞∞)
Default 0.001

 23

8.3. Full Parameter Configuration
Entering simply the rl command (with no switches) will return full parameter
configuration information. For example, assuming default configuration, the result of
executing rl is as follows:

rl
Soar-RL learning: off
temporal-extension: on

Discount

discount-rate: 0.9

Learning

learning-policy: sarsa
learning-rate: 0.3

Eligibility Traces

eligibility-trace-decay-rate: 0
eligibility-trace-tolerance: 0.001

 24

8.4. Parameter Behavior
This section details two fundamental characteristics of parameter behavior: parameter
configuration timing and handling of invalid parameter values. Additionally, there are
some special cases to discuss.

8.4.1. Parameter Configuration Timing
In order for parameter configuration to affect the behavior of Soar-RL during cycle n,
parameter configuration must be completed before the start of the decision phase of cycle
n.

8.4.2. Invalid Parameter Values
Upon attempting to set a Soar-RL parameter, the new value is validated. If the value is
found to be invalid, the system will use the previous value.

8.4.3. Special Cases
At the beginning of the decision phase of each cycle, the value for the learning-policy
parameter is checked. If this value has changed since the last cycle, all eligibility traces
on the current state are re-initialized.

 25

9. Soar-RL Statistics
Feedback from the Soar-RL system is retrieved using the stats switch of the rl command:

rl [-S|--stats] <statistic>

If a statistic argument is provided, the command returns the value of a specific statistic.
The valid statistic arguments are listed below.

Statistic update-error
Description The difference between the target estimate and the current estimate in

the most recent update (see 7.2.3. Update Calculation).

Statistic total-reward
Description The total accumulated reward (with respect to the accumulation-mode)

in the most recent update (see 7.2.1. Target Estimate Calculation).

Statistic global-reward
Description The total accumulated reward (with respect to the accumulation-mode)

since agent initialization (see 7.2.1. Target Estimate Calculation).

Agents can retrieve specific statistics in rule actions using the cmd function.

Entering the rl --stats command with no statistic, or an invalid statistic, will return all
statistics. A sample execution may look as follows:

>rl --stats
Error from last update: 0.8
Total reward in last cycle: 7
Global reward since init: 51

 26

10. Trace and Command Information
This section details debugging tools, including trace information, print switches, excise
switches, and decision cycle commands.

10.1. Trace Information
Viewing of numeric preferences for each operator can be accomplished using the
following watch switch:

watch [-i|--indifferent-selection]

This watch function is not enabled by default or through any watch level. Use of the
preferences command provides further information about operators referenced with this
trace.

To view firing of templates, use the following watch switch:

watch [-T|--template]

This watch function is not enabled by default, but is enabled at watch level three (3).

To view Soar-RL debugging information, use the following watch switch:

watch [-R|--rl]

This function is not enabled by default or through any watch level. At present, this watch
level provides trace information about starting and ending of gaps in Soar-RL rule
coverage.

10.2. Print Switch
Soar-RL introduces two new switches to the print command:

print [-r|--rl]
print [-T|--template]

The rl switch to the print command provides detailed information about all Soar-RL
rules. The output displays the rule name, the number of updates (potentially fractional, if
updated by an eligibility trace), and the current value. For example, if
my*reinforcement*learning*rule were the only Soar-RL rule in an agent and had been
updated 4 times with a current value of 3.7, the result would be as follows:

>print --rl

my*reinforcement*learning*rule 4. 3.7

 27

The template switch to the print command provides the names of all template rules. For
example, if sample*template*rule were the only Soar-RL template rule in an agent, the
result would be as follows:

>print --template

sample*template*rule

Both new switches adhere to existing print command switches. For instance, to view
information about a specific rule or template, simply indicate its name as a parameter.
Also, to view the complete rule, use the full switch. The following examples illustrate
some common usages:

>print --rl --full

sp {my*reinforcement*learning*rule
 (state <s> ^operator <o> +)
-->
 (<s> ^operator <o> = 2.3)
}

>print --template --full

sp {sample*template*rule
 :template
 (state <s> ^operator <o> +
 ^value <v>)
-->
 (<s> ^operator <o> = 2.3)
}

>print --name my*reinforcement*learning*rule

my*reinforcement*learning*rule 4. 3.7

>print --full sample*template*rule

sp {sample*template*rule
 :template
 (state <s> ^operator <o> +
 ^value <v>)
-->
 (<s> ^operator <o> = 2.3)
}

>print --all

my*reinforcement*learning*rule 4. 3.7
sample*template*rule

 28

10.3. Excise Switch
Soar-RL introduces two new switches to the excise command:

excise [-r|--rl]
excise [-T|--template]

The rl switch to the excise command removes all Soar-RL rules (including those created
from templates) from production memory. For example, if my*rl*rule were the only
Soar-RL rule in an agent, the result would be as follows:

>excise --rl

1 production excised.

>print --rl

The template switch to the excise command removes all Soar-RL templates, preventing
further creation of new Soar-RL rule instantiations. For example, if my*rl*template
were the only template rule in an agent, the result would be as follows:

>excise --template

1 production excised.

>print --template

10.4. Decision Cycle Commands
Soar-RL introduces two new commands to debug the decision cycle of an agent:

predict
select <id>

The predict command determines, based upon current operator proposals, which operator
will be chosen during the next decision phase. If predict determines an operator tie will
be encountered, tie is returned. If predict determines no operator will be selected (state
no-change), none is returned. If predict determines a conflict will arise during the
decision phase, conflict is returned. If predict determines a constraint failure will occur,
constraint is returned. Otherwise, predict will return the id of the operator to be chosen.
If operator selection will require probabilistic selection, and no alterations to the
probabilities are made between the call to predict and decision phase, predict will
manipulate the random number generator to enforce its prediction.

The select command will force the selection of an operator, whose id is supplied as an
argument (case-insensitive), during the next decision phase. If the argument is not a
proposed operator in the next decision phase, an error is raised and operator selection
proceeds as if the select command had not been called. Otherwise, the supplied operator
will be selected as the next operator, regardless of preferences. If select is called with no
id argument, the command returns the operator id currently forced for selection (by a
previous call to select), if one exists.

 29

11. Soar-RL Programmer Reference
The following tables list basic information about each of the Soar-RL related commands.
It is not intended to substitute for this document, but a quick reference for commonly
used commands and options.

11.1. Soar-RL

Useful Commands
Command Description
rl Summary table of parameter settings
rl [-g|--get] <parameter> Retrieve a Soar-RL parameter value
rl [-s|--set] <parameter> <value> Set a Soar-RL parameter value
rl [-S|--stats] <statistic> Access Soar-RL statistics

print [-r|--rl] Print Soar-RL rules
print [-T|--template] Print Soar-RL templates
watch [-R|--rl] Soar-RL debugging trace
watch [-T|--template] Soar-RL template firing trace

excise [-r|--rl] Excise Soar-RL rules
excise [-T|--template] Excise Soar-RL templates

Soar-RL Parameters
General
Parameter Name Acceptable Values Default
learning on

off
 off

temporal-extension on
off

 on

Reward Discount
Parameter Name Acceptable Values Default
discount-rate [0,1] 0.9

Learning
Parameter Name Acceptable Values Default
learning-rate [0,1] 0.3
learning-policy sarsa

q-learning
 sarsa

hrl-discount on
off

 on

Eligibility Traces
Parameter Name Acceptable Values Default
eligibility-trace-decay-rate [0,1] 0
eligibility-trace-tolerance (0, ∞) 0.001

 30

11.2. Operator Selection

Useful Commands
Command Description
indifferent-selection [-s|--stats] Summary of settings
indifferent-selection Current exploration policy
indifferent-selection <policy> Set exploration policy
indifferent-selection <parameter> <value> Get/Set exploration policy parameters

predict Predict the next selected operator
select <id> Force the next selected operator

Exploration Policies
Policy Name Description
[-b|--boltzmann] Tempered softmax (uses temperature)
[-g|--epsilon-greedy] Tempered greedy (uses epsilon)
[-x|--softmax] Random, biased by numeric indifferent values
[-f|--first] Deterministic, first indifferent preference is selected
[-l|--last] Deterministic, last indifferent preference is selected

Exploration Parameters
Parameter Name Acceptable Values Default
[-e|--epsilon] [0,1] 0.1
[-t|--temperature] (0, ∞) 25

